Files
PythonRobotics/PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py
Jonathan Schwartz aa61a6ea57 Safe Interval Path Planner (#1184)
* it works and is WAY faster than a*

* some bug fixes from testing different scenarios

* add some docs & address todos

* add sipp test

* spiff up comments

revert changes in speed-up

* explain what the removal is doing

* linting

* fix docs build

* docs formatting

* revert change to file (maybe linter did it?)

* point at gifs in gifs repo

* use raw githubusercontent gif links

* change formatting on planner results

* format output differently

* proper formatting final

* missing underline

* revert unintended change

* grammar + add descriptions for gifs

* missing ::

* add title to gifs section

* dont use sections for sub-sections

* constent a* spelling

* Update PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/test_safe_interval_path_planner.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update docs/modules/5_path_planning/time_based_grid_search/time_based_grid_search_main.rst

Co-authored-by: Atsushi Sakai <asakai.amsl+github@gmail.com>

* Update PathPlanning/TimeBasedPathPlanning/SafeInterval.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* addressing comments

* revert np.full change

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Atsushi Sakai <asakai.amsl+github@gmail.com>
2025-03-17 22:01:07 +09:00

332 lines
12 KiB
Python

"""
This file implements a grid with a 3d reservation matrix with dimensions for x, y, and time. There
is also infrastructure to generate dynamic obstacles that move around the grid. The obstacles' paths
are stored in the reservation matrix on creation.
"""
import numpy as np
import matplotlib.pyplot as plt
from enum import Enum
from dataclasses import dataclass
@dataclass(order=True)
class Position:
x: int
y: int
def as_ndarray(self) -> np.ndarray:
return np.array([self.x, self.y])
def __add__(self, other):
if isinstance(other, Position):
return Position(self.x + other.x, self.y + other.y)
raise NotImplementedError(
f"Addition not supported for Position and {type(other)}"
)
def __sub__(self, other):
if isinstance(other, Position):
return Position(self.x - other.x, self.y - other.y)
raise NotImplementedError(
f"Subtraction not supported for Position and {type(other)}"
)
def __hash__(self):
return hash((self.x, self.y))
@dataclass
class Interval:
start_time: int
end_time: int
class ObstacleArrangement(Enum):
# Random obstacle positions and movements
RANDOM = 0
# Obstacles start in a line in y at center of grid and move side-to-side in x
ARRANGEMENT1 = 1
"""
Generates a 2d numpy array with lists for elements.
"""
def empty_2d_array_of_lists(x: int, y: int) -> np.ndarray:
arr = np.empty((x, y), dtype=object)
# assign each element individually - np.full creates references to the same list
arr[:] = [[[] for _ in range(y)] for _ in range(x)]
return arr
class Grid:
# Set in constructor
grid_size: np.ndarray
reservation_matrix: np.ndarray
obstacle_paths: list[list[Position]] = []
# Obstacles will never occupy these points. Useful to avoid impossible scenarios
obstacle_avoid_points: list[Position] = []
# Number of time steps in the simulation
time_limit: int
# Logging control
verbose = False
def __init__(
self,
grid_size: np.ndarray,
num_obstacles: int = 40,
obstacle_avoid_points: list[Position] = [],
obstacle_arrangement: ObstacleArrangement = ObstacleArrangement.RANDOM,
time_limit: int = 100,
):
self.obstacle_avoid_points = obstacle_avoid_points
self.time_limit = time_limit
self.grid_size = grid_size
self.reservation_matrix = np.zeros((grid_size[0], grid_size[1], self.time_limit))
if num_obstacles > self.grid_size[0] * self.grid_size[1]:
raise Exception("Number of obstacles is greater than grid size!")
if obstacle_arrangement == ObstacleArrangement.RANDOM:
self.obstacle_paths = self.generate_dynamic_obstacles(num_obstacles)
elif obstacle_arrangement == ObstacleArrangement.ARRANGEMENT1:
self.obstacle_paths = self.obstacle_arrangement_1(num_obstacles)
for i, path in enumerate(self.obstacle_paths):
obs_idx = i + 1 # avoid using 0 - that indicates free space in the grid
for t, position in enumerate(path):
# Reserve old & new position at this time step
if t > 0:
self.reservation_matrix[path[t - 1].x, path[t - 1].y, t] = obs_idx
self.reservation_matrix[position.x, position.y, t] = obs_idx
"""
Generate dynamic obstacles that move around the grid. Initial positions and movements are random
"""
def generate_dynamic_obstacles(self, obs_count: int) -> list[list[Position]]:
obstacle_paths = []
for _ in range(0, obs_count):
# Sample until a free starting space is found
initial_position = self.sample_random_position()
while not self.valid_obstacle_position(initial_position, 0):
initial_position = self.sample_random_position()
positions = [initial_position]
if self.verbose:
print("Obstacle initial position: ", initial_position)
# Encourage obstacles to mostly stay in place - too much movement leads to chaotic planning scenarios
# that are not fun to watch
weights = [0.05, 0.05, 0.05, 0.05, 0.8]
diffs = [
Position(0, 1),
Position(0, -1),
Position(1, 0),
Position(-1, 0),
Position(0, 0),
]
for t in range(1, self.time_limit - 1):
sampled_indices = np.random.choice(
len(diffs), size=5, replace=False, p=weights
)
rand_diffs = [diffs[i] for i in sampled_indices]
valid_position = None
for diff in rand_diffs:
new_position = positions[-1] + diff
if not self.valid_obstacle_position(new_position, t):
continue
valid_position = new_position
