mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 08:18:03 -05:00
keep implementing
This commit is contained in:
@@ -6,10 +6,178 @@ author: Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.2])**2
|
||||
Rsim = np.diag([1.0, math.radians(30.0)])**2
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
|
||||
# Particle filter parameter
|
||||
NP = 100 # Number of Particle
|
||||
NTh = NP / 2.0 # Number of particle for re-sampling
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
def calc_input():
|
||||
v = 1.0 # [m/s]
|
||||
yawrate = 0.1 # [rad/s]
|
||||
u = np.matrix([v, yawrate]).T
|
||||
return u
|
||||
|
||||
|
||||
def observation(xTrue, xd, u, RFID):
|
||||
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.matrix(np.zeros((0, 3)))
|
||||
|
||||
for i in range(len(RFID[:, 0])):
|
||||
|
||||
dx = xTrue[0, 0] - RFID[i, 0]
|
||||
dy = xTrue[1, 0] - RFID[i, 1]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||||
zi = np.matrix([dn, RFID[i, 0], RFID[i, 1]])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
|
||||
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
|
||||
ud = np.matrix([ud1, ud2]).T
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
|
||||
def motion_model(x, u):
|
||||
|
||||
F = np.matrix([[1.0, 0, 0, 0],
|
||||
[0, 1.0, 0, 0],
|
||||
[0, 0, 1.0, 0],
|
||||
[0, 0, 0, 0]])
|
||||
|
||||
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT],
|
||||
[1.0, 0.0]])
|
||||
|
||||
x = F * x + B * u
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def ekf_slam(xEst, PEst, u, z):
|
||||
# Predict
|
||||
xEst = motion_model(xEst, u)
|
||||
# [G,Fx]=jacobF(xEst, u);
|
||||
# PEst= G'*PEst*G + Fx'*R*Fx;
|
||||
|
||||
return xEst, PEst
|
||||
|
||||
# % Update
|
||||
# for iz=1:length(z(:,1))%それぞれの観測値に対して
|
||||
# %観測値をランドマークとして追加
|
||||
# zl=CalcLMPosiFromZ(xEst,z(iz,:));%観測値そのものからLMの位置を計算
|
||||
# %状態ベクトルと共分散行列の追加
|
||||
# xAug=[xEst;zl];
|
||||
# PAug=[PEst zeros(length(xEst),LMSize);
|
||||
# zeros(LMSize,length(xEst)) initP];
|
||||
|
||||
# mdist=[];%マハラノビス距離のリスト
|
||||
# for il=1:GetnLM(xAug) %それぞれのランドマークについて
|
||||
# if il==GetnLM(xAug)
|
||||
# mdist=[mdist alpha];%新しく追加した点の距離はパラメータ値を使う
|
||||
# else
|
||||
# lm=xAug(4+2*(il-1):5+2*(il-1));
|
||||
# [y,S,H]=CalcInnovation(lm,xAug,PAug,z(iz,1:2),il);
|
||||
# mdist=[mdist y'*inv(S)*y];%マハラノビス距離の計算
|
||||
# end
|
||||
# end
|
||||
|
||||
# %マハラノビス距離が最も近いものに対応付け
|
||||
# [C,I]=min(mdist);
|
||||
|
||||
# %一番距離が小さいものが追加したものならば、その観測値をランドマークとして採用
|
||||
# if I==GetnLM(xAug)
|
||||
# %disp('New LM')
|
||||
# xEst=xAug;
|
||||
# PEst=PAug;
|
||||
# end
|
||||
|
||||
# lm=xEst(4+2*(I-1):5+2*(I-1));%対応付けられたランドマークデータの取得
|
||||
# %イノベーションの計算
|
||||
# [y,S,H]=CalcInnovation(lm,xEst,PEst,z(iz,1:2),I);
|
||||
# K = PEst*H'*inv(S);
|
||||
# xEst = xEst + K*y;
|
||||
# PEst = (eye(size(xEst,1)) - K*H)*PEst;
|
||||
# end
|
||||
|
||||
# xEst(3)=PI2PI(xEst(3));%角度補正
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
time = 0.0
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, 0.0],
|
||||
[10.0, 10.0],
|
||||
[0.0, 15.0],
|
||||
[-5.0, 20.0]])
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xEst = np.matrix(np.zeros((4, 1)))
|
||||
xTrue = np.matrix(np.zeros((4, 1)))
|
||||
PEst = np.eye(4)
|
||||
|
||||
xDR = np.matrix(np.zeros((4, 1))) # Dead reckoning
|
||||
|
||||
# history
|
||||
hxEst = xEst
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
u = calc_input()
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, xEst))
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
|
||||
for i in range(len(z[:, 0])):
|
||||
plt.plot([xTrue[0, 0], z[i, 1]], [xTrue[1, 0], z[i, 2]], "-k")
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
||||
plt.plot(xEst[0], xEst[1], ".r")
|
||||
plt.plot(np.array(hxTrue[0, :]).flatten(),
|
||||
np.array(hxTrue[1, :]).flatten(), "-b")
|
||||
plt.plot(np.array(hxDR[0, :]).flatten(),
|
||||
np.array(hxDR[1, :]).flatten(), "-k")
|
||||
plt.plot(np.array(hxEst[0, :]).flatten(),
|
||||
np.array(hxEst[1, :]).flatten(), "-r")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user