Files
PythonRobotics/README.md
Atsushi Sakai 7f97ede4a2 gif is added
2017-12-16 15:48:15 -08:00

268 lines
12 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<img src="https://github.com/AtsushiSakai/PythonRobotics/blob/master/icon.png?raw=true" align="right" width="300"/>
# PythonRobotics
[![Build Status](https://travis-ci.org/AtsushiSakai/PythonRobotics.svg?branch=master)](https://travis-ci.org/AtsushiSakai/PythonRobotics)
Python sample codes for robotics algorithm.
# Table of Contents
* [Requirements](#requirements)
* [Path Planning](#path-planning)
* [Grid based search](#grid-based-search)
* [Dijkstra algorithm](#dijkstra-algorithm)
* [A* algorithm](#a-algorithm)
* [Model Predictive Trajectory Generator](#model-predictive-trajectory-generator)
* [Path optimization sample](#path-optimization-sample)
* [Lookup table generation sample](#lookup-table-generation-sample)
* [State Lattice Planning](#state-lattice-planning)
* [Uniform polar sampling](#uniform-polar-sampling)
* [Biased polar sampling](#biased-polar-sampling)
* [Lane sampling](#lane-sampling)
* [Rapidly-Exploring Random Trees (RRT)](#rapidly-exploring-random-trees-rrt)
* [Basic RRT](#basic-rrt)
* [RRT*](#rrt)
* [RRT with dubins path](#rrt-with-dubins-path)
* [RRT* with dubins path](#rrt-with-dubins-path-1)
* [RRT* with reeds-sheep path](#rrt-with-reeds-sheep-path)
* [Closed Loop RRT*](#closed-loop-rrt)
* [Cubic spline planning](#cubic-spline-planning)
* [Dubins path planning](#dubins-path-planning)
* [Reeds Shepp planning](#reeds-shepp-planning)
* [Mix Integer Optimization based model predictive planning and control](#mix-integer-optimization-based-model-predictive-planning-and-control)
* [Path tracking](#path-tracking)
* [Pure pursuit tracking](#pure-pursuit-tracking)
* [Rear wheel feedback control](#rear-wheel-feedback-control)
* [Linearquadratic regulator (LQR) control](#linearquadratic-regulator-lqr-control)
* [License](#license)
* [Author](#author)
# Requirements
- Python 3.6.x
- numpy
- scipy
- matplotlib
- [pyReedsShepp](https://github.com/ghliu/pyReedsShepp) (Only for reeds sheep path and RRTStarCar_reeds_sheep)
- [cvxpy](https://cvxgrp.github.io/cvxpy/index.html) (Only for mix integer optimization based model predictive planning and control)
# Path Planning
Path planning algorithm.
## Dynamic Window Approach
This is a 2D navigation sample code with Dynamic Window Approach.
![2](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/DynamicWindowApproach/animation.gif)
## Grid based search
### Dijkstra algorithm
This is a 2D grid based shortest path planning with Dijkstra's algorithm.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/Dijkstra/animation.gif)
In the animation, cyan points are searched nodes.
### A\* algorithm
This is a 2D grid based shortest path planning with A star algorithm.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/AStar/animation.gif)
In the animation, cyan points are searched nodes.
It's heuristic is 2D Euclid distance.
## Model Predictive Trajectory Generator
This script is a path planning code with model predictive trajectory generator.
### Path optimization sample
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ModelPredictiveTrajectoryGenerator/kn05animation.gif)
### Lookup table generation sample
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable.png?raw=True)
see:
- [Optimal rough terrain trajectory generation for wheeled mobile robots](http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328)
 
## State Lattice Planning
This script is a path planning code with state lattice planning.
This code uses the model predictive trajectory generator to solve boundary problem.
