Files
PythonRobotics/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
Atsushi Sakai 5fc098d693 fix test
2017-12-23 16:37:38 -08:00

319 lines
7.3 KiB
Python

"""
Probablistic Road Map (PRM) Planner
author: Atsushi Sakai (@Atsushi_twi)
"""
import random
import math
import numpy as np
import scipy.spatial
import matplotlib.pyplot as plt
# parameter
N_SAMPLE = 500 # number of sample_points
N_KNN = 10 # number of edge from one sampled point
MAX_EDGE_LEN = 30.0 # [m] Maximum edge length
show_animation = True
class Node:
"""
Node class for dijkstra search
"""
def __init__(self, x, y, cost, pind):
self.x = x
self.y = y
self.cost = cost
self.pind = pind
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)
class KDTree:
"""
Nearest neighbor search class with KDTree
"""
def __init__(self, data):
# store kd-tree
self.tree = scipy.spatial.cKDTree(data)
def search(self, inp, k=1):
u"""
Search NN
inp: input data, single frame or multi frame
"""
if len(inp.shape) >= 2: # multi input
index = []
dist = []
for i in inp.T:
idist, iindex = self.tree.query(i, k=k)
index.append(iindex)
dist.append(idist)
return index, dist
else:
dist, index = self.tree.query(inp, k=k)
return index, dist
def search_in_distance(self, inp, r):
u"""
find points with in a distance r
"""
index = self.tree.query_ball_point(inp, r)
return index
def PRM_planning(sx, sy, gx, gy, ox, oy, rr):
obkdtree = KDTree(np.vstack((ox, oy)).T)
sample_x, sample_y = sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree)
if show_animation:
plt.plot(sample_x, sample_y, ".b")
road_map = generate_roadmap(sample_x, sample_y, rr, obkdtree)
rx, ry = dijkstra_planning(
sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y)
return rx, ry
def is_collision(sx, sy, gx, gy, rr, okdtree):
x = sx
y = sy
dx = gx - sx
dy = gy - sy
yaw = math.atan2(gy - sy, gx - sx)
d = math.sqrt(dx**2 + dy**2)
if d >= MAX_EDGE_LEN:
return True
D = rr
nstep = round(d / D)
for i in range(nstep):
idxs, dist = okdtree.search(np.matrix([x, y]).T)
if dist[0] <= rr:
return True # collision
x += D * math.cos(yaw)
y += D * math.sin(yaw)
# goal point check
idxs, dist = okdtree.search(np.matrix([gx, gy]).T)
if dist[0] <= rr:
return True # collision
return False # OK
def generate_roadmap(sample_x, sample_y, rr, obkdtree):
"""
Road map generation
sample_x: [m] x positions of sampled points
sample_y: [m] y positions of sampled points
rr: Robot Radius[m]
obkdtree: KDTree object of obstacles
"""
road_map = []
nsample = len(sample_x)
skdtree = KDTree(np.vstack((sample_x, sample_y)).T)
for (i, ix, iy) in zip(range(nsample), sample_x, sample_y):
index, dists = skdtree.search(
np.matrix([ix, iy]).T, k=nsample)
inds = index[0][0]
edge_id = []
# print(index)
for ii in range(1, len(inds)):
nx = sample_x[inds[ii]]
ny = sample_y[inds[ii]]
if not is_collision(ix, iy, nx, ny, rr, obkdtree):
edge_id.append(inds[ii])
if len(edge_id) >= N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
def dijkstra_planning(sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y):
"""
gx: goal x position [m]
gx: goal x position [m]
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
reso: grid resolution [m]
rr: robot radius[m]
"""
nstart = Node(sx, sy, 0.0, -1)
ngoal = Node(gx, gy, 0.0, -1)
openset, closedset = dict(), dict()
openset[len(road_map) - 2] = nstart
while True:
if len(openset) == 0:
print("Cannot find path")
break
c_id = min(openset, key=lambda o: openset[o].cost)
current = openset[c_id]
# show graph
if show_animation and len(closedset.keys()) % 2 == 0:
plt.plot(current.x, current.y, "xg")
plt.pause(0.001)
if c_id == (len(road_map) - 1):
print("goal is found!")
ngoal.pind = current.pind
ngoal.cost = current.cost
break
# Remove the item from the open set
del openset[c_id]
# Add it to the closed set
closedset[c_id] = current
# expand search grid based on motion model
for i in range(len(road_map[c_id])):
n_id = road_map[c_id][i]
dx = sample_x[n_id] - current.x
dy = sample_y[n_id] - current.y
d = math.sqrt(dx**2 + dy**2)
node = Node(sample_x[n_id], sample_y[n_id],
current.cost + d, c_id)
if n_id in closedset:
continue
# Otherwise if it is already in the open set
if n_id in openset:
if openset[n_id].cost > node.cost:
openset[n_id].cost = node.cost
openset[n_id].pind = c_id
else:
openset[n_id] = node
# generate final course
rx, ry = [ngoal.x], [ngoal.y]
pind = ngoal.pind
while pind != -1:
n = closedset[pind]
rx.append(n.x)
ry.append(n.y)
pind = n.pind
return rx, ry
def plot_road_map(road_map, sample_x, sample_y):
for i in range(len(road_map)):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
def sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree):
maxx = max(ox)
maxy = max(oy)
minx = min(ox)
miny = min(oy)
sample_x, sample_y = [], []
while len(sample_x) <= N_SAMPLE:
tx = (random.random() - minx) * (maxx - minx)
ty = (random.random() - miny) * (maxy - miny)
index, dist = obkdtree.search(np.matrix([tx, ty]).T)
if dist[0] >= rr:
sample_x.append(tx)
sample_y.append(ty)
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "^r")
plt.plot(gx, gy, "^c")
plt.grid(True)
plt.axis("equal")
rx, ry = PRM_planning(sx, sy, gx, gy, ox, oy, robot_size)
assert len(rx) != 0, 'Cannot found path'
if show_animation:
plt.plot(rx, ry, "-r")
plt.show()
if __name__ == '__main__':
main()