Files
PythonRobotics/PathTracking/pure_pursuit/pure_pursuit.py
2017-06-09 22:31:38 -07:00

295 lines
7.4 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
u"""
Path tracking simulation with pure pursuit steering control and PID speed control.
author: Atsushi Sakai
"""
import numpy as np
import math
import matplotlib.pyplot as plt
import unicycle_model
Kp = 1.0 # speed propotional gain
Lf = 1.0 # look-ahead distance
def PIDControl(target, current):
a = Kp * (target - current)
return a
def pure_pursuit_control(state, cx, cy, pind):
ind = calc_target_index(state, cx, cy)
if pind >= ind:
ind = pind
tx = cx[ind]
ty = cy[ind]
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
if state.v < 0: # back
if alpha > 0:
alpha = math.pi - alpha
else:
alpha = math.pi + alpha
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
return delta, ind
def calc_target_index(state, cx, cy):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
L = 0.0
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind + 1] - cx[ind]
dy = cx[ind + 1] - cx[ind]
L += math.sqrt(dx ** 2 + dy ** 2)
ind += 1
return ind
def closed_loop_prediction(cx, cy, cyaw, speed_profile):
T = 100.0 # max simulation time
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_target_index(state, cx, cy)
# print(target_ind)
while T >= time and lastIndex > target_ind:
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
ai = PIDControl(speed_profile[target_ind], state.v)
state = unicycle_model.update(state, ai, di)
if abs(state.v) <= 0.05:
target_ind += 1
time = time + unicycle_model.dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
plt.cla()
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed:" + str(round(state.v, 2)) +
"tind:" + str(target_ind))
plt.pause(0.0001)
# input()
return t, x, y, yaw, v
def set_stop_point(target_speed, cx, cy, cyaw):
speed_profile = [target_speed] * len(cx)
forward = True
d = []
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
d.append(math.sqrt(dx ** 2.0 + dy ** 2.0))
iyaw = cyaw[i]
move_direction = math.atan2(dy, dx)
is_back = abs(move_direction - iyaw) >= math.pi / 2.0
if dx == 0.0 and dy == 0.0:
continue
if is_back:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
if is_back and forward:
speed_profile[i] = 0.0
forward = False
# plt.plot(cx[i], cy[i], "xb")
# print(iyaw, move_direction, dx, dy)
elif not is_back and not forward:
speed_profile[i] = 0.0
forward = True
# plt.plot(cx[i], cy[i], "xb")
# print(iyaw, move_direction, dx, dy)
speed_profile[0] = 0.0
speed_profile[-1] = 0.0
d.append(d[-1])
return speed_profile, d
def calc_speed_profile(cx, cy, cyaw, target_speed, a):
speed_profile, d = set_stop_point(target_speed, cx, cy, cyaw)
nsp = len(speed_profile)
# plt.plot(speed_profile, "xb")
# forward integration
for i in range(nsp - 1):
if speed_profile[i + 1] >= 0: # forward
tspeed = speed_profile[i] + a * d[i]
if tspeed <= speed_profile[i + 1]:
speed_profile[i + 1] = tspeed
else:
tspeed = speed_profile[i] - a * d[i]
if tspeed >= speed_profile[i + 1]:
speed_profile[i + 1] = tspeed
# plt.plot(speed_profile, "ok")
# back integration
for i in range(nsp - 1):
if speed_profile[- i - 1] >= 0: # forward
tspeed = speed_profile[-i] + a * d[-i]
if tspeed <= speed_profile[-i - 1]:
speed_profile[-i - 1] = tspeed
else:
tspeed = speed_profile[-i] - a * d[-i]
if tspeed >= speed_profile[-i - 1]:
speed_profile[-i - 1] = tspeed
# flg, ax = plt.subplots(1)
plt.plot(speed_profile, "-r")
# plt.plot(cx, cy, "-r")
plt.show()
return speed_profile
def main():
import pandas as pd
data = pd.read_csv("rrt_course.csv")
cx = np.array(data["x"])
cy = np.array(data["y"])
cyaw = np.array(data["yaw"])
target_speed = 10.0 / 3.6
a = 0.1
speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed, a)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, speed_profile)
flg, ax = plt.subplots(1)
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
flg, ax = plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
def main2():
# target course
import numpy as np
cx = np.arange(0, 50, 0.1)
cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]
target_speed = 10.0 / 3.6
T = 15.0 # max simulation time
# state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=math.radians(-40.0), v=-10.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=math.radians(40.0), v=50.0 / 3.6)
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_target_index(state, cx, cy)
while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
state = unicycle_model.update(state, ai, di)
time = time + unicycle_model.dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
# plt.cla()
# plt.plot(cx, cy, ".r", label="course")
# plt.plot(x, y, "-b", label="trajectory")
# plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
# plt.axis("equal")
# plt.grid(True)
# plt.pause(0.1)
# input()
flg, ax = plt.subplots(1)
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
flg, ax = plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
if __name__ == '__main__':
print("Pure pursuit path tracking simulation start")
main()