Files
PythonRobotics/PathPlanning/VoronoiRoadMap/dijkstra_search.py
2021-06-30 08:37:49 +09:00

141 lines
4.4 KiB
Python

"""
Dijkstra Search library
author: Atsushi Sakai (@Atsushi_twi)
"""
import matplotlib.pyplot as plt
import math
import numpy as np
class DijkstraSearch:
class Node:
"""
Node class for dijkstra search
"""
def __init__(self, x, y, cost=None, parent=None, edge_ids=None):
self.x = x
self.y = y
self.cost = cost
self.parent = parent
self.edge_ids = edge_ids
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(
self.cost) + "," + str(self.parent)
def __init__(self, show_animation):
self.show_animation = show_animation
def search(self, sx, sy, gx, gy, node_x, node_y, edge_ids_list):
"""
Search shortest path
s_x: start x positions [m]
s_y: start y positions [m]
gx: goal x position [m]
gx: goal x position [m]
node_x: node x position
node_y: node y position
edge_ids_list: edge_list each item includes a list of edge ids
"""
start_node = self.Node(sx, sy, 0.0, -1)
goal_node = self.Node(gx, gy, 0.0, -1)
current_node = None
open_set, close_set = dict(), dict()
open_set[self.find_id(node_x, node_y, start_node)] = start_node
while True:
if self.has_node_in_set(close_set, goal_node):
print("goal is found!")
goal_node.parent = current_node.parent
goal_node.cost = current_node.cost
break
elif not open_set:
print("Cannot find path")
break
current_id = min(open_set, key=lambda o: open_set[o].cost)
current_node = open_set[current_id]
# show graph
if self.show_animation and len(
close_set.keys()) % 2 == 0: # pragma: no cover
plt.plot(current_node.x, current_node.y, "xg")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.pause(0.1)
# Remove the item from the open set
del open_set[current_id]
# Add it to the closed set
close_set[current_id] = current_node
# expand search grid based on motion model
for i in range(len(edge_ids_list[current_id])):
n_id = edge_ids_list[current_id][i]
dx = node_x[n_id] - current_node.x
dy = node_y[n_id] - current_node.y
d = math.hypot(dx, dy)
node = self.Node(node_x[n_id], node_y[n_id],
current_node.cost + d, current_id)
if n_id in close_set:
continue
# Otherwise if it is already in the open set
if n_id in open_set:
if open_set[n_id].cost > node.cost:
open_set[n_id] = node
else:
open_set[n_id] = node
# generate final course
rx, ry = self.generate_final_path(close_set, goal_node)
return rx, ry
@staticmethod
def generate_final_path(close_set, goal_node):
rx, ry = [goal_node.x], [goal_node.y]
parent = goal_node.parent
while parent != -1:
n = close_set[parent]
rx.append(n.x)
ry.append(n.y)
parent = n.parent
rx, ry = rx[::-1], ry[::-1] # reverse it
return rx, ry
def has_node_in_set(self, target_set, node):
for key in target_set:
if self.is_same_node(target_set[key], node):
return True
return False
def find_id(self, node_x_list, node_y_list, target_node):
for i, _ in enumerate(node_x_list):
if self.is_same_node_with_xy(node_x_list[i], node_y_list[i],
target_node):
return i
return None
@staticmethod
def is_same_node_with_xy(node_x, node_y, node_b):
dist = np.hypot(node_x - node_b.x,
node_y - node_b.y)
return dist <= 0.1
@staticmethod
def is_same_node(node_a, node_b):
dist = np.hypot(node_a.x - node_b.x,
node_a.y - node_b.y)
return dist <= 0.1