mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 06:28:00 -05:00
219 lines
6.8 KiB
Python
219 lines
6.8 KiB
Python
"""
|
|
Distance/Path Transform Wavefront Coverage Path Planner
|
|
|
|
author: Todd Tang
|
|
paper: Planning paths of complete coverage of an unstructured environment
|
|
by a mobile robot - Zelinsky et.al.
|
|
link: https://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from scipy import ndimage
|
|
|
|
do_animation = True
|
|
|
|
|
|
def transform(
|
|
grid_map, src, distance_type='chessboard',
|
|
transform_type='path', alpha=0.01
|
|
):
|
|
"""transform
|
|
|
|
calculating transform of transform_type from src
|
|
in given distance_type
|
|
|
|
:param grid_map: 2d binary map
|
|
:param src: distance transform source
|
|
:param distance_type: type of distance used
|
|
:param transform_type: type of transform used
|
|
:param alpha: weight of Obstacle Transform used when using path_transform
|
|
"""
|
|
|
|
n_rows, n_cols = grid_map.shape
|
|
|
|
if n_rows == 0 or n_cols == 0:
|
|
sys.exit('Empty grid_map.')
|
|
|
|
inc_order = [[0, 1], [1, 1], [1, 0], [1, -1],
|
|
[0, -1], [-1, -1], [-1, 0], [-1, 1]]
|
|
if distance_type == 'chessboard':
|
|
cost = [1, 1, 1, 1, 1, 1, 1, 1]
|
|
elif distance_type == 'eculidean':
|
|
cost = [1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2)]
|
|
else:
|
|
sys.exit('Unsupported distance type.')
|
|
|
|
transform_matrix = float('inf') * np.ones_like(grid_map, dtype=float)
|
|
transform_matrix[src[0], src[1]] = 0
|
|
if transform_type == 'distance':
|
|
eT = np.zeros_like(grid_map)
|
|
elif transform_type == 'path':
|
|
eT = ndimage.distance_transform_cdt(1 - grid_map, distance_type)
|
|
else:
|
|
sys.exit('Unsupported transform type.')
|
|
|
|
# set obstacle transform_matrix value to infinity
|
|
for i in range(n_rows):
|
|
for j in range(n_cols):
|
|
if grid_map[i][j] == 1.0:
|
|
transform_matrix[i][j] = float('inf')
|
|
is_visited = np.zeros_like(transform_matrix, dtype=bool)
|
|
is_visited[src[0], src[1]] = True
|
|
traversal_queue = [src]
|
|
calculated = set([(src[0] - 1) * n_cols + src[1]])
|
|
|
|
def is_valid_neighbor(g_i, g_j):
|
|
return 0 <= g_i < n_rows and 0 <= g_j < n_cols \
|
|
and not grid_map[g_i][g_j]
|
|
|
|
while traversal_queue:
|
|
i, j = traversal_queue.pop(0)
|
|
for k, inc in enumerate(inc_order):
|
|
ni = i + inc[0]
|
|
nj = j + inc[1]
|
|
if is_valid_neighbor(ni, nj):
|
|
is_visited[i][j] = True
|
|
|
|
# update transform_matrix
|
|
transform_matrix[i][j] = min(
|
|
transform_matrix[i][j],
|
|
transform_matrix[ni][nj] + cost[k] + alpha * eT[ni][nj])
|
|
|
|
if not is_visited[ni][nj] \
|
|
and ((ni - 1) * n_cols + nj) not in calculated:
|
|
traversal_queue.append((ni, nj))
|
|
calculated.add((ni - 1) * n_cols + nj)
|
|
|
|
return transform_matrix
|
|
|
|
|
|
def get_search_order_increment(start, goal):
|
|
if start[0] >= goal[0] and start[1] >= goal[1]:
|
|
order = [[1, 0], [0, 1], [-1, 0], [0, -1],
|
|
[1, 1], [1, -1], [-1, 1], [-1, -1]]
|
|
elif start[0] <= goal[0] and start[1] >= goal[1]:
|
|
order = [[-1, 0], [0, 1], [1, 0], [0, -1],
|
|
[-1, 1], [-1, -1], [1, 1], [1, -1]]
|
|
