mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 14:48:02 -05:00
start graph_slam implementation
This commit is contained in:
276
SLAM/GraphSLAM/graph_slam.py
Normal file
276
SLAM/GraphSLAM/graph_slam.py
Normal file
@@ -0,0 +1,276 @@
|
||||
"""
|
||||
|
||||
Graph SLAM example
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# EKF state covariance
|
||||
Cx = np.diag([0.5, 0.5, math.radians(30.0)])**2
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.2, math.radians(1.0)])**2
|
||||
Rsim = np.diag([1.0, math.radians(10.0)])**2
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
||||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||||
LM_SIZE = 2 # LM srate size [x,y]
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
|
||||
# Predict
|
||||
S = STATE_SIZE
|
||||
xEst[0:S] = motion_model(xEst[0:S], u)
|
||||
G, Fx = jacob_motion(xEst[0:S], u)
|
||||
PEst[0:S, 0:S] = G.T * PEst[0:S, 0:S] * G + Fx.T * Cx * Fx
|
||||
initP = np.eye(2)
|
||||
|
||||
# Update
|
||||
for iz in range(len(z[:, 0])): # for each observation
|
||||
minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2])
|
||||
|
||||
nLM = calc_n_LM(xEst)
|
||||
if minid == nLM:
|
||||
print("New LM")
|
||||
# Extend state and covariance matrix
|
||||
xAug = np.vstack((xEst, calc_LM_Pos(xEst, z[iz, :])))
|
||||
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
|
||||
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
|
||||
xEst = xAug
|
||||
PEst = PAug
|
||||
|
||||
lm = get_LM_Pos_from_state(xEst, minid)
|
||||
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)
|
||||
|
||||
K = PEst * H.T * np.linalg.inv(S)
|
||||
xEst = xEst + K * y
|
||||
PEst = (np.eye(len(xEst)) - K * H) * PEst
|
||||
|
||||
xEst[2] = pi_2_pi(xEst[2])
|
||||
|
||||
return xEst, PEst
|
||||
|
||||
|
||||
def calc_input():
|
||||
v = 1.0 # [m/s]
|
||||
yawrate = 0.1 # [rad/s]
|
||||
u = np.matrix([v, yawrate]).T
|
||||
return u
|
||||
|
||||
|
||||
def observation(xTrue, xd, u, RFID):
|
||||
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.matrix(np.zeros((0, 3)))
|
||||
|
||||
for i in range(len(RFID[:, 0])):
|
||||
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
angle = pi_2_pi(math.atan2(dy, dx))
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||||
zi = np.matrix([dn, anglen, i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
|
||||
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
|
||||
ud = np.matrix([ud1, ud2]).T
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
|
||||
def motion_model(x, u):
|
||||
|
||||
F = np.matrix([[1.0, 0, 0],
|
||||
[0, 1.0, 0],
|
||||
[0, 0, 1.0]])
|
||||
|
||||
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT]])
|
||||
|
||||
x = F * x + B * u
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def calc_n_LM(x):
|
||||
n = int((len(x) - STATE_SIZE) / LM_SIZE)
|
||||
return n
|
||||
|
||||
|
||||
def jacob_motion(x, u):
|
||||
|
||||
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
|
||||
(STATE_SIZE, LM_SIZE * calc_n_LM(x)))))
|
||||
|
||||
jF = np.matrix([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],
|
||||
[0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],
|
||||
[0.0, 0.0, 0.0]])
|
||||
|
||||
G = np.eye(STATE_SIZE) + Fx.T * jF * Fx
|
||||
|
||||
return G, Fx,
|
||||
|
||||
|
||||
def calc_LM_Pos(x, z):
|
||||
|
||||
zp = np.zeros((2, 1))
|
||||
|
||||
zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])
|
||||
zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])
|
||||
|
||||
return zp
|
||||
|
||||
|
||||
def get_LM_Pos_from_state(x, ind):
|
||||
|
||||
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
|
||||
|
||||
return lm
|
||||
|
||||
|
||||
def search_correspond_LM_ID(xAug, PAug, zi):
|
||||
"""
|
||||
Landmark association with Mahalanobis distance
|
||||
"""
|
||||
|
||||
nLM = calc_n_LM(xAug)
|
||||
|
||||
mdist = []
|
||||
|
||||
for i in range(nLM):
|
||||
lm = get_LM_Pos_from_state(xAug, i)
|
||||
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
|
||||
mdist.append(y.T * np.linalg.inv(S) * y)
|
||||
|
||||
mdist.append(M_DIST_TH) # new landmark
|
||||
|
||||
minid = mdist.index(min(mdist))
|
||||
|
||||
return minid
|
||||
|
||||
|
||||
def calc_innovation(lm, xEst, PEst, z, LMid):
|
||||
delta = lm - xEst[0:2]
|
||||
q = (delta.T * delta)[0, 0]
|
||||
zangle = math.atan2(delta[1], delta[0]) - xEst[2]
|
||||
zp = [math.sqrt(q), pi_2_pi(zangle)]
|
||||
y = (z - zp).T
|
||||
y[1] = pi_2_pi(y[1])
|
||||
H = jacobH(q, delta, xEst, LMid + 1)
|
||||
S = H * PEst * H.T + Cx[0:2, 0:2]
|
||||
|
||||
return y, S, H
|
||||
|
||||
|
||||
def jacobH(q, delta, x, i):
|
||||
sq = math.sqrt(q)
|
||||
G = np.matrix([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
|
||||
[delta[1, 0], - delta[0, 0], - 1.0, - delta[1, 0], delta[0, 0]]])
|
||||
|
||||
G = G / q
|
||||
nLM = calc_n_LM(x)
|
||||
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
|
||||
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
|
||||
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
|
||||
|
||||
F = np.vstack((F1, F2))
|
||||
|
||||
H = G * F
|
||||
|
||||
return H
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
while(angle > math.pi):
|
||||
angle = angle - 2.0 * math.pi
|
||||
|
||||
while(angle < -math.pi):
|
||||
angle = angle + 2.0 * math.pi
|
||||
|
||||
return angle
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
time = 0.0
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, -2.0],
|
||||
[15.0, 10.0],
|
||||
[3.0, 15.0],
|
||||
[-5.0, 20.0]])
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))
|
||||
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
|
||||
PEst = np.eye(STATE_SIZE)
|
||||
|
||||
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
|
||||
|
||||
# history
|
||||
hxEst = xEst
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
u = calc_input()
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
|
||||
|
||||
x_state = xEst[0:STATE_SIZE]
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, x_state))
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
||||
plt.plot(xEst[0], xEst[1], ".r")
|
||||
|
||||
# plot landmark
|
||||
for i in range(calc_n_LM(xEst)):
|
||||
plt.plot(xEst[STATE_SIZE + i * 2],
|
||||
xEst[STATE_SIZE + i * 2 + 1], "xg")
|
||||
|
||||
plt.plot(np.array(hxTrue[0, :]).flatten(),
|
||||
np.array(hxTrue[1, :]).flatten(), "-b")
|
||||
plt.plot(np.array(hxDR[0, :]).flatten(),
|
||||
np.array(hxDR[1, :]).flatten(), "-k")
|
||||
plt.plot(np.array(hxEst[0, :]).flatten(),
|
||||
np.array(hxEst[1, :]).flatten(), "-r")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user