mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 15:48:13 -05:00
* Fixed multitype list * Cast to float * Reverted to all floats * Moved all remaining to float
260 lines
7.7 KiB
Python
260 lines
7.7 KiB
Python
"""
|
|
|
|
Grid based Dijkstra planning
|
|
|
|
author: Atsushi Sakai(@Atsushi_twi)
|
|
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
|
|
show_animation = True
|
|
|
|
|
|
class Dijkstra:
|
|
|
|
def __init__(self, ox, oy, resolution, robot_radius):
|
|
"""
|
|
Initialize map for a star planning
|
|
|
|
ox: x position list of Obstacles [m]
|
|
oy: y position list of Obstacles [m]
|
|
resolution: grid resolution [m]
|
|
rr: robot radius[m]
|
|
"""
|
|
|
|
self.min_x = None
|
|
self.min_y = None
|
|
self.max_x = None
|
|
self.max_y = None
|
|
self.x_width = None
|
|
self.y_width = None
|
|
self.obstacle_map = None
|
|
|
|
self.resolution = resolution
|
|
self.robot_radius = robot_radius
|
|
self.calc_obstacle_map(ox, oy)
|
|
self.motion = self.get_motion_model()
|
|
|
|
class Node:
|
|
def __init__(self, x, y, cost, parent_index):
|
|
self.x = x # index of grid
|
|
self.y = y # index of grid
|
|
self.cost = cost
|
|
self.parent_index = parent_index # index of previous Node
|
|
|
|
def __str__(self):
|
|
return str(self.x) + "," + str(self.y) + "," + str(
|
|
self.cost) + "," + str(self.parent_index)
|
|
|
|
def planning(self, sx, sy, gx, gy):
|
|
"""
|
|
dijkstra path search
|
|
|
|
input:
|
|
s_x: start x position [m]
|
|
s_y: start y position [m]
|
|
gx: goal x position [m]
|
|
gx: goal x position [m]
|
|
|
|
output:
|
|
rx: x position list of the final path
|
|
ry: y position list of the final path
|
|
"""
|
|
|
|
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
|
|
self.calc_xy_index(sy, self.min_y), 0.0, -1)
|
|
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
|
|
self.calc_xy_index(gy, self.min_y), 0.0, -1)
|
|
|
|
open_set, closed_set = dict(), dict()
|
|
open_set[self.calc_index(start_node)] = start_node
|
|
|
|
while True:
|
|
c_id = min(open_set, key=lambda o: open_set[o].cost)
|
|
current = open_set[c_id]
|
|
|
|
# show graph
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(self.calc_position(current.x, self.min_x),
|
|
self.calc_position(current.y, self.min_y), "xc")
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
if len(closed_set.keys()) % 10 == 0:
|
|
plt.pause(0.001)
|
|
|
|
if current.x == goal_node.x and current.y == goal_node.y:
|
|
print("Find goal")
|
|
goal_node.parent_index = current.parent_index
|
|
goal_node.cost = current.cost
|
|
break
|
|
|
|
# Remove the item from the open set
|
|
del open_set[c_id]
|
|
|
|
# Add it to the closed set
|
|
closed_set[c_id] = current
|
|
|
|
# expand search grid based on motion model
|
|
for move_x, move_y, move_cost in self.motion:
|
|
node = self.Node(current.x + move_x,
|
|
current.y + move_y,
|
|
current.cost + move_cost, c_id)
|
|
n_id = self.calc_index(node)
|
|
|
|
if n_id in closed_set:
|
|
continue
|
|
|
|
if not self.verify_node(node):
|
|
continue
|
|
|
|
if n_id not in open_set:
|
|
open_set[n_id] = node # Discover a new node
|
|
else:
|
|
if open_set[n_id].cost >= node.cost:
