modify for good plot

This commit is contained in:
Takayuki Murooka
2019-01-26 23:06:32 +09:00
parent dc184b2b82
commit eb0aa8a684

View File

@@ -2,6 +2,8 @@ import numpy as np
import math
from matplotlib import pyplot as plt
import matplotlib.patches as pat
from mpl_toolkits.mplot3d import Axes3D
import mpl_toolkits.mplot3d.art3d as art3d
class BipedalPlanner(object):
def __init__(self):
@@ -25,7 +27,8 @@ class BipedalPlanner(object):
y += y_dot * delta_time
y_dot += y_dot2 * delta_time
self.com_trajectory.append([x, y])
if i % 10 == 0:
self.com_trajectory.append([x, y])
return x, x_dot, y, y_dot
@@ -34,31 +37,36 @@ class BipedalPlanner(object):
print("No footsteps")
return
# set up plotter
if plot:
fig = plt.figure()
ax = Axes3D(fig)
com_trajectory_for_plot = []
self.com_trajectory = []
self.ref_p = []
self.act_p = []
self.ref_p = [] # reference footstep positions
self.act_p = [] # actual footstep positions
px, py = 0., 0.
px_star, py_star = px, py
px, py = 0., 0. # reference footstep position
px_star, py_star = px, py # modified footstep position
xi, xi_dot, yi, yi_dot = 0., 0., 0.01, 0. # TODO yi should be set as +epsilon, set xi, yi as COM
time = 0.
n = 0
self.ref_p.append([px, py, 0])
self.act_p.append([px, py, 0])
for i in range(len(self.ref_footsteps)):
# simulate x, y o finverted pendulum
# simulate x, y and those of dot of inverted pendulum
xi, xi_dot, yi, yi_dot = self.inverted_pendulum(xi, xi_dot, px_star, yi, yi_dot, py_star, z_c, T_sup)
# update time
time += T_sup
n += 1
# calculate px, py, x_, y_, vx_, vy_
f_x, f_y, f_theta = self.ref_footsteps[n - 1]
rotate_mat = np.array([[math.cos(f_theta), -math.sin(f_theta)],
[math.sin(f_theta), math.cos(f_theta)]])
if n == len(self.ref_footsteps):
f_x_next, f_y_next, f_theta_next = 0., 0., 0.
else:
@@ -75,7 +83,6 @@ class BipedalPlanner(object):
vx_, vy_ = list(np.dot(rotate_mat_next, np.array([(1 + C) / (T_c * S) * x_, (C - 1) / (T_c * S) * y_])))
self.ref_p.append([px, py, f_theta])
# calculate reference COM
xd, xd_dot = px + x_, vx_
yd, yd_dot = py + y_, vy_
@@ -86,34 +93,55 @@ class BipedalPlanner(object):
py_star = -a * (C - 1) / D * (yd - C * yi - T_c * S * yi_dot) - b * S / (T_c * D) * (yd_dot - S / T_c * yi - C * yi_dot)
self.act_p.append([px_star, py_star, f_theta])
# plot
if plot:
# for plot trajectory, plot in for loop
for c in range(len(self.com_trajectory)):
if c > len(com_trajectory_for_plot):
# set up plotter
plt.cla()
ax.set_zlim(0, z_c * 2)
ax.set_aspect('equal', 'datalim')
# update com_trajectory_for_plot
com_trajectory_for_plot.append(self.com_trajectory[c])
# plot com
ax.plot([p[0] for p in com_trajectory_for_plot], [p[1] for p in com_trajectory_for_plot], [0 for p in com_trajectory_for_plot], color="red")
# plot inverted pendulum
ax.plot([px_star, com_trajectory_for_plot[-1][0]],
[py_star , com_trajectory_for_plot[-1][1]],
[0, z_c], color="green", linewidth=3)
ax.scatter([com_trajectory_for_plot[-1][0]],
[com_trajectory_for_plot[-1][1]],
[z_c], color="green", s=300)
# foot rectangle for self.ref_p
foot_width = 0.06
foot_height = 0.04
for i in range(len(self.ref_p)):
angle = self.ref_p[i][2] + math.atan2(foot_height, foot_width) - math.pi
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
rec = pat.Rectangle(xy = (self.ref_p[i][0] + r * math.cos(angle), self.ref_p[i][1] + r * math.sin(angle)),
width=foot_width, height=foot_height, angle=self.ref_p[i][2] * 180 / math.pi, color="blue", fill=False, ls=":")
ax.add_patch(rec)
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
# foot rectangle for self.act_p
for i in range(len(self.act_p)):
angle = self.act_p[i][2] + math.atan2(foot_height, foot_width) - math.pi
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
rec = pat.Rectangle(xy = (self.act_p[i][0] + r * math.cos(angle), self.act_p[i][1] + r * math.sin(angle)),
width=foot_width, height=foot_height, angle=self.act_p[i][2] * 180 / math.pi, color="blue", fill=False)
ax.add_patch(rec)
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
plt.draw()
plt.pause(0.001)
if plot:
fig = plt.figure()
ax = fig.subplots()
ax.set_xlim(0, 1)
ax.set_ylim(-0.1, 0.2 + 0.1)
ax.set_aspect('equal', 'datalim')
ax.plot([i[0] for i in self.com_trajectory], [i[1] for i in self.com_trajectory])
foot_width = 0.06
foot_height = 0.04
for i in range(len(self.ref_p)):
angle = self.ref_p[i][2] + math.atan2(foot_height, foot_width) - math.pi
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
rec = pat.Rectangle(xy = (self.ref_p[i][0] + r * math.cos(angle), self.ref_p[i][1] + r * math.sin(angle)),
width=foot_width, height=foot_height, angle=self.ref_p[i][2] * 180 / math.pi, color="green", fill=False, ls=":")
ax.add_patch(rec)
for i in range(len(self.act_p)):
angle = self.act_p[i][2] + math.atan2(foot_height, foot_width) - math.pi
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
rec = pat.Rectangle(xy = (self.act_p[i][0] + r * math.cos(angle), self.act_p[i][1] + r * math.sin(angle)),
width=foot_width, height=foot_height, angle=self.act_p[i][2] * 180 / math.pi, color="blue", fill=False)
ax.add_patch(rec)
plt.show()
if __name__ == "__main__":
bipedal_planner = BipedalPlanner()