mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 21:28:33 -05:00
Merge pull request #299 from AtsushiSakai/issue_298
To fix pure pursuit bug #298
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
"""
|
||||
|
||||
Path tracking simulation with pure pursuit steering control and PID speed control.
|
||||
Path tracking simulation with pure pursuit steering and PID speed control.
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
Guillaume Jacquenot (@Gjacquenot)
|
||||
@@ -10,13 +10,12 @@ import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Parameters
|
||||
k = 0.1 # look forward gain
|
||||
Lfc = 2.0 # look-ahead distance
|
||||
Lfc = 2.0 # [m] look-ahead distance
|
||||
Kp = 1.0 # speed proportional gain
|
||||
dt = 0.1 # [s]
|
||||
L = 2.9 # [m] wheel base of vehicle
|
||||
|
||||
dt = 0.1 # [s] time tick
|
||||
WB = 2.9 # [m] wheel base of vehicle
|
||||
|
||||
show_animation = True
|
||||
|
||||
@@ -28,20 +27,18 @@ class State:
|
||||
self.y = y
|
||||
self.yaw = yaw
|
||||
self.v = v
|
||||
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
|
||||
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
|
||||
self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw))
|
||||
self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw))
|
||||
|
||||
def update(self, a, delta):
|
||||
|
||||
self.x += self.v * math.cos(self.yaw) * dt
|
||||
self.y += self.v * math.sin(self.yaw) * dt
|
||||
self.yaw += self.v / L * math.tan(delta) * dt
|
||||
self.yaw += self.v / WB * math.tan(delta) * dt
|
||||
self.v += a * dt
|
||||
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
|
||||
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
|
||||
self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw))
|
||||
self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw))
|
||||
|
||||
def calc_distance(self, point_x, point_y):
|
||||
|
||||
dx = self.rear_x - point_x
|
||||
dy = self.rear_y - point_y
|
||||
return math.hypot(dx, dy)
|
||||
@@ -56,7 +53,7 @@ class States:
|
||||
self.v = []
|
||||
self.t = []
|
||||
|
||||
def append(self, t , state):
|
||||
def append(self, t, state):
|
||||
self.x.append(state.x)
|
||||
self.y.append(state.y)
|
||||
self.yaw.append(state.yaw)
|
||||
@@ -64,19 +61,22 @@ class States:
|
||||
self.t.append(t)
|
||||
|
||||
|
||||
def PIDControl(target, current):
|
||||
def proportional_control(target, current):
|
||||
a = Kp * (target - current)
|
||||
|
||||
return a
|
||||
|
||||
|
||||
class Trajectory:
|
||||
class TargetCourse:
|
||||
|
||||
def __init__(self, cx, cy):
|
||||
self.cx = cx
|
||||
self.cy = cy
|
||||
self.old_nearest_point_index = None
|
||||
|
||||
def search_target_index(self, state):
