Remove some animations

This commit is contained in:
Atsushi Sakai
2018-09-16 09:07:03 +09:00
parent f164773dec
commit e4a971c4d5

285
README.md
View File

@@ -9,22 +9,19 @@ Python codes for robotics algorithm.
# Table of Contents
* [What is this?](#what-is-this)
* [Requirements](#requirements)
* [Documentation](#documentation)
* [How to use](#how-to-use)
* [Localization](#localization)
* [Extended Kalman Filter localization](#extended-kalman-filter-localization)
* [Unscented Kalman Filter localization](#unscented-kalman-filter-localization)
* [Particle filter localization](#particle-filter-localization)
* [Histogram filter localization](#histogram-filter-localization)
* [Mapping](#mapping)
* [Gaussian grid map](#gaussian-grid-map)
* [Ray casting grid map](#ray-casting-grid-map)
* [k-means object clustering](#k-means-object-clustering)
* [Object shape recognition using circle fitting](#object-shape-recognition-using-circle-fitting)
* [SLAM](#slam)
* [Iterative Closest Point (ICP) Matching](#iterative-closest-point-icp-matching)
* [EKF SLAM](#ekf-slam)
* [FastSLAM 1.0](#fastslam-10)
* [FastSLAM 2.0](#fastslam-20)
* [Graph based SLAM](#graph-based-slam)
* [Path Planning](#path-planning)
* [Dynamic Window Approach](#dynamic-window-approach)
@@ -32,40 +29,22 @@ Python codes for robotics algorithm.
* [Dijkstra algorithm](#dijkstra-algorithm)
* [A* algorithm](#a-algorithm)
* [Potential Field algorithm](#potential-field-algorithm)
* [Model Predictive Trajectory Generator](#model-predictive-trajectory-generator)
* [Path optimization sample](#path-optimization-sample)
* [Lookup table generation sample](#lookup-table-generation-sample)
* [State Lattice Planning](#state-lattice-planning)
* [Uniform polar sampling](#uniform-polar-sampling)
* [Biased polar sampling](#biased-polar-sampling)
* [Lane sampling](#lane-sampling)
* [Probabilistic Road-Map (PRM) planning](#probabilistic-road-map-prm-planning)
* [Voronoi Road-Map planning](#voronoi-road-map-planning)
* [Rapidly-Exploring Random Trees (RRT)](#rapidly-exploring-random-trees-rrt)
* [Basic RRT](#basic-rrt)
* [RRT*](#rrt)
* [RRT with dubins path](#rrt-with-dubins-path)
* [RRT* with dubins path](#rrt-with-dubins-path-1)
* [RRT* with reeds-sheep path](#rrt-with-reeds-sheep-path)
* [Informed RRT*](#informed-rrt)
* [Batch Informed RRT*](#batch-informed-rrt)
* [Closed Loop RRT*](#closed-loop-rrt)
* [LQR-RRT*](#lqr-rrt)
* [Cubic spline planning](#cubic-spline-planning)
* [B-Spline planning](#b-spline-planning)
* [Eta^3 Spline path planning](#eta3-spline-path-planning)
* [Bezier path planning](#bezier-path-planning)
* [Quintic polynomials planning](#quintic-polynomials-planning)
* [Dubins path planning](#dubins-path-planning)
* [Reeds Shepp planning](#reeds-shepp-planning)
* [LQR based path planning](#lqr-based-path-planning)
* [Optimal Trajectory in a Frenet Frame](#optimal-trajectory-in-a-frenet-frame)
* [Path tracking](#path-tracking)
* [move to a pose control](#move-to-a-pose-control)
* [Pure pursuit tracking](#pure-pursuit-tracking)
* [Stanley control](#stanley-control)
* [Rear wheel feedback control](#rear-wheel-feedback-control)
* [Linearquadratic regulator (LQR) steering control](#linearquadratic-regulator-lqr-steering-control)
* [Linearquadratic regulator (LQR) speed and steering control](#linearquadratic-regulator-lqr-speed-and-steering-control)
* [Model predictive speed and steering control](#model-predictive-speed-and-steering-control)
* [Arm Navigation](#arm-navigation)
@@ -109,6 +88,12 @@ See this paper for more details:
- [cvxpy](http://www.cvxpy.org/en/latest/)
# Documentation
This README only shows some examples of this project.
