mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 19:48:02 -05:00
319 lines
7.3 KiB
Python
319 lines
7.3 KiB
Python
"""
|
|
|
|
Probablistic Road Map (PRM) Planner
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
|
|
"""
|
|
|
|
import random
|
|
import math
|
|
import numpy as np
|
|
import scipy.spatial
|
|
import matplotlib.pyplot as plt
|
|
|
|
# parameter
|
|
N_SAMPLE = 500 # number of sample_points
|
|
N_KNN = 10 # number of edge from one sampled point
|
|
MAX_EDGE_LEN = 30.0 # [m] Maximum edge length
|
|
|
|
show_animation = True
|
|
|
|
|
|
class Node:
|
|
"""
|
|
Node class for dijkstra search
|
|
"""
|
|
|
|
def __init__(self, x, y, cost, pind):
|
|
self.x = x
|
|
self.y = y
|
|
self.cost = cost
|
|
self.pind = pind
|
|
|
|
def __str__(self):
|
|
return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)
|
|
|
|
|
|
class KDTree:
|
|
"""
|
|
Nearest neighbor search class with KDTree
|
|
"""
|
|
|
|
def __init__(self, data):
|
|
# store kd-tree
|
|
self.tree = scipy.spatial.cKDTree(data)
|
|
|
|
def search(self, inp, k=1):
|
|
u"""
|
|
Search NN
|
|
|
|
inp: input data, single frame or multi frame
|
|
|
|
"""
|
|
|
|
if len(inp.shape) >= 2: # multi input
|
|
index = []
|
|
dist = []
|
|
|
|
for i in inp.T:
|
|
idist, iindex = self.tree.query(i, k=k)
|
|
index.append(iindex)
|
|
dist.append(idist)
|
|
|
|
return index, dist
|
|
else:
|
|
dist, index = self.tree.query(inp, k=k)
|
|
return index, dist
|
|
|
|
def search_in_distance(self, inp, r):
|
|
u"""
|
|
find points with in a distance r
|
|
"""
|
|
|
|
index = self.tree.query_ball_point(inp, r)
|
|
return index
|
|
|
|
|
|
def PRM_planning(sx, sy, gx, gy, ox, oy, rr):
|
|
|
|
obkdtree = KDTree(np.vstack((ox, oy)).T)
|
|
|
|
sample_x, sample_y = sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree)
|
|
if show_animation:
|
|
plt.plot(sample_x, sample_y, ".b")
|
|
|
|
road_map = generate_roadmap(sample_x, sample_y, rr, obkdtree)
|
|
|
|
rx, ry = dijkstra_planning(
|
|
sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y)
|
|
|
|
return rx, ry
|
|
|
|
|
|
def is_collision(sx, sy, gx, gy, rr, okdtree):
|
|
x = sx
|
|
y = sy
|
|
dx = gx - sx
|
|
dy = gy - sy
|
|
yaw = math.atan2(gy - sy, gx - sx)
|
|
d = math.sqrt(dx**2 + dy**2)
|
|
|
|
if d >= MAX_EDGE_LEN:
|
|
return True
|
|
|
|
D = rr
|
|
nstep = round(d / D)
|
|
|
|
for i in range(nstep):
|
|
idxs, dist = okdtree.search(np.matrix([x, y]).T)
|
|
if dist[0] <= rr:
|
|
return True # collision
|
|
x += D * math.cos(yaw)
|
|
y += D * math.sin(yaw)
|
|
|
|
# goal point check
|
|
idxs, dist = okdtree.search(np.matrix([gx, gy]).T)
|
|
if dist[0] <= rr:
|
|
return True # collision
|
|
|
|
return False # OK
|
|
|
|
|
|
def generate_roadmap(sample_x, sample_y, rr, obkdtree):
|
|
"""
|
|
Road map generation
|
|
|
|
sample_x: [m] x positions of sampled points
|
|
sample_y: [m] y positions of sampled points
|
|
rr: Robot Radius[m]
|
|
obkdtree: KDTree object of obstacles
|
|
"""
|
|
|
|
road_map = []
|
|
nsample = len(sample_x)
|
|
skdtree = KDTree(np.vstack((sample_x, sample_y)).T)
|
|
|
|
for (i, ix, iy) in zip(range(nsample), sample_x, sample_y):
|
|
|
|
index, dists = skdtree.search(
|
|
np.matrix([ix, iy]).T, k=nsample)
|
|
inds = index[0][0]
|
|
edge_id = []
|
|
# print(index)
|
|
|
|
for ii in range(1, len(inds)):
|
|
nx = sample_x[inds[ii]]
|
|
ny = sample_y[inds[ii]]
|
|
|
|
if not is_collision(ix, iy, nx, ny, rr, obkdtree):
|
|
edge_id.append(inds[ii])
|
|
|
|
if len(edge_id) >= N_KNN:
|
|
break
|
|
|
|
road_map.append(edge_id)
|
|
|
|
# plot_road_map(road_map, sample_x, sample_y)
|
|
|
|
return road_map
|
|
|
|
|
|
def dijkstra_planning(sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y):
|
|
"""
|
|
gx: goal x position [m]
|
|
gx: goal x position [m]
|
|
ox: x position list of Obstacles [m]
|
|
oy: y position list of Obstacles [m]
|
|
reso: grid resolution [m]
|
|
rr: robot radius[m]
|
|
"""
|
|
|
|
nstart = Node(sx, sy, 0.0, -1)
|
|
ngoal = Node(gx, gy, 0.0, -1)
|
|
|
|
openset, closedset = dict(), dict()
|
|
openset[len(road_map) - 2] = nstart
|
|
|
|
while True:
|
|
if len(openset) == 0:
|
|
print("Cannot find path")
|
|
break
|
|
|
|
c_id = min(openset, key=lambda o: openset[o].cost)
|
|
current = openset[c_id]
|
|
|
|
# show graph
|
|
if show_animation and len(closedset.keys()) % 2 == 0:
|
|
plt.plot(current.x, current.y, "xg")
|
|
plt.pause(0.001)
|
|
|
|
if c_id == (len(road_map) - 1):
|
|
print("goal is found!")