|
||||
|
||||
# To speed up nearest point search, doing it at only first time.
|
||||
if self.old_nearest_point_index is None:
|
||||
# search nearest point index
|
||||
dx = [state.rear_x - icx for icx in self.cx]
|
||||
@@ -86,30 +86,30 @@ class Trajectory:
|
||||
self.old_nearest_point_index = ind
|
||||
else:
|
||||
ind = self.old_nearest_point_index
|
||||
distance_this_index = state.calc_distance(self.cx[ind], self.cy[ind])
|
||||
distance_this_index = state.calc_distance(self.cx[ind],
|
||||
self.cy[ind])
|
||||
while True:
|
||||
ind = ind + 1 if (ind + 1) < len(self.cx) else ind
|
||||
distance_next_index = state.calc_distance(self.cx[ind], self.cy[ind])
|
||||
distance_next_index = state.calc_distance(self.cx[ind + 1],
|
||||
self.cy[ind + 1])
|
||||
if distance_this_index < distance_next_index:
|
||||
break
|
||||
ind = ind + 1 if (ind + 1) < len(self.cx) else ind
|
||||
distance_this_index = distance_next_index
|
||||
self.old_nearest_point_index = ind
|
||||
|
||||
L = 0.0
|
||||
|
||||
Lf = k * state.v + Lfc
|
||||
Lf = k * state.v + Lfc # update look ahead distance
|
||||
|
||||
# search look ahead target point index
|
||||
while Lf > L and (ind + 1) < len(self.cx):
|
||||
L = state.calc_distance(self.cx[ind], self.cy[ind])
|
||||
while Lf > state.calc_distance(self.cx[ind], self.cy[ind]):
|
||||
if (ind + 1) >= len(self.cx):
|
||||
break # not exceed goal
|
||||
ind += 1
|
||||
|
||||
return ind
|
||||
return ind, Lf
|
||||
|
||||
|
||||
def pure_pursuit_control(state, trajectory, pind):
|
||||
|
||||
ind = trajectory.search_target_index(state)
|
||||
def pure_pursuit_steer_control(state, trajectory, pind):
|
||||
ind, Lf = trajectory.search_target_index(state)
|
||||
|
||||
if pind >= ind:
|
||||
ind = pind
|
||||
@@ -117,16 +117,14 @@ def pure_pursuit_control(state, trajectory, pind):
|
||||
if ind < len(trajectory.cx):
|
||||
tx = trajectory.cx[ind]
|
||||
ty = trajectory.cy[ind]
|
||||
else:
|
||||
else: # toward goal
|
||||
tx = trajectory.cx[-1]
|
||||
ty = trajectory.cy[-1]
|
||||
ind = len(trajectory.cx) - 1
|
||||
|
||||
alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw
|
||||
|
||||
Lf = k * state.v + Lfc
|
||||
|
||||
delta = math.atan2(2.0 * L * math.sin(alpha) / Lf, 1.0)
|
||||
delta = math.atan2(2.0 * WB * math.sin(alpha) / Lf, 1.0)
|
||||
|
||||
return delta, ind
|
||||
|
||||
@@ -147,7 +145,7 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
|
||||
|
||||
def main():
|
||||
# target course
|
||||
cx = np.arange(0, 50, 0.1)
|
||||
cx = np.arange(0, 50, 0.5)
|
||||
cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]
|
||||
|
||||
target_speed = 10.0 / 3.6 # [m/s]
|
||||
@@ -161,13 +159,17 @@ def main():
|
||||
time = 0.0
|
||||
states = States()
|
||||
states.append(time, state)
|
||||
trajectory = Trajectory(cx, cy)
|
||||
target_ind = trajectory.search_target_index(state)
|
||||
target_course = TargetCourse(cx, cy)
|
||||
target_ind, _ = target_course.search_target_index(state)
|
||||
|
||||
while T >= time and lastIndex > target_ind:
|
||||
ai = PIDControl(target_speed, state.v)
|
||||
di, target_ind = pure_pursuit_control(state, trajectory, target_ind)
|
||||
state.update(ai, di)
|
||||
|
||||
# Calc control input
|
||||
ai = proportional_control(target_speed, state.v)
|
||||
di, target_ind = pure_pursuit_steer_control(
|
||||
state, target_course, target_ind)
|
||||
|
||||
state.update(ai, di) # Control vehicle
|
||||
|
||||
time += dt
|
||||
states.append(time, state)
|
||||
@@ -175,8 +177,9 @@ def main():
|
||||
if show_animation: # pragma: no cover
|
||||
plt.cla()
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect('key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
plt.gcf().canvas.mpl_connect(
|
||||
'key_release_event',
|
||||
lambda event: [exit(0) if event.key == 'escape' else None])
|
||||
plot_arrow(state.x, state.y, state.yaw)
|
||||
plt.plot(cx, cy, "-r", label="course")
|
||||
plt.plot(states.x, states.y, "-b", label="trajectory")
|
||||
|
||||
Reference in New Issue
Block a user