Full documentation is available online: [https://pythonrobotics.readthedocs.io/](https://pythonrobotics.readthedocs.io/)
# How to use
1. Install the required libraries. You can use environment.yml with conda command.
@@ -137,19 +122,6 @@ Ref:
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
## Unscented Kalman Filter localization
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/unscented_kalman_filter/animation.gif)
This is a sensor fusion localization with Unscented Kalman Filter(UKF).
The lines and points are same meaning of the EKF simulation.
Ref:
- [Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization](https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization)
## Particle filter localization
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/particle_filter/animation.gif)
@@ -209,18 +181,6 @@ This is a 2D object clustering with k-means algorithm.
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Mapping/kmeans_clustering/animation.gif)
## Object shape recognition using circle fitting
This is an object shape recognition using circle fitting.
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Mapping/circle_fitting/animation.gif)
The blue circle is the true object shape.
The red crosses are observations from a ranging sensor.
The red circle is the estimated object shape using circle fitting.
# SLAM
Simultaneous Localization and Mapping(SLAM) examples
@@ -238,20 +198,6 @@ Ref:
- [Introduction to Mobile Robotics: Iterative Closest Point Algorithm](https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf)
## EKF SLAM
This is an Extended Kalman Filter based SLAM example.
The blue line is ground truth, the black line is dead reckoning, the red line is the estimated trajectory with EKF SLAM.
The green crosses are estimated landmarks.
![3](https://github.com/AtsushiSakai/PythonRobotics/raw/master/SLAM/EKFSLAM/animation.gif)
Ref:
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
## FastSLAM 1.0
This is a feature based SLAM example using FastSLAM 1.0.
@@ -266,22 +212,6 @@ Black points are landmarks, blue crosses are estimated landmark positions by Fas
![3](https://github.com/AtsushiSakai/PythonRobotics/raw/master/SLAM/FastSLAM1/animation.gif)
Ref:
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
- [SLAM simulations by Tim Bailey](http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm)
## FastSLAM 2.0
This is a feature based SLAM example using FastSLAM 2.0.
The animation has the same meanings as one of FastSLAM 1.0.
![3](https://github.com/AtsushiSakai/PythonRobotics/raw/master/SLAM/FastSLAM2/animation.gif)
Ref:
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
@@ -351,26 +281,6 @@ Ref:
- [Robotic Motion Planning:Potential Functions](https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf)
## Model Predictive Trajectory Generator
This is a path optimization sample on model predictive trajectory generator.
This algorithm is used for state lattice planner.
### Path optimization sample
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ModelPredictiveTrajectoryGenerator/kn05animation.gif)
### Lookup table generation sample
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable.png?raw=True)
Ref:
- [Optimal rough terrain trajectory generation for wheeled mobile robots](http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328)
## State Lattice Planning
This script is a path planning code with state lattice planning.
@@ -384,11 +294,6 @@ Ref:
- [State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments](http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf)
### Uniform polar sampling
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/StateLatticePlanner/UniformPolarSampling.gif)
### Biased polar sampling
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/StateLatticePlanner/BiasedPolarSampling.gif)
@@ -415,33 +320,9 @@ Ref:
- [Probabilistic roadmap \- Wikipedia](https://en.wikipedia.org/wiki/Probabilistic_roadmap)
  
## Voronoi Road-Map planning
![VRM](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/VoronoiRoadMap/animation.gif)
This Voronoi road-map planner uses Dijkstra method for graph search.
In the animation, blue points are Voronoi points,
Cyan crosses mean searched points with Dijkstra method,
The red line is the final path of Vornoi Road-Map.
Ref:
- [Robotic Motion Planning](https://www.cs.cmu.edu/~motionplanning/lecture/Chap5-RoadMap-Methods_howie.pdf)
## Rapidly-Exploring Random Trees (RRT)
### Basic RRT
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRT/animation.gif)
This is a simple path planning code with Rapidly-Exploring Random Trees (RRT)
Black circles are obstacles, green line is a searched tree, red crosses are start and goal positions.
### RRT\*
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTstar/animation.gif)
@@ -456,69 +337,12 @@ Ref:
- [Sampling-based Algorithms for Optimal Motion Planning](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf)
### RRT with dubins path
![PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTDubins/animation.gif)
Path planning for a car robot with RRT and dubins path planner.
### RRT\* with dubins path
![AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTStarDubins/animation.gif)
Path planning for a car robot with RRT\* and dubins path planner.
### RRT\* with reeds-sheep path
![Robotics/animation.gif at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTStarReedsShepp/animation.gif))
Path planning for a car robot with RRT\* and reeds sheep path planner.
