mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
553 lines
17 KiB
ReStructuredText
553 lines
17 KiB
ReStructuredText
|
||
FastSLAM1.0
|
||
-----------
|
||
|
||
.. code-block:: ipython3
|
||
|
||
from IPython.display import Image
|
||
Image(filename="animation.png",width=600)
|
||
|
||
|
||
|
||
|
||
.. image:: FastSLAM1_files/FastSLAM1_1_0.png
|
||
:width: 600px
|
||
|
||
|
||
|
||
Simulation
|
||
~~~~~~~~~~
|
||
|
||
This is a feature based SLAM example using FastSLAM 1.0.
|
||
|
||
The blue line is ground truth, the black line is dead reckoning, the red
|
||
line is the estimated trajectory with FastSLAM.
|
||
|
||
The red points are particles of FastSLAM.
|
||
|
||
Black points are landmarks, blue crosses are estimated landmark
|
||
positions by FastSLAM.
|
||
|
||
.. figure:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/SLAM/FastSLAM1/animation.gif
|
||
:alt: gif
|
||
|
||
gif
|
||
|
||
Introduction
|
||
~~~~~~~~~~~~
|
||
|
||
FastSLAM algorithm implementation is based on particle filters and
|
||
belongs to the family of probabilistic SLAM approaches. It is used with
|
||
feature-based maps (see gif above) or with occupancy grid maps.
|
||
|
||
As it is shown, the particle filter differs from EKF by representing the
|
||
robot’s estimation through a set of particles. Each single particle has
|
||
an independent belief, as it holds the pose :math:`(x, y, \theta)` and
|
||
an array of landmark locations
|
||
:math:`[(x_1, y_1), (x_2, y_2), ... (x_n, y_n)]` for n landmarks.
|
||
|
||
- The blue line is the true trajectory
|
||
- The red line is the estimated trajectory
|
||
- The red dots represent the distribution of particles
|
||
- The black line represent dead reckoning tracjectory
|
||
- The blue x is the observed and estimated landmarks
|
||
- The black x is the true landmark
|
||
|
||
I.e. Each particle maintains a deterministic pose and n-EKFs for each
|
||
landmark and update it with each measurement.
|
||
|
||
Algorithm walkthrough
|
||
~~~~~~~~~~~~~~~~~~~~~
|
||
|
||
The particles are initially drawn from a uniform distribution the
|
||
represent the initial uncertainty. At each time step we do:
|
||
|
||
- Predict the pose for each particle by using :math:`u` and the motion
|
||
model (the landmarks are not updated).
|
||
- Update the particles with observations :math:`z`, where the weights
|
||
are adjusted based on how likely the particle to have the correct
|
||
pose given the sensor measurement
|
||
- Resampling such that the particles with the largest weights survive
|
||
and the unlikely ones with the lowest weights die out.
|
||
|
||
1- Predict
|
||
~~~~~~~~~~
|
||
|
||
The following equations and code snippets we can see how the particles
|
||
distribution evolves in case we provide only the control :math:`(v,w)`,
|
||
which are the linear and angular velocity repsectively.
|
||
|
||
:math:`\begin{equation*} F= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{equation*}`
|
||
|
||
:math:`\begin{equation*} B= \begin{bmatrix} \Delta t cos(\theta) & 0\\ \Delta t sin(\theta) & 0\\ 0 & \Delta t \end{bmatrix} \end{equation*}`
|
||
|
||
:math:`\begin{equation*} X = FX + BU \end{equation*}`
|
||
|
||
:math:`\begin{equation*} \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}+ \begin{bmatrix} \Delta t cos(\theta) & 0\\ \Delta t sin(\theta) & 0\\ 0 & \Delta t \end{bmatrix} \begin{bmatrix} v_{t} + \sigma_v\\ w_{t} + \sigma_w\\ \end{bmatrix} \end{equation*}`
|
||
|
||
The following snippets playsback the recorded trajectory of each
|
||
particle.
|
||
|
||
To get the insight of the motion model change the value of :math:`R` and
|
||
re-run the cells again. As R is the parameters that indicates how much
|
||
we trust that the robot executed the motion commands.
|
||
|
||
It is interesting to notice also that only motion will increase the
|
||
uncertainty in the system as the particles start to spread out more. If
|
||
observations are included the uncertainty will decrease and particles
|
||
will converge to the correct estimate.