elif start[0] >= goal[0] and start[1] <= goal[1]:
|
|
order = [[1, 0], [0, -1], [-1, 0], [0, 1],
|
|
[1, -1], [-1, -1], [1, 1], [-1, 1]]
|
|
elif start[0] <= goal[0] and start[1] <= goal[1]:
|
|
order = [[-1, 0], [0, -1], [0, 1], [1, 0],
|
|
[-1, -1], [-1, 1], [1, -1], [1, 1]]
|
|
else:
|
|
sys.exit('get_search_order_increment: cannot determine \
|
|
start=>goal increment order')
|
|
return order
|
|
|
|
|
|
def wavefront(transform_matrix, start, goal):
|
|
"""wavefront
|
|
|
|
performing wavefront coverage path planning
|
|
|
|
:param transform_matrix: the transform matrix
|
|
:param start: start point of planning
|
|
:param goal: goal point of planning
|
|
"""
|
|
|
|
path = []
|
|
n_rows, n_cols = transform_matrix.shape
|
|
|
|
def is_valid_neighbor(g_i, g_j):
|
|
is_i_valid_bounded = 0 <= g_i < n_rows
|
|
is_j_valid_bounded = 0 <= g_j < n_cols
|
|
if is_i_valid_bounded and is_j_valid_bounded:
|
|
return not is_visited[g_i][g_j] and \
|
|
transform_matrix[g_i][g_j] != float('inf')
|
|
return False
|
|
|
|
inc_order = get_search_order_increment(start, goal)
|
|
|
|
current_node = start
|
|
is_visited = np.zeros_like(transform_matrix, dtype=bool)
|
|
|
|
while current_node != goal:
|
|
i, j = current_node
|
|
path.append((i, j))
|
|
is_visited[i][j] = True
|
|
|
|
max_T = float('-inf')
|
|
i_max = (-1, -1)
|
|
i_last = 0
|
|
for i_last in range(len(path)):
|
|
current_node = path[-1 - i_last] # get latest node in path
|
|
for ci, cj in inc_order:
|
|
ni, nj = current_node[0] + ci, current_node[1] + cj
|
|
if is_valid_neighbor(ni, nj) and \
|
|
transform_matrix[ni][nj] > max_T:
|
|
i_max = (ni, nj)
|
|
max_T = transform_matrix[ni][nj]
|
|
|
|
if i_max != (-1, -1):
|
|
break
|
|
|
|
if i_max == (-1, -1):
|
|
break
|
|
else:
|
|
current_node = i_max
|
|
if i_last != 0:
|
|
print('backtracing to', current_node)
|
|
path.append(goal)
|
|
|
|
return path
|
|
|
|
|
|
def visualize_path(grid_map, start, goal, path): # pragma: no cover
|
|
oy, ox = start
|
|
gy, gx = goal
|
|
px, py = np.transpose(np.flipud(np.fliplr(path)))
|
|
|
|
if not do_animation:
|
|
plt.imshow(grid_map, cmap='Greys')
|
|
plt.plot(ox, oy, "-xy")
|
|
plt.plot(px, py, "-r")
|
|
plt.plot(gx, gy, "-pg")
|
|
plt.show()
|
|
else:
|
|
for ipx, ipy in zip(px, py):
|
|
plt.cla()
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.imshow(grid_map, cmap='Greys')
|
|
plt.plot(ox, oy, "-xb")
|
|
plt.plot(px, py, "-r")
|
|
plt.plot(gx, gy, "-pg")
|
|
plt.plot(ipx, ipy, "or")
|
|
plt.axis("equal")
|
|
plt.grid(True)
|
|
plt.pause(0.1)
|
|
|
|
|
|
def main():
|
|
dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
img = plt.imread(os.path.join(dir_path, 'map', 'test.png'))
|
|
img = 1 - img # revert pixel values
|
|
|
|
start = (43, 0)
|
|
goal = (0, 0)
|
|
|
|
# distance transform wavefront
|
|
DT = transform(img, goal, transform_type='distance')
|
|
DT_path = wavefront(DT, start, goal)
|
|
visualize_path(img, start, goal, DT_path)
|
|
|
|
# path transform wavefront
|
|
PT = transform(img, goal, transform_type='path', alpha=0.01)
|
|
PT_path = wavefront(PT, start, goal)
|
|
visualize_path(img, start, goal, PT_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|