|
|
# This path is the best until now. record it!
|
|
open_set[n_id] = node
|
|
|
|
rx, ry = self.calc_final_path(goal_node, closed_set)
|
|
|
|
return rx, ry
|
|
|
|
def calc_final_path(self, goal_node, closed_set):
|
|
# generate final course
|
|
rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
|
|
self.calc_position(goal_node.y, self.min_y)]
|
|
parent_index = goal_node.parent_index
|
|
while parent_index != -1:
|
|
n = closed_set[parent_index]
|
|
rx.append(self.calc_position(n.x, self.min_x))
|
|
ry.append(self.calc_position(n.y, self.min_y))
|
|
parent_index = n.parent_index
|
|
|
|
return rx, ry
|
|
|
|
def calc_position(self, index, minp):
|
|
pos = index * self.resolution + minp
|
|
return pos
|
|
|
|
def calc_xy_index(self, position, minp):
|
|
return round((position - minp) / self.resolution)
|
|
|
|
def calc_index(self, node):
|
|
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
|
|
|
|
def verify_node(self, node):
|
|
px = self.calc_position(node.x, self.min_x)
|
|
py = self.calc_position(node.y, self.min_y)
|
|
|
|
if px < self.min_x:
|
|
return False
|
|
if py < self.min_y:
|
|
return False
|
|
if px >= self.max_x:
|
|
return False
|
|
if py >= self.max_y:
|
|
return False
|
|
|
|
if self.obstacle_map[node.x][node.y]:
|
|
return False
|
|
|
|
return True
|
|
|
|
def calc_obstacle_map(self, ox, oy):
|
|
|
|
self.min_x = round(min(ox))
|
|
self.min_y = round(min(oy))
|
|
self.max_x = round(max(ox))
|
|
self.max_y = round(max(oy))
|
|
print("min_x:", self.min_x)
|
|
print("min_y:", self.min_y)
|
|
print("max_x:", self.max_x)
|
|
print("max_y:", self.max_y)
|
|
|
|
self.x_width = round((self.max_x - self.min_x) / self.resolution)
|
|
self.y_width = round((self.max_y - self.min_y) / self.resolution)
|
|
print("x_width:", self.x_width)
|
|
print("y_width:", self.y_width)
|
|
|
|
# obstacle map generation
|
|
self.obstacle_map = [[False for _ in range(self.y_width)]
|
|
for _ in range(self.x_width)]
|
|
for ix in range(self.x_width):
|
|
x = self.calc_position(ix, self.min_x)
|
|
for iy in range(self.y_width):
|
|
y = self.calc_position(iy, self.min_y)
|
|
for iox, ioy in zip(ox, oy):
|
|
d = math.hypot(iox - x, ioy - y)
|
|
if d <= self.robot_radius:
|
|
self.obstacle_map[ix][iy] = True
|
|
break
|
|
|
|
@staticmethod
|
|
def get_motion_model():
|
|
# dx, dy, cost
|
|
motion = [[1, 0, 1],
|
|
[0, 1, 1],
|
|
[-1, 0, 1],
|
|
[0, -1, 1],
|
|
[-1, -1, math.sqrt(2)],
|
|
[-1, 1, math.sqrt(2)],
|
|
[1, -1, math.sqrt(2)],
|
|
[1, 1, math.sqrt(2)]]
|
|
|
|
return motion
|
|
|
|
|
|
def main():
|
|
print(__file__ + " start!!")
|
|
|
|
# start and goal position
|
|
sx = -5.0 # [m]
|
|
sy = -5.0 # [m]
|
|
gx = 50.0 # [m]
|
|
gy = 50.0 # [m]
|
|
grid_size = 2.0 # [m]
|
|
robot_radius = 1.0 # [m]
|
|
|
|
# set obstacle positions
|
|
ox, oy = [], []
|
|
for i in range(-10, 60):
|
|
ox.append(float(i))
|
|
oy.append(-10.0)
|
|
for i in range(-10, 60):
|
|
ox.append(60.0)
|
|
oy.append(float(i))
|
|
for i in range(-10, 61):
|
|
ox.append(float(i))
|
|
oy.append(60.0)
|
|
for i in range(-10, 61):
|
|
ox.append(-10.0)
|
|
oy.append(float(i))
|
|
for i in range(-10, 40):
|
|
ox.append(20.0)
|
|
oy.append(float(i))
|
|
for i in range(0, 40):
|
|
ox.append(40.0)
|
|
oy.append(60.0 - i)
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(ox, oy, ".k")
|
|
plt.plot(sx, sy, "og")
|
|
plt.plot(gx, gy, "xb")
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
|
|
dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
|
|
rx, ry = dijkstra.planning(sx, sy, gx, gy)
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(rx, ry, "-r")
|
|
plt.pause(0.01)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|