|
||
|
||
.. code-block:: ipython3
|
||
|
||
# CODE SNIPPET #
|
||
import numpy as np
|
||
import math
|
||
from copy import deepcopy
|
||
# Fast SLAM covariance
|
||
Q = np.diag([3.0, np.deg2rad(10.0)])**2
|
||
R = np.diag([1.0, np.deg2rad(20.0)])**2
|
||
|
||
# Simulation parameter
|
||
Qsim = np.diag([0.3, np.deg2rad(2.0)])**2
|
||
Rsim = np.diag([0.5, np.deg2rad(10.0)])**2
|
||
OFFSET_YAWRATE_NOISE = 0.01
|
||
|
||
DT = 0.1 # time tick [s]
|
||
SIM_TIME = 50.0 # simulation time [s]
|
||
MAX_RANGE = 20.0 # maximum observation range
|
||
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||
LM_SIZE = 2 # LM srate size [x,y]
|
||
N_PARTICLE = 100 # number of particle
|
||
NTH = N_PARTICLE / 1.5 # Number of particle for re-sampling
|
||
|
||
class Particle:
|
||
|
||
def __init__(self, N_LM):
|
||
self.w = 1.0 / N_PARTICLE
|
||
self.x = 0.0
|
||
self.y = 0.0
|
||
self.yaw = 0.0
|
||
# landmark x-y positions
|
||
self.lm = np.zeros((N_LM, LM_SIZE))
|
||
# landmark position covariance
|
||
self.lmP = np.zeros((N_LM * LM_SIZE, LM_SIZE))
|
||
|
||
def motion_model(x, u):
|
||
F = np.array([[1.0, 0, 0],
|
||
[0, 1.0, 0],
|
||
[0, 0, 1.0]])
|
||
|
||
B = np.array([[DT * math.cos(x[2, 0]), 0],
|
||
[DT * math.sin(x[2, 0]), 0],
|
||
[0.0, DT]])
|
||
x = F @ x + B @ u
|
||
|
||
x[2, 0] = pi_2_pi(x[2, 0])
|
||
return x
|
||
|
||
def predict_particles(particles, u):
|
||
for i in range(N_PARTICLE):
|
||
px = np.zeros((STATE_SIZE, 1))
|
||
px[0, 0] = particles[i].x
|
||
px[1, 0] = particles[i].y
|
||
px[2, 0] = particles[i].yaw
|
||
ud = u + (np.random.randn(1, 2) @ R).T # add noise
|
||
px = motion_model(px, ud)
|
||
particles[i].x = px[0, 0]
|
||
particles[i].y = px[1, 0]
|
||
particles[i].yaw = px[2, 0]
|
||
|
||
return particles
|
||
|
||
def pi_2_pi(angle):
|
||
return (angle + math.pi) % (2 * math.pi) - math.pi
|
||
|
||
# END OF SNIPPET
|
||
|
||
N_LM = 0
|
||
particles = [Particle(N_LM) for i in range(N_PARTICLE)]
|
||
time= 0.0
|
||
v = 1.0 # [m/s]
|
||
yawrate = 0.1 # [rad/s]
|
||
u = np.array([v, yawrate]).reshape(2, 1)
|
||
history = []
|
||
while SIM_TIME >= time:
|
||
time += DT
|
||
particles = predict_particles(particles, u)
|
||
history.append(deepcopy(particles))
|
||
|
||
|
||
.. code-block:: ipython3
|
||
|
||
# from IPython.html.widgets import *
|
||
from ipywidgets import *
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
%matplotlib inline
|
||
|
||
# playback the recorded motion of the particles
|
||
def plot_particles(t=0):
|
||
x = []
|
||
y = []
|
||
for i in range(len(history[t])):
|
||
x.append(history[t][i].x)
|
||
y.append(history[t][i].y)
|
||
plt.figtext(0.15,0.82,'t = ' + str(t))
|
||
plt.plot(x, y, '.r')
|
||
plt.axis([-20,20, -5,25])
|
||
|
||
interact(plot_particles, t=(0,len(history)-1,1));
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
interactive(children=(IntSlider(value=0, description='t', max=499), Output()), _dom_classes=('widget-interact'…
|
||
|
||
|
||
2- Update
|
||
~~~~~~~~~
|
||
|
||
For the update step it is useful to observe a single particle and the
|
||
effect of getting a new measurements on the weight of the particle.
