add new animation

This commit is contained in:
Atsushi Sakai
2017-07-14 16:31:46 -07:00
parent 252df2886e
commit fb61427748
4 changed files with 97 additions and 106 deletions

View File

@@ -0,0 +1,18 @@
from sklearn.neural_network import MLPRegressor
from matplotlib import pyplot as plt
# create Trainig Dataset
train_x = [[x] for x in range(200)]
train_y = [x[0]**2 for x in train_x]
# create neural net regressor
reg = MLPRegressor(solver="lbfgs")
reg.fit(train_x, train_y)
predict = reg.predict(train_x)
plt.plot(train_x, predict, "xr", label="result")
plt.plot(train_x, train_y, label="Training data")
plt.legend()
plt.grid(True)
plt.show()

View File

@@ -0,0 +1,17 @@
from sklearn.neural_network import MLPRegressor
from matplotlib import pyplot as plt
# create Trainig Dataset
train_x = [[x, x, x] for x in range(200)]
train_y = [[x[0]**2, x[1] ** 1.5, x[2] + 3] for x in train_x]
# create neural net regressor
reg = MLPRegressor(solver="lbfgs")
reg.fit(train_x, train_y)
predict = reg.predict(train_x)
plt.plot(train_x, predict, "xr", label="result")
plt.plot(train_x, train_y, label="Training data")
plt.legend()
plt.grid(True)
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 527 KiB

