Merge pull request #269 from Gjacquenot/patch-5

🔨 Refactored pure_pursuit.py
This commit is contained in:
Atsushi Sakai
2020-01-05 13:38:39 +09:00
committed by GitHub

View File

@@ -3,6 +3,7 @@
Path tracking simulation with pure pursuit steering control and PID speed control.
author: Atsushi Sakai (@Atsushi_twi)
Guillaume Jacquenot (@Gjacquenot)
"""
import numpy as np
@@ -17,7 +18,6 @@ dt = 0.1 # [s]
L = 2.9 # [m] wheel base of vehicle
old_nearest_point_index = None
show_animation = True
@@ -31,17 +31,37 @@ class State:
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
def update(self, a, delta):
def update(state, a, delta):
self.x += self.v * math.cos(self.yaw) * dt
self.y += self.v * math.sin(self.yaw) * dt
self.yaw += self.v / L * math.tan(delta) * dt
self.v += a * dt
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.v = state.v + a * dt
state.rear_x = state.x - ((L / 2) * math.cos(state.yaw))
state.rear_y = state.y - ((L / 2) * math.sin(state.yaw))
def calc_distance(self, point_x, point_y):
return state
dx = self.rear_x - point_x
dy = self.rear_y - point_y
return math.hypot(dx, dy)
class States:
def __init__(self):
self.x = []
self.y = []
self.yaw = []
self.v = []
self.t = []
def append(self, t , state):
self.x.append(state.x)
self.y.append(state.y)
self.yaw.append(state.yaw)
self.v.append(state.v)
self.t.append(t)
def PIDControl(target, current):
@@ -50,20 +70,57 @@ def PIDControl(target, current):
return a
def pure_pursuit_control(state, cx, cy, pind):
class Trajectory:
def __init__(self, cx, cy):
self.cx = cx
self.cy = cy
self.old_nearest_point_index = None
ind = calc_target_index(state, cx, cy)
def search_target_index(self, state):
if self.old_nearest_point_index is None:
# search nearest point index
dx = [state.rear_x - icx for icx in self.cx]
dy = [state.rear_y - icy for icy in self.cy]
d = np.hypot(dx, dy)
ind = np.argmin(d)
self.old_nearest_point_index = ind
else:
ind = self.old_nearest_point_index
distance_this_index = state.calc_distance(self.cx[ind], self.cy[ind])
while True:
ind = ind + 1 if (ind + 1) < len(self.cx) else ind
distance_next_index = state.calc_distance(self.cx[ind], self.cy[ind])
if distance_this_index < distance_next_index:
break
distance_this_index = distance_next_index
self.old_nearest_point_index = ind
L = 0.0
Lf = k * state.v + Lfc
# search look ahead target point index
while Lf > L and (ind + 1) < len(self.cx):
L = state.calc_distance(self.cx[ind], self.cy[ind])
ind += 1
return ind
def pure_pursuit_control(state, trajectory, pind):
ind = trajectory.search_target_index(state)
if pind >= ind:
ind = pind
if ind < len(cx):
tx = cx[ind]
ty = cy[ind]
if ind < len(trajectory.cx):
tx = trajectory.cx[ind]
ty = trajectory.cy[ind]
else:
tx = cx[-1]
ty = cy[-1]
ind = len(cx) - 1
tx = trajectory.cx[-1]
ty = trajectory.cy[-1]
ind = len(trajectory.cx) - 1
alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw
@@ -73,48 +130,6 @@ def pure_pursuit_control(state, cx, cy, pind):
return delta, ind
def calc_distance(state, point_x, point_y):
dx = state.rear_x - point_x
dy = state.rear_y - point_y
return math.hypot(dx, dy)
def calc_target_index(state, cx, cy):
global old_nearest_point_index
if old_nearest_point_index is None:
# search nearest point index
dx = [state.rear_x - icx for icx in cx]
dy = [state.rear_y - icy for icy in cy]
d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
old_nearest_point_index = ind
else:
ind = old_nearest_point_index
distance_this_index = calc_distance(state, cx[ind], cy[ind])
while True:
ind = ind + 1 if (ind + 1) < len(cx) else ind
distance_next_index = calc_distance(state, cx[ind], cy[ind])
if distance_this_index < distance_next_index:
break
distance_this_index = distance_next_index
old_nearest_point_index = ind
L = 0.0
Lf = k * state.v + Lfc
# search look ahead target point index
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind] - state.rear_x
dy = cy[ind] - state.rear_y
L = math.hypot(dx, dy)
ind += 1
return ind
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""
@@ -122,7 +137,7 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
for ix, iy, iyaw in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
@@ -144,25 +159,18 @@ def main():
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_target_index(state, cx, cy)
states = States()
states.append(time, state)
trajectory = Trajectory(cx, cy)
target_ind = trajectory.search_target_index(state)
while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
state = update(state, ai, di)
di, target_ind = pure_pursuit_control(state, trajectory, target_ind)
state.update(ai, di)
time = time + dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
time += dt
states.append(time, state)
if show_animation: # pragma: no cover
plt.cla()
@@ -171,7 +179,7 @@ def main():
lambda event: [exit(0) if event.key == 'escape' else None])
plot_arrow(state.x, state.y, state.yaw)
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(states.x, states.y, "-b", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
@@ -184,7 +192,7 @@ def main():
if show_animation: # pragma: no cover
plt.cla()
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(states.x, states.y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
@@ -192,7 +200,7 @@ def main():
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.plot(states.t, [iv * 3.6 for iv in states.v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)