### Informed RRT\*
![irrt](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/InformedRRTStar/animation.gif))
This is a path planning code with Informed RRT\*.
The cyan ellipse is the heuristic sampling domain of Informed RRT\*.
Ref:
- [Informed RRT\*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic](https://arxiv.org/pdf/1404.2334.pdf)
### Batch Informed RRT\*
![irrt](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BatchInformedRRTStar/animation.gif))
This is a path planning code with Batch Informed RRT\*.
Ref:
- [Batch Informed Trees \(BIT\*\): Sampling\-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs](https://arxiv.org/abs/1405.5848)
### Closed Loop RRT\*
A vehicle model based path planning with closed loop RRT\*.
![CLRRT](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ClosedLoopRRTStar/animation.gif)
In this code, pure-pursuit algorithm is used for steering control,
PID is used for speed control.
Ref:
- [Motion Planning in Complex Environments
using Closed-loop Prediction](http://acl.mit.edu/papers/KuwataGNC08.pdf)
- [Real-time Motion Planning with Applications to
Autonomous Urban Driving](http://acl.mit.edu/papers/KuwataTCST09.pdf)
- [[1601.06326] Sampling-based Algorithms for Optimal Motion Planning Using Closed-loop Prediction](https://arxiv.org/abs/1601.06326)
### LQR-RRT\*
This is a path planning simulation with LQR-RRT\*.
@@ -534,64 +358,6 @@ Ref:
- [MahanFathi/LQR\-RRTstar: LQR\-RRT\* method is used for random motion planning of a simple pendulum in its phase plot](https://github.com/MahanFathi/LQR-RRTstar)
## Cubic spline planning
A sample code for cubic path planning.
This code generates a curvature continuous path based on x-y waypoints with cubic spline.
Heading angle of each point can be also calculated analytically.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_1.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_2.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_3.png?raw=True)
## B-Spline planning
![B-Spline](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BSplinePath/Figure_1.png?raw=True)
This is a path planning with B-Spline curse.
If you input waypoints, it generates a smooth path with B-Spline curve.
The final course should be on the first and last waypoints.
Ref:
- [B\-spline \- Wikipedia](https://en.wikipedia.org/wiki/B-spline)
## Eta^3 Spline path planning
![eta3](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/Eta3SplinePath/animation.gif?raw=True)
This is a path planning with Eta^3 spline.
Ref:
- [\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots](https://ieeexplore.ieee.org/document/4339545/)
## Bezier path planning
A sample code of Bezier path planning.
It is based on 4 control points Beier path.
![Bezier1](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BezierPath/Figure_1.png?raw=True)
If you change the offset distance from start and end point,
You can get different Beizer course:
![Bezier2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BezierPath/Figure_2.png?raw=True)
Ref:
- [Continuous Curvature Path Generation Based on Bezier Curves for Autonomous Vehicles](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf)
## Quintic polynomials planning
Motion planning with quintic polynomials.
@@ -604,17 +370,6 @@ Ref:
- [Local Path Planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/)
## Dubins path planning
A sample code for Dubins path planning.
![dubins](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/DubinsPath/animation.gif?raw=True)
Ref:
- [Dubins path - Wikipedia](https://en.wikipedia.org/wiki/Dubins_path)
## Reeds Shepp planning
A sample code with Reeds Shepp path planning.
@@ -667,18 +422,6 @@ Ref:
- [P. I. Corke, "Robotics, Vision and Control" \| SpringerLink p102](https://link.springer.com/book/10.1007/978-3-642-20144-8)
## Pure pursuit tracking
Path tracking simulation with pure pursuit steering control and PID speed control.
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/pure_pursuit/animation.gif)
The red line is a target course, the green cross means the target point for pure pursuit control, the blue line is the tracking.
Ref:
- [A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles](https://arxiv.org/abs/1604.07446)
## Stanley control
Path tracking simulation with Stanley steering control and PID speed control.
@@ -704,17 +447,6 @@ Ref:
- [A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles](https://arxiv.org/abs/1604.07446)
## Linearquadratic regulator (LQR) steering control
Path tracking simulation with LQR steering control and PID speed control.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/lqr_steer_control/animation.gif)
Ref:
- [ApolloAuto/apollo: An open autonomous driving platform](https://github.com/ApolloAuto/apollo)
## Linearquadratic regulator (LQR) speed and steering control
Path tracking simulation with LQR speed and steering control.
@@ -815,3 +547,6 @@ This is a list: [Users comments](https://github.com/AtsushiSakai/PythonRobotics/