mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 02:38:02 -05:00
remove optimization sample
This commit is contained in:
@@ -23,6 +23,8 @@ see (in Japanese) :
|
||||
|
||||
This script is a path planning code with RRT \*
|
||||
|
||||
- [Incremental Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/abs/1005.0416)
|
||||
|
||||
|
||||
## Dubins path planning
|
||||
|
||||
|
||||
BIN
scripts/PathPlanning/RRT/figure_1.png
Normal file
BIN
scripts/PathPlanning/RRT/figure_1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 60 KiB |
@@ -1,7 +1,7 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
u"""
|
||||
@brief: Path Planning Sample Code with Randamized Rapidly-Exploring Random Trees (RRT)
|
||||
@brief: Path Planning Sample Code with Randamized Rapidly-Exploring Random Trees (RRT)
|
||||
|
||||
@author: AtsushiSakai
|
||||
|
||||
@@ -14,12 +14,14 @@ import random
|
||||
import math
|
||||
import copy
|
||||
|
||||
|
||||
class RRT():
|
||||
u"""
|
||||
Class for RRT Planning
|
||||
"""
|
||||
|
||||
def __init__(self, start, goal, obstacleList,randArea,expandDis=1.0,goalSampleRate=5,maxIter=500):
|
||||
def __init__(self, start, goal, obstacleList,
|
||||
randArea, expandDis=1.0, goalSampleRate=5, maxIter=500):
|
||||
u"""
|
||||
Setting Parameter
|
||||
|
||||
@@ -29,17 +31,17 @@ class RRT():
|
||||
randArea:Ramdom Samping Area [min,max]
|
||||
|
||||
"""
|
||||
self.start=Node(start[0],start[1])
|
||||
self.end=Node(goal[0],goal[1])
|
||||
self.start = Node(start[0], start[1])
|
||||
self.end = Node(goal[0], goal[1])
|
||||
self.minrand = randArea[0]
|
||||
self.maxrand = randArea[1]
|
||||
self.expandDis = expandDis
|
||||
self.goalSampleRate = goalSampleRate
|
||||
self.maxIter = maxIter
|
||||
|
||||
def Planning(self,animation=True):
|
||||
def Planning(self, animation=True):
|
||||
u"""
|
||||
Pathplanning
|
||||
Pathplanning
|
||||
|
||||
animation: flag for animation on or off
|
||||
"""
|
||||
@@ -48,7 +50,8 @@ class RRT():
|
||||
while True:
|
||||
# Random Sampling
|
||||
if random.randint(0, 100) > self.goalSampleRate:
|
||||
rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand)]
|
||||
rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(
|
||||
self.minrand, self.maxrand)]
|
||||
else:
|
||||
rnd = [self.end.x, self.end.y]
|
||||
|
||||
@@ -57,7 +60,7 @@ class RRT():
|
||||
# print(nind)
|
||||
|
||||
# expand tree
|
||||
nearestNode =self.nodeList[nind]
|
||||
nearestNode = self.nodeList[nind]
|
||||
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
|
||||
|
||||
newNode = copy.deepcopy(nearestNode)
|
||||
@@ -81,18 +84,17 @@ class RRT():
|
||||
if animation:
|
||||
self.DrawGraph(rnd)
|
||||
|
||||
|
||||
path=[[self.end.x,self.end.y]]
|
||||
path = [[self.end.x, self.end.y]]
|
||||
lastIndex = len(self.nodeList) - 1
|
||||
while self.nodeList[lastIndex].parent is not None:
|
||||
node = self.nodeList[lastIndex]
|
||||
path.append([node.x,node.y])
|
||||
path.append([node.x, node.y])
|
||||
lastIndex = node.parent
|
||||
path.append([self.start.x, self.start.y])
|
||||
|
||||
return path
|
||||
|
||||
def DrawGraph(self,rnd=None):
|
||||
