mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 07:18:01 -05:00
270 lines
7.5 KiB
Python
270 lines
7.5 KiB
Python
"""
|
|
Path Planning Sample Code with RRT*
|
|
|
|
author: AtsushiSakai(@Atsushi_twi)
|
|
|
|
"""
|
|
|
|
import random
|
|
import math
|
|
import copy
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
show_animation = True
|
|
|
|
|
|
class RRT():
|
|
"""
|
|
Class for RRT Planning
|
|
"""
|
|
|
|
def __init__(self, start, goal, obstacleList, randArea,
|
|
expandDis=0.5, goalSampleRate=20, maxIter=1000):
|
|
"""
|
|
Setting Parameter
|
|
|
|
start:Start Position [x,y]
|
|
goal:Goal Position [x,y]
|
|
obstacleList:obstacle Positions [[x,y,size],...]
|
|
randArea:Ramdom Samping Area [min,max]
|
|
|
|
"""
|
|
self.start = Node(start[0], start[1])
|
|
self.end = Node(goal[0], goal[1])
|
|
self.minrand = randArea[0]
|
|
self.maxrand = randArea[1]
|
|
self.expandDis = expandDis
|
|
self.goalSampleRate = goalSampleRate
|
|
self.maxIter = maxIter
|
|
self.obstacleList = obstacleList
|
|
|
|
def Planning(self, animation=True):
|
|
"""
|
|
Pathplanning
|
|
|
|
animation: flag for animation on or off
|
|
"""
|
|
|
|
self.nodeList = [self.start]
|
|
for i in range(self.maxIter):
|
|
rnd = self.get_random_point()
|
|
nind = self.GetNearestListIndex(self.nodeList, rnd)
|
|
|
|
newNode = self.steer(rnd, nind)
|
|
# print(newNode.cost)
|
|
|
|
if self.__CollisionCheck(newNode, self.obstacleList):
|
|
nearinds = self.find_near_nodes(newNode)
|
|
newNode = self.choose_parent(newNode, nearinds)
|
|
self.nodeList.append(newNode)
|
|
self.rewire(newNode, nearinds)
|
|
|
|
if animation:
|
|
self.DrawGraph(rnd)
|
|
|
|
# generate coruse
|
|
lastIndex = self.get_best_last_index()
|
|
if lastIndex is None:
|
|
return None
|
|
path = self.gen_final_course(lastIndex)
|
|
return path
|
|
|
|
def choose_parent(self, newNode, nearinds):
|
|
if len(nearinds) == 0:
|
|
return newNode
|
|
|
|
dlist = []
|
|
for i in nearinds:
|
|
dx = newNode.x - self.nodeList[i].x
|
|
dy = newNode.y - self.nodeList[i].y
|
|
d = math.sqrt(dx ** 2 + dy ** 2)
|
|
theta = math.atan2(dy, dx)
|
|
if self.check_collision_extend(self.nodeList[i], theta, d):
|
|
dlist.append(self.nodeList[i].cost + d)
|
|
else:
|
|
dlist.append(float("inf"))
|
|
|
|
mincost = min(dlist)
|
|
minind = nearinds[dlist.index(mincost)]
|
|
|
|
if mincost == float("inf"):
|
|
print("mincost is inf")
|
|
return newNode
|
|
|
|
newNode.cost = mincost
|
|
newNode.parent = minind
|
|
|
|
return newNode
|
|
|
|
def steer(self, rnd, nind):
|
|
|
|
# expand tree
|
|
nearestNode = self.nodeList[nind]
|
|
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
|
|
newNode = copy.deepcopy(nearestNode)
|
|
newNode.x += self.expandDis * math.cos(theta)
|
|
newNode.y += self.expandDis * math.sin(theta)
|
|
|
|
newNode.cost += self.expandDis
|
|
newNode.parent = nind
|
|
return newNode
|
|
|
|
def get_random_point(self):
|
|
|
|
if random.randint(0, 100) > self.goalSampleRate:
|
|
rnd = [random.uniform(self.minrand, self.maxrand),
|
|
random.uniform(self.minrand, self.maxrand)]
|
|
else: # goal point sampling
|
|
rnd = [self.end.x, self.end.y]
|
|
|
|
return rnd
|
|
|
|
def get_best_last_index(self):
|
|
|
|