|
||
|
||
As mentioned earlier, each particle maintains :math:`N` :math:`2x2` EKFs
|
||
to estimate the landmarks, which includes the EKF process described in
|
||
the EKF notebook. The difference is the change in the weight of the
|
||
particle according to how likely the measurement is.
|
||
|
||
The weight is updated according to the following equation:
|
||
|
||
:math:`\begin{equation*} w_i = |2\pi Q|^{\frac{-1}{2}} exp\{\frac{-1}{2}(z_t - \hat z_i)^T Q^{-1}(z_t-\hat z_i)\} \end{equation*}`
|
||
|
||
Where, :math:`w_i` is the computed weight, :math:`Q` is the measurement
|
||
covariance, :math:`z_t` is the actual measurment and :math:`\hat z_i` is
|
||
the predicted measurement of particle :math:`i`.
|
||
|
||
To experiment this, a single particle is initialized then passed an
|
||
initial measurement, which results in a relatively average weight.
|
||
However, setting the particle coordinate to a wrong value to simulate
|
||
wrong estimation will result in a very low weight. The lower the weight
|
||
the less likely that this particle will be drawn during resampling and
|
||
probably will die out.
|
||
|
||
.. code-block:: ipython3
|
||
|
||
# CODE SNIPPET #
|
||
def observation(xTrue, xd, u, RFID):
|
||
|
||
# calc true state
|
||
xTrue = motion_model(xTrue, u)
|
||
|
||
# add noise to range observation
|
||
z = np.zeros((3, 0))
|
||
for i in range(len(RFID[:, 0])):
|
||
|
||
dx = RFID[i, 0] - xTrue[0, 0]
|
||
dy = RFID[i, 1] - xTrue[1, 0]
|
||
d = math.sqrt(dx**2 + dy**2)
|
||
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
||
if d <= MAX_RANGE:
|
||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||
zi = np.array([dn, pi_2_pi(anglen), i]).reshape(3, 1)
|
||
z = np.hstack((z, zi))
|
||
|
||
# add noise to input
|
||
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
|
||
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1] + OFFSET_YAWRATE_NOISE
|
||
ud = np.array([ud1, ud2]).reshape(2, 1)
|
||
|
||
xd = motion_model(xd, ud)
|
||
|
||
return xTrue, z, xd, ud
|
||
|
||
def update_with_observation(particles, z):
|
||
for iz in range(len(z[0, :])):
|
||
|
||
lmid = int(z[2, iz])
|
||
|
||
for ip in range(N_PARTICLE):
|
||
# new landmark
|
||
if abs(particles[ip].lm[lmid, 0]) <= 0.01:
|
||
particles[ip] = add_new_lm(particles[ip], z[:, iz], Q)
|
||
# known landmark
|
||
else:
|
||
w = compute_weight(particles[ip], z[:, iz], Q)
|
||
particles[ip].w *= w
|
||
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
|
||
|
||
return particles
|
||
|
||
def compute_weight(particle, z, Q):
|
||
lm_id = int(z[2])
|
||
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
|
||
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
|
||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
|
||
dx = z[0:2].reshape(2, 1) - zp
|
||
dx[1, 0] = pi_2_pi(dx[1, 0])
|
||
|
||
try:
|
||
invS = np.linalg.inv(Sf)
|
||
except np.linalg.linalg.LinAlgError:
|
||
print("singuler")
|
||
return 1.0
|
||
|
||
num = math.exp(-0.5 * dx.T @ invS @ dx)
|
||
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
|
||
w = num / den
|
||
|
||
return w
|
||
|
||
def compute_jacobians(particle, xf, Pf, Q):
|
||
dx = xf[0, 0] - particle.x
|
||
dy = xf[1, 0] - particle.y
|
||
d2 = dx**2 + dy**2
|
||
d = math.sqrt(d2)
|
||
|
||
zp = np.array(
|
||
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