def DrawGraph(self, rnd=None):
|
||||
u"""
|
||||
Draw Graph
|
||||
"""
|
||||
@@ -102,8 +104,12 @@ class RRT():
|
||||
plt.plot(rnd[0], rnd[1], "^k")
|
||||
for node in self.nodeList:
|
||||
if node.parent is not None:
|
||||
plt.plot([node.x, self.nodeList[node.parent].x], [node.y, self.nodeList[node.parent].y], "-g")
|
||||
plt.plot([ox for (ox,oy,size) in obstacleList],[oy for (ox,oy,size) in obstacleList], "ok", ms=size * 20)
|
||||
plt.plot([node.x, self.nodeList[node.parent].x], [
|
||||
node.y, self.nodeList[node.parent].y], "-g")
|
||||
|
||||
for (ox, oy, size) in obstacleList:
|
||||
plt.plot(ox, oy, "ok", ms=30 * size)
|
||||
|
||||
plt.plot(self.start.x, self.start.y, "xr")
|
||||
plt.plot(self.end.x, self.end.y, "xr")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
@@ -111,7 +117,8 @@ class RRT():
|
||||
plt.pause(0.01)
|
||||
|
||||
def GetNearestListIndex(self, nodeList, rnd):
|
||||
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodeList]
|
||||
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1])
|
||||
** 2 for node in nodeList]
|
||||
minind = dlist.index(min(dlist))
|
||||
return minind
|
||||
|
||||
@@ -126,6 +133,7 @@ class RRT():
|
||||
|
||||
return True # safe
|
||||
|
||||
|
||||
class Node():
|
||||
u"""
|
||||
RRT Node
|
||||
@@ -136,9 +144,10 @@ class Node():
|
||||
self.y = y
|
||||
self.parent = None
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import matplotlib.pyplot as plt
|
||||
#====Search Path with RRT====
|
||||
# ====Search Path with RRT====
|
||||
obstacleList = [
|
||||
(5, 5, 1),
|
||||
(3, 6, 2),
|
||||
@@ -147,13 +156,14 @@ if __name__ == '__main__':
|
||||
(7, 5, 2),
|
||||
(9, 5, 2)
|
||||
] # [x,y,size]
|
||||
#Set Initial parameters
|
||||
rrt=RRT(start=[0,0],goal=[5,10],randArea=[-2,15],obstacleList=obstacleList)
|
||||
path=rrt.Planning(animation=True)
|
||||
# Set Initial parameters
|
||||
rrt = RRT(start=[0, 0], goal=[5, 10],
|
||||
randArea=[-2, 15], obstacleList=obstacleList)
|
||||
path = rrt.Planning(animation=True)
|
||||
|
||||
# Draw final path
|
||||
rrt.DrawGraph()
|
||||
plt.plot([x for (x,y) in path], [y for (x,y) in path],'-r')
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.01) # Need for Mac
|
||||
plt.show()
|
||||
|
||||
@@ -1,96 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
|
||||
delta = 0.1
|
||||
minXY=-5.0
|
||||
maxXY=5.0
|
||||
nContour=50
|
||||
alpha=0.001
|
||||
|
||||
def Jacob(state):
|
||||
u"""
|
||||
jacobi matrix of Himmelblau's function
|
||||
"""
|
||||
x=state[0]
|
||||
y=state[1]
|
||||
dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14
|
||||
dy=2*x**2+4*x*y+4*y**3-26*y-22
|
||||
J=np.array([dx,dy])
|
||||
return J
|
||||
|
||||
def HimmelblauFunction(x,y):
|
||||
u"""
|
||||
Himmelblau's function
|
||||
see Himmelblau's function - Wikipedia, the free encyclopedia
|
||||
http://en.wikipedia.org/wiki/Himmelblau%27s_function
|
||||
"""
|
||||
return (x**2+y-11)**2+(x+y**2-7)**2
|
||||
|
||||
def CreateMeshData():
|
||||
x = np.arange(minXY, maxXY, delta)
|
||||
y = np.arange(minXY, maxXY, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)]
|
