mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 07:18:01 -05:00
141 lines
4.4 KiB
Python
141 lines
4.4 KiB
Python
"""
|
|
|
|
Dijkstra Search library
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
import numpy as np
|
|
|
|
|
|
class DijkstraSearch:
|
|
class Node:
|
|
"""
|
|
Node class for dijkstra search
|
|
"""
|
|
|
|
def __init__(self, x, y, cost=None, parent=None, edge_ids=None):
|
|
self.x = x
|
|
self.y = y
|
|
self.cost = cost
|
|
self.parent = parent
|
|
self.edge_ids = edge_ids
|
|
|
|
def __str__(self):
|
|
return str(self.x) + "," + str(self.y) + "," + str(
|
|
self.cost) + "," + str(self.parent)
|
|
|
|
def __init__(self, show_animation):
|
|
self.show_animation = show_animation
|
|
|
|
def search(self, sx, sy, gx, gy, node_x, node_y, edge_ids_list):
|
|
"""
|
|
Search shortest path
|
|
|
|
s_x: start x positions [m]
|
|
s_y: start y positions [m]
|
|
gx: goal x position [m]
|
|
gx: goal x position [m]
|
|
node_x: node x position
|
|
node_y: node y position
|
|
edge_ids_list: edge_list each item includes a list of edge ids
|
|
"""
|
|
|
|
start_node = self.Node(sx, sy, 0.0, -1)
|
|
goal_node = self.Node(gx, gy, 0.0, -1)
|
|
current_node = None
|
|
|
|
open_set, close_set = dict(), dict()
|
|
open_set[self.find_id(node_x, node_y, start_node)] = start_node
|
|
|
|
while True:
|
|
if self.has_node_in_set(close_set, goal_node):
|
|
print("goal is found!")
|
|
goal_node.parent = current_node.parent
|
|
goal_node.cost = current_node.cost
|
|
break
|
|
elif not open_set:
|
|
print("Cannot find path")
|
|
break
|
|
|
|
current_id = min(open_set, key=lambda o: open_set[o].cost)
|
|
current_node = open_set[current_id]
|
|
|
|
# show graph
|
|
if self.show_animation and len(
|
|
close_set.keys()) % 2 == 0: # pragma: no cover
|
|
plt.plot(current_node.x, current_node.y, "xg")
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.pause(0.1)
|
|
|
|
# Remove the item from the open set
|
|
del open_set[current_id]
|
|
# Add it to the closed set
|
|
close_set[current_id] = current_node
|
|
|
|
# expand search grid based on motion model
|
|
for i in range(len(edge_ids_list[current_id])):
|
|
n_id = edge_ids_list[current_id][i]
|
|
dx = node_x[n_id] - current_node.x
|
|
dy = node_y[n_id] - current_node.y
|
|
d = math.hypot(dx, dy)
|
|
node = self.Node(node_x[n_id], node_y[n_id],
|
|
current_node.cost + d, current_id)
|
|
|
|
if n_id in close_set:
|
|
continue
|
|
# Otherwise if it is already in the open set
|
|
if n_id in open_set:
|
|
if open_set[n_id].cost > node.cost:
|
|
open_set[n_id] = node
|
|
else:
|
|
open_set[n_id] = node
|
|
|
|
# generate final course
|
|
rx, ry = self.generate_final_path(close_set, goal_node)
|
|
|
|
return rx, ry
|
|
|
|
@staticmethod
|
|
def generate_final_path(close_set, goal_node):
|
|
rx, ry = [goal_node.x], [goal_node.y]
|
|
parent = goal_node.parent
|
|
while parent != -1:
|
|
n = close_set[parent]
|
|
rx.append(n.x)
|
|
ry.append(n.y)
|
|
parent = n.parent
|
|
rx, ry = rx[::-1], ry[::-1] # reverse it
|
|
return rx, ry
|
|
|
|
def has_node_in_set(self, target_set, node):
|
|
for key in target_set:
|
|
if self.is_same_node(target_set[key], node):
|
|
return True
|
|
return False
|
|
|
|
def find_id(self, node_x_list, node_y_list, target_node):
|
|
for i, _ in enumerate(node_x_list):
|
|
if self.is_same_node_with_xy(node_x_list[i], node_y_list[i],
|
|
target_node):
|
|
return i
|
|
return None
|
|
|
|
@staticmethod
|
|
def is_same_node_with_xy(node_x, node_y, node_b):
|
|
dist = np.hypot(node_x - node_b.x,
|
|
node_y - node_b.y)
|
|
return dist <= 0.1
|
|
|
|
@staticmethod
|
|
def is_same_node(node_a, node_b):
|
|
dist = np.hypot(node_a.x - node_b.x,
|
|
node_a.y - node_b.y)
|
|
return dist <= 0.1
|