|
||
|
||
Hv = np.array([[-dx / d, -dy / d, 0.0],
|
||
[dy / d2, -dx / d2, -1.0]])
|
||
|
||
Hf = np.array([[dx / d, dy / d],
|
||
[-dy / d2, dx / d2]])
|
||
|
||
Sf = Hf @ Pf @ Hf.T + Q
|
||
|
||
return zp, Hv, Hf, Sf
|
||
|
||
def add_new_lm(particle, z, Q):
|
||
|
||
r = z[0]
|
||
b = z[1]
|
||
lm_id = int(z[2])
|
||
|
||
s = math.sin(pi_2_pi(particle.yaw + b))
|
||
c = math.cos(pi_2_pi(particle.yaw + b))
|
||
|
||
particle.lm[lm_id, 0] = particle.x + r * c
|
||
particle.lm[lm_id, 1] = particle.y + r * s
|
||
|
||
# covariance
|
||
Gz = np.array([[c, -r * s],
|
||
[s, r * c]])
|
||
|
||
particle.lmP[2 * lm_id:2 * lm_id + 2] = Gz @ Q @ Gz.T
|
||
|
||
return particle
|
||
|
||
def update_KF_with_cholesky(xf, Pf, v, Q, Hf):
|
||
PHt = Pf @ Hf.T
|
||
S = Hf @ PHt + Q
|
||
|
||
S = (S + S.T) * 0.5
|
||
SChol = np.linalg.cholesky(S).T
|
||
SCholInv = np.linalg.inv(SChol)
|
||
W1 = PHt @ SCholInv
|
||
W = W1 @ SCholInv.T
|
||
|
||
x = xf + W @ v
|
||
P = Pf - W1 @ W1.T
|
||
|
||
return x, P
|
||
|
||
def update_landmark(particle, z, Q):
|
||
|
||
lm_id = int(z[2])
|
||
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
|
||
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
|
||
|
||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
|
||
|
||
dz = z[0:2].reshape(2, 1) - zp
|
||
dz[1, 0] = pi_2_pi(dz[1, 0])
|
||
|
||
xf, Pf = update_KF_with_cholesky(xf, Pf, dz, Q, Hf)
|
||
|
||
particle.lm[lm_id, :] = xf.T
|
||
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
|
||
|
||
return particle
|
||
|
||
# END OF CODE SNIPPET #
|
||
|
||
|
||
|
||
# Setting up the landmarks
|
||
RFID = np.array([[10.0, -2.0],
|
||
[15.0, 10.0]])
|
||
N_LM = RFID.shape[0]
|
||
|
||
# Initialize 1 particle
|
||
N_PARTICLE = 1
|
||
particles = [Particle(N_LM) for i in range(N_PARTICLE)]
|
||
|
||
xTrue = np.zeros((STATE_SIZE, 1))
|
||
xDR = np.zeros((STATE_SIZE, 1))
|
||
|
||
print("initial weight", particles[0].w)
|
||
|
||
xTrue, z, _, ud = observation(xTrue, xDR, u, RFID)
|
||
# Initialize landmarks
|
||
particles = update_with_observation(particles, z)
|
||
print("weight after landmark intialization", particles[0].w)
|
||
particles = update_with_observation(particles, z)
|
||
print("weight after update ", particles[0].w)
|
||
|
||
particles[0].x = -10
|
||
particles = update_with_observation(particles, z)
|
||
print("weight after wrong prediction", particles[0].w)
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
initial weight 1.0
|
||
weight after landmark intialization 1.0
|
||
weight after update 0.023098460073039763
|
||
weight after wrong prediction 7.951154575772496e-07
|
||
|
||
|
||
3- Resampling
|
||
~~~~~~~~~~~~~
|
||
|
||
In the reseampling steps a new set of particles are chosen from the old
|
||
set. This is done according to the weight of each particle.
|
||
|
||
The figure shows 100 particles distributed uniformly between [-0.5, 0.5]
|
||
with the weights of each particle distributed according to a Gaussian
|
||
funciton.
|
||
|
||
The resampling picks
|
||
|
||
:math:`i \in 1,...,N` particles with probability to pick particle with
|
||
index :math:`i ∝ \omega_i`, where :math:`\omega_i` is the weight of that
|
||
particle
|
||
|
||
To get the intuition of the resampling step we will look at a set of
|
||
particles which are initialized with a given x location and weight.