||||
return(X,Y,Z)
|
||||
|
||||
def ConjugateGradientMethod(start,Jacob):
|
||||
u"""
|
||||
Conjugate Gradient Method Optimization
|
||||
"""
|
||||
|
||||
result=start
|
||||
x=start
|
||||
preJ=None
|
||||
|
||||
while 1:
|
||||
J=Jacob(x)
|
||||
|
||||
#convergence check
|
||||
sumJ=sum([abs(alpha*j) for j in J])
|
||||
if sumJ<=0.01:
|
||||
print("OK")
|
||||
break
|
||||
|
||||
if preJ is not None:
|
||||
beta=np.linalg.norm(J)**2/np.linalg.norm(preJ)**2
|
||||
grad=-1.0*J+beta*grad
|
||||
|
||||
else:
|
||||
grad=-1.0*J
|
||||
|
||||
x=x+[alpha*g for g in grad]
|
||||
result=np.vstack((result,x))
|
||||
# print(x)
|
||||
|
||||
if math.isnan(x[0]):
|
||||
print("nan")
|
||||
break
|
||||
|
||||
|
||||
preJ=-1.0*J
|
||||
|
||||
|
||||
return result
|
||||
|
||||
# Main
|
||||
start=np.array([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)])
|
||||
|
||||
result=ConjugateGradientMethod(start,Jacob)
|
||||
(X,Y,Z)=CreateMeshData()
|
||||
CS = plt.contour(X, Y, Z,nContour)
|
||||
# plt.clabel(CS, inline=1, fontsize=10)
|
||||
# plt.title('Simplest default with labels')
|
||||
|
||||
plt.plot(start[0],start[1],"xr");
|
||||
|
||||
optX=[x[0] for x in result]
|
||||
optY=[x[1] for x in result]
|
||||
plt.plot(optX,optY,"-r");
|
||||
|
||||
plt.show()
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 219 KiB |
@@ -1,67 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import random
|
||||
from math import *
|
||||
|
||||
delta = 0.1
|
||||
minXY = -5.0
|
||||
maxXY = 5.0
|
||||
nContour = 50
|
||||
|
||||
|
||||
def dfunc(d):
|
||||
x = d[0]
|
||||
y = d[1]
|
||||
l = d[2]
|
||||
dx = -2 * l + 4 * x * (x ** 2 + y - 11)
|
||||
dy = l + 2 * x * x + 2 * y - 22
|
||||
dl = -2 * x + y - 1
|
||||
return [dx, dy, dl]
|
||||
|
||||
|
||||
def SampleFunc(x, y):
|
||||
return (x ** 2 + y - 11) ** 2
|
||||
|
||||
|
||||
def ConstrainFunction(x):
|
||||
return (2.0 * x + 1.0)
|
||||
|
||||
|
||||
def CreateMeshData():
|
||||
x = np.arange(minXY, maxXY, delta)
|
||||
y = np.arange(minXY, maxXY, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z = [SampleFunc(ix, iy) for (ix, iy) in zip(X, Y)]
|
||||
return(X, Y, Z)
|
||||
|
||||
|
||||
# Main
|
||||
start = np.matrix([random.uniform(minXY, maxXY),
|
||||
random.uniform(minXY, maxXY), 0])
|
||||
|
||||
(X, Y, Z) = CreateMeshData()
|
||||
CS = plt.contour(X, Y, Z, nContour)
|
||||
|
||||
Xc = np.arange(minXY, maxXY, delta)
|
||||
Yc = [ConstrainFunction(x) for x in Xc]
|
||||
|
||||
# plt.plot(start[0,0],start[0,1],"xr");
|
||||
plt.plot(Xc, Yc, "-r")
|
||||
|
||||
# X1 = fsolve(dfunc, [-3, -3, 10])
|
||||
# print(X1)
|
||||
# print(dfunc(X1))
|
||||
|
||||
# the answer from sympy
|
||||
result = np.matrix([
|
||||
[-1, -1],
|
||||
[-1 + sqrt(11), -1 + 2 * sqrt(11)],
|
||||
[-sqrt(11) - 1, -2 * sqrt(11) - 1]])
|
||||
print(result)
|
||||
|
||||
plt.plot(result[:, 0], result[:, 1], "or")
|
||||
|
||||
plt.axis([minXY, maxXY, minXY, maxXY])
|
||||
plt.show()
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 247 KiB |
@@ -1,94 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
delta = 0.1
|
||||
minXY=-5.0
|
||||
maxXY=5.0
