Files
PythonRobotics/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
2018-01-10 22:55:52 -08:00

210 lines
4.6 KiB
Python

"""
Frenet optimal trajectory generator
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import matplotlib.pyplot as plt
import copy
class quinic_polynomial:
def __init__(self, xs, vxs, axs, xe, vxe, axe, T):
# calc coefficient of quinic polynomial
self.xs = xs
self.vxs = vxs
self.axs = axs
self.xe = xe
self.vxe = vxe
self.axe = axe
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[T**3, T**4, T**5],
[3 * T ** 2, 4 * T ** 3, 5 * T ** 4],
[6 * T, 12 * T ** 2, 20 * T ** 3]])
b = np.array([xe - self.a0 - self.a1 * T - self.a2 * T**2,
vxe - self.a1 - 2 * self.a2 * T,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
self.a5 = x[2]
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t**2 + \
self.a3 * t**3 + self.a4 * t**4 + self.a5 * t**5
return xt
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t**2 + 4 * self.a4 * t**3 + 5 * self.a5 * t**4
return xt
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t**2 + 20 * self.a5 * t**3
return xt
class quartic_polynomial:
def __init__(self, xs, vxs, axs, vxe, axe, T):
# calc coefficient of quinic polynomial
self.xs = xs
self.vxs = vxs
self.axs = axs
self.vxe = vxe
self.axe = axe
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[3 * T ** 2, 4 * T ** 3],
[6 * T, 12 * T ** 2]])
b = np.array([vxe - self.a1 - 2 * self.a2 * T,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t**2 + \
self.a3 * t**3 + self.a4 * t**4
return xt
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t**2 + 4 * self.a4 * t**3
return xt
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t**2
return xt
class Frenet_path:
def __init__(self):
self.t = []
self.d = []
self.d_d = []
self.d_dd = []
self.s = []
self.s_d = []
self.s_dd = []
self.x = []
self.y = []
self.yaw = []
self.c = []
max_speed = 50.0 / 3.6
max_accel = 2.0
max_curvature = 1.0
maxd = 5.0
dd = 1.0
dt = 1.0
T = 10.0
target_speed = 30.0 / 3.6
dv = 5.0 / 3.6
nv = 2
def calc_frenet_paths(c_speed, c_d):
frenet_paths = []
for di in np.arange(-maxd, maxd, dd):
for Ti in np.arange(dt, T, dt):
fp = Frenet_path()
lat_qp = quinic_polynomial(c_d, 0.0, 0.0, di, 0.0, 0.0, Ti)
for t in np.arange(0.0, Ti, 0.1):
fp.t.append(t)
fp.d.append(lat_qp.calc_point(t))
fp.d_d.append(lat_qp.calc_first_derivative(t))
fp.d_dd.append(lat_qp.calc_second_derivative(t))
for tv in np.arange(target_speed - dv * nv, target_speed + dv * nv, dv):
tfp = copy.deepcopy(fp)
lon_qp = quartic_polynomial(
0.0, c_speed, 0.0, tv, 0.0, Ti)
for t in fp.t:
tfp.s.append(lon_qp.calc_point(t))
tfp.s_d.append(lon_qp.calc_first_derivative(t))
tfp.s_dd.append(lon_qp.calc_second_derivative(t))
frenet_paths.append(tfp)
return frenet_paths
def calc_global_paths(fplist):
for fp in fplist:
fp.x = fp.s
fp.y = fp.d
return fplist
def check_paths(fplist):
okind = []
for i in range(len(fplist)):
# speed check
if any([v > max_speed for v in fplist[i].s_d]):
continue
elif any([abs(a) > max_accel for a in fplist[i].s_dd]):
continue
okind.append(i)
return [fplist[i] for i in okind]
def frenet_optimal_planning():
c_speed = 0.0
c_d = 1.0
fplist = calc_frenet_paths(c_speed, c_d)
fplist = calc_global_paths(fplist)
fplist = check_paths(fplist)
for fp in fplist:
plt.plot(fp.x, fp.y)
def main():
print(__file__ + " start!!")
frenet_optimal_planning()
plt.axis("equal")
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()