View File

@@ -5,69 +5,16 @@ author: Atsushi Sakai
"""
import numpy as np
import scipy.interpolate
import matplotlib.pyplot as plt
import math
import motion_model
from matplotrecorder import matplotrecorder
L = 1.0
ds = 0.1
# optimization parameter
maxiter = 1000
h = np.matrix([0.1, 0.002, 0.002]).T # parameter sampling distanse
class State:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def generate_trajectory(s, km, kf, k0):
n = s / ds
v = 10.0 / 3.6 # [m/s]
time = s / v # [s]
tk = np.array([0.0, time / 2.0, time])
kk = np.array([k0, km, kf])
t = np.arange(0.0, time, time / n)
kp = scipy.interpolate.spline(tk, kk, t, order=2)
dt = time / n
# plt.plot(t, kp)
# plt.show()
state = State()
x, y, yaw = [state.x], [state.y], [state.yaw]
for ikp in kp:
state = update(state, v, ikp, dt, L)
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
return x, y, yaw
def update(state, v, delta, dt, L):
state.v = v
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
return state
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
# matplotrecorder.donothing = True
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
@@ -81,35 +28,39 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
def calc_diff(target, x, y, yaw):
d = np.array([x[-1] - target.x, y[-1] - target.y, yaw[-1] - target.yaw])
d = np.array([target.x - x[-1],
target.y - y[-1],
motion_model.pi_2_pi(target.yaw - yaw[-1])])
return d
def calc_J(target, p, h, k0):
xp, yp, yawp = generate_trajectory(p[0, 0] + h[0, 0], p[1, 0], p[2, 0], k0)
dp = calc_diff(target, xp, yp, yawp)
# xn, yn, yawn = generate_trajectory(p[0, 0] - h[0, 0], p[1, 0], p[2, 0], k0)
# dn = calc_diff(target, xn, yn, yawn)
# d1 = np.matrix((dp - dn) / (2.0 * h[1, 0])).T
d1 = np.matrix(dp / h[0, 0]).T
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0] + h[0, 0], p[1, 0], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0] - h[0, 0], p[1, 0], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d1 = np.matrix((dp - dn) / (2.0 * h[1, 0])).T
xp, yp, yawp = generate_trajectory(p[0, 0], p[1, 0] + h[1, 0], p[2, 0], k0)
dp = calc_diff(target, xp, yp, yawp)
# xn, yn, yawn = generate_trajectory(p[0, 0], p[1, 0] - h[1, 0], p[2, 0], k0)
# dn = calc_diff(target, xn, yn, yawn)
# d2 = np.matrix((dp - dn) / (2.0 * h[2, 0])).T
d2 = np.matrix(dp / h[1, 0]).T
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0] + h[1, 0], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0] - h[1, 0], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d2 = np.matrix((dp - dn) / (2.0 * h[2, 0])).T
xp, yp, yawp = generate_trajectory(p[0, 0], p[1, 0], p[2, 0] + h[2, 0], k0)
dp = calc_diff(target, xp, yp, yawp)
# xn, yn, yawn = generate_trajectory(p[0, 0], p[1, 0], p[2, 0] - h[2, 0], k0)
# dn = calc_diff(target, xn, yn, yawn)
# d3 = np.matrix((dp - dn) / (2.0 * h[2, 0])).T
d3 = np.matrix(dp / h[2, 0]).T
# print(d1, d2, d3)
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] + h[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] - h[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d3 = np.matrix((dp - dn) / (2.0 * h[2, 0])).T
J = np.hstack((d1, d2, d3))
# print(J)
return J
@@ -118,15 +69,17 @@ def selection_learning_param(dp, p, k0, target):
mincost = float("inf")
mina = 1.0
maxa = 5.0
da = 0.5
for a in np.arange(1.0, 10.0, 0.5):
for a in np.arange(mina, maxa, da):
tp = p[:, :] + a * dp
xc, yc, yawc = generate_trajectory(tp[0], tp[1], tp[2], k0)
dc = np.matrix(calc_diff(target, xc, yc, yawc)).T
xc, yc, yawc = motion_model.generate_last_state(
tp[0], tp[1], tp[2], k0)
dc = np.matrix(calc_diff(target, [xc], [yc], [yawc])).T
cost = np.linalg.norm(dc)
# print(a, cost)
if cost <= mincost:
if cost <= mincost and a != 0.0:
mina = a
mincost = cost
@@ -136,18 +89,29 @@ def selection_learning_param(dp, p, k0, target):
return mina
def optimize_trajectory(target, k0):
def show_trajectory(target, xc, yc):
p = np.matrix([6.0, 0.0, 0.0]).T
h = np.matrix([0.1, 0.002, 0.002]).T
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
matplotrecorder.save_frame()
for i in range(1000):
xc, yc, yawc = generate_trajectory(p[0], p[1], p[2], k0)
def optimize_trajectory(target, k0, p):
for i in range(maxiter):
xc, yc, yawc = motion_model.generate_trajectory(p[0], p[1], p[2], k0)
dc = np.matrix(calc_diff(target, xc, yc, yawc)).T
# print(dc.T)
cost = np.linalg.norm(dc)
print("cost is:" + str(cost))
if cost <= 0.05:
print("cost is:" + str(cost))
print(p)
break
J = calc_J(target, p, h, k0)
@@ -157,30 +121,22 @@ def optimize_trajectory(target, k0):
p += alpha * np.array(dp)
# print(p.T)
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
matplotrecorder.save_frame()
show_trajectory(target, xc, yc)
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
matplotrecorder.save_frame()
show_trajectory(target, xc, yc)
print("done")
def test_optimize_trajectory():
target = State(x=5.0, y=2.0, yaw=math.radians(00.0))
k0 = -0.3
# target = motion_model.State(x=5.0, y=2.0, yaw=math.radians(00.0))
target = motion_model.State(x=5.0, y=2.0, yaw=math.radians(90.0))
k0 = 0.0
optimize_trajectory(target, k0)
init_p = np.matrix([6.0, 0.0, 0.0]).T
optimize_trajectory(target, k0, init_p)
matplotrecorder.save_movie("animation.gif", 0.1)
# plt.plot(x, y, "-r")
@@ -200,7 +156,7 @@ def test_trajectory_generate():
# plt.plot(t, kp)
# plt.show()
x, y = generate_trajectory(s, km, kf, k0)
x, y = motion_model.generate_trajectory(s, km, kf, k0)
plt.plot(x, y, "-r")
plt.axis("equal")