|
||||
nContour=50
|
||||
alpha=0.01
|
||||
|
||||
def Hessian(state):
|
||||
u"""
|
||||
Hessian matrix of Himmelblau's function
|
||||
"""
|
||||
x=state[0]
|
||||
y=state[1]
|
||||
dxx=12*x**2+4*y-42;
|
||||
dxy=4*x+4*y
|
||||
dyy=4*x+12*y**2-26
|
||||
H=np.array([[dxx,dxy],[dxy,dyy]])
|
||||
return H
|
||||
|
||||
|
||||
def Jacob(state):
|
||||
u"""
|
||||
jacobi matrix of Himmelblau's function
|
||||
"""
|
||||
x=state[0]
|
||||
y=state[1]
|
||||
dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14
|
||||
dy=2*x**2+4*x*y+4*y**3-26*y-22
|
||||
J=[dx,dy]
|
||||
return J
|
||||
|
||||
def HimmelblauFunction(x,y):
|
||||
u"""
|
||||
Himmelblau's function
|
||||
see Himmelblau's function - Wikipedia, the free encyclopedia
|
||||
http://en.wikipedia.org/wiki/Himmelblau%27s_function
|
||||
"""
|
||||
return (x**2+y-11)**2+(x+y**2-7)**2
|
||||
|
||||
def CreateMeshData():
|
||||
x = np.arange(minXY, maxXY, delta)
|
||||
y = np.arange(minXY, maxXY, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)]
|
||||
return(X,Y,Z)
|
||||
|
||||
def NewtonMethod(start,Jacob):
|
||||
u"""
|
||||
Newton Method Optimization
|
||||
"""
|
||||
|
||||
result=start
|
||||
x=start
|
||||
|
||||
while 1:
|
||||
J=Jacob(x)
|
||||
H=Hessian(x)
|
||||
sumJ=sum([abs(alpha*j) for j in J])
|
||||
if sumJ<=0.01:
|
||||
print("OK")
|
||||
break
|
||||
|
||||
grad=-np.linalg.inv(H).dot(J)
|
||||
print(grad)
|
||||
|
||||
x=x+[alpha*j for j in grad]
|
||||
|
||||
result=np.vstack((result,x))
|
||||
|
||||
return result
|
||||
|
||||
# Main
|
||||
start=np.array([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)])
|
||||
|
||||
result=NewtonMethod(start,Jacob)
|
||||
(X,Y,Z)=CreateMeshData()
|
||||
CS = plt.contour(X, Y, Z,nContour)
|
||||
# plt.clabel(CS, inline=1, fontsize=10)
|
||||
# plt.title('Simplest default with labels')
|
||||
|
||||
plt.plot(start[0],start[1],"xr");
|
||||
|
||||
optX=[x[0] for x in result]
|
||||
optY=[x[1] for x in result]
|
||||
plt.plot(optX,optY,"-r");
|
||||
|
||||
plt.show()
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 226 KiB |
@@ -1,89 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
|
||||
delta = 0.1
|
||||
minXY=-5.0
|
||||
maxXY=5.0
|
||||
nContour=50
|
||||
alpha=0.001
|
||||
|
||||
def Jacob(state):
|
||||
u"""
|
||||
jacobi matrix of Himmelblau's function
|
||||
"""
|
||||
x=state[0,0]
|
||||
y=state[0,1]
|
||||
dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14
|
||||
dy=2*x**2+4*x*y+4*y**3-26*y-22
|
||||
J=np.matrix([dx,dy]).T
|
||||
return J
|
||||
|
||||
def HimmelblauFunction(x,y):
|
||||
u"""
|
||||
Himmelblau's function
|
||||
see Himmelblau's function - Wikipedia, the free encyclopedia
|
||||
http://en.wikipedia.org/wiki/Himmelblau%27s_function
|
||||
"""
|
||||
return (x**2+y-11)**2+(x+y**2-7)**2
|
||||
|
||||
def CreateMeshData():
|
||||
x = np.arange(minXY, maxXY, delta)
|
||||
y = np.arange(minXY, maxXY, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)]
|
||||
return(X,Y,Z)
|
||||
|
||||
def QuasiNewtonMethod(start,Jacob):
|
||||
u"""
|
||||
Quasi Newton Method Optimization
|
||||
"""
|
||||
|
||||
result=start
|
