Files
PythonRobotics/PathPlanning/HybridAStar/car.py
2020-06-08 17:16:56 +09:00

108 lines
2.8 KiB
Python

"""
Car model for Hybrid A* path planning
author: Zheng Zh (@Zhengzh)
"""
from math import sqrt, cos, sin, tan, pi
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot
WB = 3. # rear to front wheel
W = 2. # width of car
LF = 3.3 # distance from rear to vehicle front end
LB = 1.0 # distance from rear to vehicle back end
MAX_STEER = 0.6 # [rad] maximum steering angle
W_BUBBLE_DIST = (LF - LB) / 2.0
W_BUBBLE_R = sqrt(((LF + LB) / 2.0) ** 2 + 1)
# vehicle rectangle vertices
VRX = [LF, LF, -LB, -LB, LF]
VRY = [W / 2, -W / 2, -W / 2, W / 2, W / 2]
def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree):
for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list):
cx = i_x + W_BUBBLE_DIST * cos(i_yaw)
cy = i_y + W_BUBBLE_DIST * sin(i_yaw)
ids = kd_tree.query_ball_point([cx, cy], W_BUBBLE_R)
if not ids:
continue
if not rectangle_check(i_x, i_y, i_yaw,
[ox[i] for i in ids], [oy[i] for i in ids]):
return False # collision
return True # no collision
def rectangle_check(x, y, yaw, ox, oy):
# transform obstacles to base link frame
rot = Rot.from_euler('z', yaw).as_matrix()[0:2, 0:2]
for iox, ioy in zip(ox, oy):
tx = iox - x
ty = ioy - y
converted_xy = np.stack([tx, ty]).T @ rot
rx, ry = converted_xy[0], converted_xy[1]
if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0):
return False # no collision
return True # collision
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""Plot arrow."""
if not isinstance(x, float):
for (i_x, i_y, i_yaw) in zip(x, y, yaw):
plot_arrow(i_x, i_y, i_yaw)
else:
plt.arrow(x, y, length * cos(yaw), length * sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width, alpha=0.4)
def plot_car(x, y, yaw):
car_color = '-k'
c, s = cos(yaw), sin(yaw)
rot = Rot.from_euler('z', -yaw).as_matrix()[0:2, 0:2]
car_outline_x, car_outline_y = [], []
for rx, ry in zip(VRX, VRY):
converted_xy = np.stack([rx, ry]).T @ rot
car_outline_x.append(converted_xy[0]+x)
car_outline_y.append(converted_xy[1]+y)
arrow_x, arrow_y, arrow_yaw = c * 1.5 + x, s * 1.5 + y, yaw
plot_arrow(arrow_x, arrow_y, arrow_yaw)
plt.plot(car_outline_x, car_outline_y, car_color)
def pi_2_pi(angle):
return (angle + pi) % (2 * pi) - pi
def move(x, y, yaw, distance, steer, L=WB):
x += distance * cos(yaw)
y += distance * sin(yaw)
yaw += pi_2_pi(distance * tan(steer) / L) # distance/2
return x, y, yaw
def main():
x, y, yaw = 0., 0., 1.
plt.axis('equal')
plot_car(x, y, yaw)
plt.show()
if __name__ == '__main__':
main()