Files
PythonRobotics/scripts/optimization/QuasiNewtonMethod/QuasiNewtonMethod.py
2016-05-03 21:04:44 +09:00

90 lines
1.7 KiB
Python

#!/usr/bin/python
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random
import math
delta = 0.1
minXY=-5.0
maxXY=5.0
nContour=50
alpha=0.001
def Jacob(state):
u"""
jacobi matrix of Himmelblau's function
"""
x=state[0,0]
y=state[0,1]
dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14
dy=2*x**2+4*x*y+4*y**3-26*y-22
J=np.matrix([dx,dy]).T
return J
def HimmelblauFunction(x,y):
u"""
Himmelblau's function
see Himmelblau's function - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Himmelblau%27s_function
"""
return (x**2+y-11)**2+(x+y**2-7)**2
def CreateMeshData():
x = np.arange(minXY, maxXY, delta)
y = np.arange(minXY, maxXY, delta)
X, Y = np.meshgrid(x, y)
Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)]
return(X,Y,Z)
def QuasiNewtonMethod(start,Jacob):
u"""
Quasi Newton Method Optimization
"""
result=start
x=start
H= np.identity(2)
preJ=None
preG=None
while 1:
J=Jacob(x)
sumJ=abs(np.sum(J))
if sumJ<=0.01:
print("OK")
break
grad=-np.linalg.inv(H)*J
x+=alpha*grad.T
result=np.vstack((result,np.array(x)))
if preJ is not None:
y=J-preJ
H=H+(y*y.T)/(y.T*preG)-(H*preG*preG.T*H)/(preG.T*H*preG)
preJ=J
preG=(alpha*grad.T).T
return result
# Main
start=np.matrix([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)])
result=QuasiNewtonMethod(start,Jacob)
(X,Y,Z)=CreateMeshData()
CS = plt.contour(X, Y, Z,nContour)
plt.plot(start[0,0],start[0,1],"xr");
optX=result[:,0]
optY=result[:,1]
plt.plot(optX,optY,"-r");
plt.show()