||||
x=start
|
||||
|
||||
H= np.identity(2)
|
||||
preJ=None
|
||||
preG=None
|
||||
|
||||
while 1:
|
||||
J=Jacob(x)
|
||||
|
||||
sumJ=abs(np.sum(J))
|
||||
if sumJ<=0.01:
|
||||
print("OK")
|
||||
break
|
||||
|
||||
grad=-np.linalg.inv(H)*J
|
||||
x+=alpha*grad.T
|
||||
|
||||
result=np.vstack((result,np.array(x)))
|
||||
|
||||
if preJ is not None:
|
||||
y=J-preJ
|
||||
H=H+(y*y.T)/(y.T*preG)-(H*preG*preG.T*H)/(preG.T*H*preG)
|
||||
|
||||
preJ=J
|
||||
preG=(alpha*grad.T).T
|
||||
|
||||
return result
|
||||
|
||||
# Main
|
||||
start=np.matrix([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)])
|
||||
|
||||
result=QuasiNewtonMethod(start,Jacob)
|
||||
(X,Y,Z)=CreateMeshData()
|
||||
CS = plt.contour(X, Y, Z,nContour)
|
||||
|
||||
plt.plot(start[0,0],start[0,1],"xr");
|
||||
|
||||
optX=result[:,0]
|
||||
optY=result[:,1]
|
||||
plt.plot(optX,optY,"-r");
|
||||
|
||||
plt.show()
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 226 KiB |
@@ -1,83 +0,0 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
delta = 0.1
|
||||
minXY = -5.0
|
||||
maxXY = 5.0
|
||||
nContour = 50
|
||||
alpha = 0.01
|
||||
|
||||
|
||||
def Jacob(state):
|
||||
u"""
|
||||
jacobi matrix of Himmelblau's function
|
||||
"""
|
||||
x = state[0, 0]
|
||||
y = state[0, 1]
|
||||
dx = 4 * x ** 3 + 4 * x * y - 44 * x + 2 * x + 2 * y ** 2 - 14
|
||||
dy = 2 * x ** 2 + 4 * x * y + 4 * y ** 3 - 26 * y - 22
|
||||
J = np.matrix([dx, dy])
|
||||
return J
|
||||
|
||||
|
||||
def HimmelblauFunction(x, y):
|
||||
u"""
|
||||
Himmelblau's function
|
||||
see Himmelblau's function - Wikipedia, the free encyclopedia
|
||||
http://en.wikipedia.org/wiki/Himmelblau%27s_function
|
||||
"""
|
||||
return (x ** 2 + y - 11) ** 2 + (x + y ** 2 - 7) ** 2
|
||||
|
||||
|
||||
def ConstrainFunction(x):
|
||||
return (2.0 * x + 1.0)
|
||||
|
||||
|
||||
def CreateMeshData():
|
||||
x = np.arange(minXY, maxXY, delta)
|
||||
y = np.arange(minXY, maxXY, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z = [HimmelblauFunction(ix, iy) for (ix, iy) in zip(X, Y)]
|
||||
return(X, Y, Z)
|
||||
|
||||
|
||||
def SteepestDescentMethod(start, Jacob):
|
||||
u"""
|
||||
Steepest Descent Method Optimization
|
||||
"""
|
||||
|
||||
result = start
|
||||
x = start
|
||||
|
||||
while 1:
|
||||
J = Jacob(x)
|
||||
sumJ = np.sum(abs(alpha * J))
|
||||
if sumJ <= 0.01:
|
||||
print("OK")
|
||||
break
|
||||
|
||||
x = x - alpha * J
|
||||
result = np.vstack((result, x))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# Main
|
||||
start = np.matrix([random.uniform(minXY, maxXY), random.uniform(minXY, maxXY)])
|
||||
|
||||
result = SteepestDescentMethod(start, Jacob)
|
||||
(X, Y, Z) = CreateMeshData()
|
||||
CS = plt.contour(X, Y, Z, nContour)
|
||||
|
||||
Xc = np.arange(minXY, maxXY, delta)
|
||||
Yc = [ConstrainFunction(x) for x in Xc]
|
||||
|
||||
plt.plot(start[0, 0], start[0, 1], "xr")
|
||||
|
||||
plt.plot(result[:, 0], result[:, 1], "-r")
|
||||
|
||||
plt.axis([minXY, maxXY, minXY, maxXY])
|
||||
plt.show()
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 226 KiB |
Reference in New Issue
Block a user