|
|
ngoal.pind = current.pind
|
|
ngoal.cost = current.cost
|
|
break
|
|
|
|
# Remove the item from the open set
|
|
del openset[c_id]
|
|
# Add it to the closed set
|
|
closedset[c_id] = current
|
|
|
|
# expand search grid based on motion model
|
|
for i in range(len(road_map[c_id])):
|
|
n_id = road_map[c_id][i]
|
|
dx = sample_x[n_id] - current.x
|
|
dy = sample_y[n_id] - current.y
|
|
d = math.sqrt(dx**2 + dy**2)
|
|
node = Node(sample_x[n_id], sample_y[n_id],
|
|
current.cost + d, c_id)
|
|
|
|
if n_id in closedset:
|
|
continue
|
|
# Otherwise if it is already in the open set
|
|
if n_id in openset:
|
|
if openset[n_id].cost > node.cost:
|
|
openset[n_id].cost = node.cost
|
|
openset[n_id].pind = c_id
|
|
else:
|
|
openset[n_id] = node
|
|
|
|
# generate final course
|
|
rx, ry = [ngoal.x], [ngoal.y]
|
|
pind = ngoal.pind
|
|
while pind != -1:
|
|
n = closedset[pind]
|
|
rx.append(n.x)
|
|
ry.append(n.y)
|
|
pind = n.pind
|
|
|
|
return rx, ry
|
|
|
|
|
|
def plot_road_map(road_map, sample_x, sample_y):
|
|
|
|
for i in range(len(road_map)):
|
|
for ii in range(len(road_map[i])):
|
|
ind = road_map[i][ii]
|
|
|
|
plt.plot([sample_x[i], sample_x[ind]],
|
|
[sample_y[i], sample_y[ind]], "-k")
|
|
|
|
|
|
def sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree):
|
|
maxx = max(ox)
|
|
maxy = max(oy)
|
|
minx = min(ox)
|
|
miny = min(oy)
|
|
|
|
sample_x, sample_y = [], []
|
|
|
|
while len(sample_x) <= N_SAMPLE:
|
|
tx = (random.random() - minx) * (maxx - minx)
|
|
ty = (random.random() - miny) * (maxy - miny)
|
|
|
|
index, dist = obkdtree.search(np.matrix([tx, ty]).T)
|
|
|
|
if dist[0] >= rr:
|
|
sample_x.append(tx)
|
|
sample_y.append(ty)
|
|
|
|
sample_x.append(sx)
|
|
sample_y.append(sy)
|
|
sample_x.append(gx)
|
|
sample_y.append(gy)
|
|
|
|
return sample_x, sample_y
|
|
|
|
|
|
def main():
|
|
print(__file__ + " start!!")
|
|
|
|
# start and goal position
|
|
sx = 10.0 # [m]
|
|
sy = 10.0 # [m]
|
|
gx = 50.0 # [m]
|
|
gy = 50.0 # [m]
|
|
robot_size = 5.0 # [m]
|
|
|
|
ox = []
|
|
oy = []
|
|
|
|
for i in range(60):
|
|
ox.append(i)
|
|
oy.append(0.0)
|
|
for i in range(60):
|
|
ox.append(60.0)
|
|
oy.append(i)
|
|
for i in range(61):
|
|
ox.append(i)
|
|
oy.append(60.0)
|
|
for i in range(61):
|
|
ox.append(0.0)
|
|
oy.append(i)
|
|
for i in range(40):
|
|
ox.append(20.0)
|
|
oy.append(i)
|
|
for i in range(40):
|
|
ox.append(40.0)
|
|
oy.append(60.0 - i)
|
|
|
|
if show_animation:
|
|
plt.plot(ox, oy, ".k")
|
|
plt.plot(sx, sy, "^r")
|
|
plt.plot(gx, gy, "^c")
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
|
|
rx, ry = PRM_planning(sx, sy, gx, gy, ox, oy, robot_size)
|
|
|
|
assert len(rx) != 0, 'Cannot found path'
|
|
|
|
if show_animation:
|
|
plt.plot(rx, ry, "-r")
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|