### Uniform polar sampling
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_1.png)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_2.png)
### Biased polar sampling
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_3.png)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_4.png)
### Lane sampling
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_5.png)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_6.png)
## Rapidly-Exploring Random Trees (RRT)
### Basic RRT
Rapidly Randamized Tree Path planning sample.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRT/animation.gif)
This script is a simple path planning code with Rapidly-Exploring Random Trees (RRT)
### RRT\*
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTstar/animation.gif)
This script is a path planning code with RRT \*
- [Incremental Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/abs/1005.0416)
### RRT with dubins path
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTCar/animation.gif)
Path planning for a car robot with RRT and dubins path planner.
### RRT\* with dubins path
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTStarCar/animation.gif)
Path planning for a car robot with RRT\* and dubins path planner.
### RRT\* with reeds-sheep path
![Robotics/animation.gif at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTStarCar_reeds_sheep/animation.gif))
Path planning for a car robot with RRT\* and reeds sheep path planner.
### Closed Loop RRT\*
A sample code with closed loop RRT\*.
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CRRRTStar/Figure_1.png?raw=True)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CRRRTStar/Figure_4.png?raw=True)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CRRRTStar/Figure_5.png?raw=True)
see:
- [Motion Planning in Complex Environments
using Closed-loop Prediction](http://acl.mit.edu/papers/KuwataGNC08.pdf)
- [Real-time Motion Planning with Applications to
Autonomous Urban Driving](http://acl.mit.edu/papers/KuwataTCST09.pdf)
- [[1601.06326] Sampling-based Algorithms for Optimal Motion Planning Using Closed-loop Prediction](https://arxiv.org/abs/1601.06326)
## Cubic spline planning
A sample code for cubic path planning.
This code generates a curvature continious path based on x-y waypoints with cubic spline.
Heading angle of each point can be also calculated analytically.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CubicSpline/Figure_1.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CubicSpline/Figure_2.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/CubicSpline/Figure_3.png?raw=True)
## Dubins path planning
A sample code for Dubins path planning.
[Dubins path - Wikipedia](https://en.wikipedia.org/wiki/Dubins_path)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/DubinsPath/figures/figure_1.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/DubinsPath/figures/figure_13.png?raw=True)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/DubinsPath/figures/figure_15.png?raw=True)
## Reeds Shepp planning
A sample code with Reeds Shepp path planning.
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ReedsSheppPath/figure_1-4.png?raw=true)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ReedsSheppPath/figure_1-5.png?raw=true)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ReedsSheppPath/figure_1-7.png?raw=true)
## Mix Integer Optimization based model predictive planning and control
![2](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/MixIntegerPathPlanning/animation.gif)
A model predictive planning and control code with mixed integer programming.
It is based on this paper.
- [MIXED INTEGER PROGRAMMING FOR MULTI-VEHICLE PATH PLANNING](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.2591&rep=rep1&type=pdf)
This code used cvxpy as optimization modeling tool,
- [Welcome to CVXPY 1\.0 — CVXPY 1\.0\.0 documentation](https://cvxgrp.github.io/cvxpy/index.html)
and Gurobi is used as a solver for mix integer optimization problem.
- [Gurobi Optimization \- The State\-of\-the\-Art Mathematical Programming Solver](http://www.gurobi.com/)
# Path tracking
Path tracking algorithm samples.
## Pure pursuit tracking
Path tracking simulation with pure pursuit steering control and PID speed control.
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/pure_pursuit/Figure_1-3.png?raw=True)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/pure_pursuit/2Figure_1-2.png?raw=True)
![PythonRobotics/figure_1-5.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/pure_pursuit/4Figure_1-2.png?raw=True)
## Rear wheel feedback control
Path tracking simulation with rear wheel feedback steering control and PID speed control.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/rear_wheel_feedback/animation.gif)
## Linearquadratic regulator (LQR) control
Path tracking simulation with LQR steering control and PID speed control.
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/lqr/animation.gif)
# License
MIT
# Author
Atsushi Sakai ([@Atsushi_twi](https://twitter.com/Atsushi_twi))