|
||
After the resampling the particles are more concetrated in the location
|
||
where they had the highest weights. This is also indicated by the
|
||
indices
|
||
|
||
.. code-block:: ipython3
|
||
|
||
# CODE SNIPPET #
|
||
def normalize_weight(particles):
|
||
|
||
sumw = sum([p.w for p in particles])
|
||
|
||
try:
|
||
for i in range(N_PARTICLE):
|
||
particles[i].w /= sumw
|
||
except ZeroDivisionError:
|
||
for i in range(N_PARTICLE):
|
||
particles[i].w = 1.0 / N_PARTICLE
|
||
|
||
return particles
|
||
|
||
return particles
|
||
|
||
|
||
def resampling(particles):
|
||
"""
|
||
low variance re-sampling
|
||
"""
|
||
|
||
particles = normalize_weight(particles)
|
||
|
||
pw = []
|
||
for i in range(N_PARTICLE):
|
||
pw.append(particles[i].w)
|
||
|
||
pw = np.array(pw)
|
||
|
||
Neff = 1.0 / (pw @ pw.T) # Effective particle number
|
||
# print(Neff)
|
||
|
||
if Neff < NTH: # resampling
|
||
wcum = np.cumsum(pw)
|
||
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
|
||
resampleid = base + np.random.rand(base.shape[0]) / N_PARTICLE
|
||
|
||
inds = []
|
||
ind = 0
|
||
for ip in range(N_PARTICLE):
|
||
while ((ind < wcum.shape[0] - 1) and (resampleid[ip] > wcum[ind])):
|
||
ind += 1
|
||
inds.append(ind)
|
||
|
||
tparticles = particles[:]
|
||
for i in range(len(inds)):
|
||
particles[i].x = tparticles[inds[i]].x
|
||
particles[i].y = tparticles[inds[i]].y
|
||
particles[i].yaw = tparticles[inds[i]].yaw
|
||
particles[i].w = 1.0 / N_PARTICLE
|
||
|
||
return particles, inds
|
||
# END OF SNIPPET #
|
||
|
||
|
||
|
||
def gaussian(x, mu, sig):
|
||
return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
|
||
N_PARTICLE = 100
|
||
particles = [Particle(N_LM) for i in range(N_PARTICLE)]
|
||
x_pos = []
|
||
w = []
|
||
for i in range(N_PARTICLE):
|
||
particles[i].x = np.linspace(-0.5,0.5,N_PARTICLE)[i]
|
||
x_pos.append(particles[i].x)
|
||
particles[i].w = gaussian(i, N_PARTICLE/2, N_PARTICLE/20)
|
||
w.append(particles[i].w)
|
||
|
||
|
||
# Normalize weights
|
||
sw = sum(w)
|
||
for i in range(N_PARTICLE):
|
||
w[i] /= sw
|
||
|
||
particles, new_indices = resampling(particles)
|
||
x_pos2 = []
|
||
for i in range(N_PARTICLE):
|
||
x_pos2.append(particles[i].x)
|
||
|
||
# Plot results
|
||
fig, ((ax1,ax2,ax3)) = plt.subplots(nrows=3, ncols=1)
|
||
fig.tight_layout()
|
||
ax1.plot(x_pos,np.ones((N_PARTICLE,1)), '.r', markersize=2)
|
||
ax1.set_title("Particles before resampling")
|
||
ax1.axis((-1, 1, 0, 2))
|
||
ax2.plot(w)
|
||
ax2.set_title("Weights distribution")
|
||
ax3.plot(x_pos2,np.ones((N_PARTICLE,1)), '.r')
|
||
ax3.set_title("Particles after resampling")
|
||
ax3.axis((-1, 1, 0, 2))
|
||
fig.subplots_adjust(hspace=0.8)
|
||
plt.show()
|
||
|
||
plt.figure()
|
||
plt.hist(new_indices)
|
||
plt.xlabel("Particles indices to be resampled")
|
||
plt.ylabel("# of time index is used")
|
||
plt.show()
|
||
|
||
|
||
|
||
.. image:: FastSLAM1_files/FastSLAM1_12_0.png
|
||
|
||
|
||
|
||
.. image:: FastSLAM1_files/FastSLAM1_12_1.png
|
||
|
||
|
||
References
|
||
~~~~~~~~~~
|
||
|
||
http://www.probabilistic-robotics.org/
|
||
|
||
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam10-fastslam.pdf
|