break
# Impossible situation for obstacle - stay in place
# -> this can happen if the oaths of other obstacles this one
if valid_position is None:
valid_position = positions[-1]
positions.append(valid_position)
obstacle_paths.append(positions)
return obstacle_paths
"""
Generate a line of obstacles in y at the center of the grid that move side-to-side in x
Bottom half start moving right, top half start moving left. If `obs_count` is less than the length of
the grid, only the first `obs_count` obstacles will be generated.
"""
def obstacle_arrangement_1(self, obs_count: int) -> list[list[Position]]:
obstacle_paths = []
half_grid_x = self.grid_size[0] // 2
half_grid_y = self.grid_size[1] // 2
for y_idx in range(0, min(obs_count, self.grid_size[1])):
moving_right = y_idx < half_grid_y
position = Position(half_grid_x, y_idx)
path = [position]
for t in range(1, self.time_limit - 1):
# sit in place every other time step
if t % 2 == 0:
path.append(position)
continue
# first check if we should switch direction (at edge of grid)
if (moving_right and position.x == self.grid_size[0] - 1) or (
not moving_right and position.x == 0
):
moving_right = not moving_right
# step in direction
position = Position(
position.x + (1 if moving_right else -1), position.y
)
path.append(position)
obstacle_paths.append(path)
return obstacle_paths
"""
Check if the given position is valid at time t
input:
position (Position): (x, y) position
t (int): time step
output:
bool: True if position/time combination is valid, False otherwise
"""
def valid_position(self, position: Position, t: int) -> bool:
# Check if new position is in grid
if not self.inside_grid_bounds(position):
return False
# Check if new position is not occupied at time t
return self.reservation_matrix[position.x, position.y, t] == 0
"""
Returns True if the given position is valid at time t and is not in the set of obstacle_avoid_points
"""
def valid_obstacle_position(self, position: Position, t: int) -> bool:
return (
self.valid_position(position, t)
and position not in self.obstacle_avoid_points
)
"""
Returns True if the given position is within the grid's boundaries
"""
def inside_grid_bounds(self, position: Position) -> bool:
return (
position.x >= 0
and position.x < self.grid_size[0]
and position.y >= 0
and position.y < self.grid_size[1]
)
"""
Sample a random position that is within the grid's boundaries
output:
Position: (x, y) position
"""
def sample_random_position(self) -> Position:
return Position(
np.random.randint(0, self.grid_size[0]),
np.random.randint(0, self.grid_size[1]),
)
"""
Returns a tuple of (x_positions, y_positions) of the obstacles at time t
"""
def get_obstacle_positions_at_time(self, t: int) -> tuple[list[int], list[int]]:
x_positions = []
y_positions = []
for obs_path in self.obstacle_paths:
x_positions.append(obs_path[t].x)
y_positions.append(obs_path[t].y)
return (x_positions, y_positions)
"""
Returns safe intervals for each cell.
"""
def get_safe_intervals(self) -> np.ndarray:
intervals = empty_2d_array_of_lists(self.grid_size[0], self.grid_size[1])
for x in range(intervals.shape[0]):
for y in range(intervals.shape[1]):
intervals[x, y] = self.get_safe_intervals_at_cell(Position(x, y))
return intervals
"""
Generate the safe intervals for a given cell. The intervals will be in order of start time.
ex: Interval (2, 3) will be before Interval (4, 5)
"""
def get_safe_intervals_at_cell(self, cell: Position) -> list[Interval]:
vals = self.reservation_matrix[cell.x, cell.y, :]
# Find where the array is zero
zero_mask = (vals == 0)
# Identify transitions between zero and nonzero elements
diff = np.diff(zero_mask.astype(int))
# Start indices: where zeros begin (1 after a nonzero)
start_indices = np.where(diff == 1)[0] + 1
# End indices: where zeros stop (just before a nonzero)
end_indices = np.where(diff == -1)[0]
# Handle edge cases if the array starts or ends with zeros
if zero_mask[0]: # If the first element is zero, add index 0 to start_indices
start_indices = np.insert(start_indices, 0, 0)
if zero_mask[-1]: # If the last element is zero, add the last index to end_indices
end_indices = np.append(end_indices, len(vals) - 1)
# Create pairs of (first zero, last zero)
intervals = [Interval(int(start), int(end)) for start, end in zip(start_indices, end_indices)]
# Remove intervals where a cell is only free for one time step. Those intervals not provide enough time to
# move into and out of the cell each take 1 time step, and the cell is considered occupied during
# both the time step when it is entering the cell, and the time step when it is leaving the cell.
intervals = [interval for interval in intervals if interval.start_time != interval.end_time]
return intervals
show_animation = True
def main():
grid = Grid(
np.array([11, 11]),
num_obstacles=10,
obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1,
)
if not show_animation:
return
fig = plt.figure(figsize=(8, 7))
ax = fig.add_subplot(
autoscale_on=False,
xlim=(0, grid.grid_size[0] - 1),
ylim=(0, grid.grid_size[1] - 1),
)
ax.set_aspect("equal")
ax.grid()
ax.set_xticks(np.arange(0, 11, 1))
ax.set_yticks(np.arange(0, 11, 1))
(obs_points,) = ax.plot([], [], "ro", ms=15)
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
"key_release_event", lambda event: [exit(0) if event.key == "escape" else None]
)
for i in range(0, grid.time_limit - 1):
obs_positions = grid.get_obstacle_positions_at_time(i)
obs_points.set_data(obs_positions[0], obs_positions[1])
plt.pause(0.2)
plt.show()
if __name__ == "__main__":
main()