disglist = [self.calc_dist_to_goal(
|
|
node.x, node.y) for node in self.nodeList]
|
|
goalinds = [disglist.index(i) for i in disglist if i <= self.expandDis]
|
|
# print(goalinds)
|
|
|
|
if len(goalinds) == 0:
|
|
return None
|
|
|
|
mincost = min([self.nodeList[i].cost for i in goalinds])
|
|
for i in goalinds:
|
|
if self.nodeList[i].cost == mincost:
|
|
return i
|
|
|
|
return None
|
|
|
|
def gen_final_course(self, goalind):
|
|
path = [[self.end.x, self.end.y]]
|
|
while self.nodeList[goalind].parent is not None:
|
|
node = self.nodeList[goalind]
|
|
path.append([node.x, node.y])
|
|
goalind = node.parent
|
|
path.append([self.start.x, self.start.y])
|
|
return path
|
|
|
|
def calc_dist_to_goal(self, x, y):
|
|
return np.linalg.norm([x - self.end.x, y - self.end.y])
|
|
|
|
def find_near_nodes(self, newNode):
|
|
nnode = len(self.nodeList)
|
|
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
|
|
# r = self.expandDis * 5.0
|
|
dlist = [(node.x - newNode.x) ** 2 +
|
|
(node.y - newNode.y) ** 2 for node in self.nodeList]
|
|
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
|
|
return nearinds
|
|
|
|
def rewire(self, newNode, nearinds):
|
|
nnode = len(self.nodeList)
|
|
for i in nearinds:
|
|
nearNode = self.nodeList[i]
|
|
|
|
dx = newNode.x - nearNode.x
|
|
dy = newNode.y - nearNode.y
|
|
d = math.sqrt(dx ** 2 + dy ** 2)
|
|
|
|
scost = newNode.cost + d
|
|
|
|
if nearNode.cost > scost:
|
|
theta = math.atan2(dy, dx)
|
|
if self.check_collision_extend(nearNode, theta, d):
|
|
nearNode.parent = nnode - 1
|
|
nearNode.cost = scost
|
|
|
|
def check_collision_extend(self, nearNode, theta, d):
|
|
|
|
tmpNode = copy.deepcopy(nearNode)
|
|
|
|
for i in range(int(d / self.expandDis)):
|
|
tmpNode.x += self.expandDis * math.cos(theta)
|
|
tmpNode.y += self.expandDis * math.sin(theta)
|
|
if not self.__CollisionCheck(tmpNode, self.obstacleList):
|
|
return False
|
|
|
|
return True
|
|
|
|
def DrawGraph(self, rnd=None):
|
|
u"""
|
|
Draw Graph
|
|
"""
|
|
plt.clf()
|
|
if rnd is not None:
|
|
plt.plot(rnd[0], rnd[1], "^k")
|
|
for node in self.nodeList:
|
|
if node.parent is not None:
|
|
plt.plot([node.x, self.nodeList[node.parent].x], [
|
|
node.y, self.nodeList[node.parent].y], "-g")
|
|
|
|
for (ox, oy, size) in self.obstacleList:
|
|
plt.plot(ox, oy, "ok", ms=30 * size)
|
|
|
|
plt.plot(self.start.x, self.start.y, "xr")
|
|
plt.plot(self.end.x, self.end.y, "xr")
|
|
plt.axis([-2, 15, -2, 15])
|
|
plt.grid(True)
|
|
plt.pause(0.01)
|
|
|
|
def GetNearestListIndex(self, nodeList, rnd):
|
|
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1])
|
|
** 2 for node in nodeList]
|
|
minind = dlist.index(min(dlist))
|
|
|
|
return minind
|
|
|
|
def __CollisionCheck(self, node, obstacleList):
|
|
for (ox, oy, size) in obstacleList:
|
|
dx = ox - node.x
|
|
dy = oy - node.y
|
|
d = dx * dx + dy * dy
|
|
if d <= size ** 2:
|
|
return False # collision
|
|
|
|
return True # safe
|
|
|
|
|
|
class Node():
|
|
"""
|
|
RRT Node
|
|
"""
|
|
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
self.cost = 0.0
|
|
self.parent = None
|
|
|
|
|
|
def main():
|
|
print("Start rrt planning")
|
|
|
|
# ====Search Path with RRT====
|
|
obstacleList = [
|
|
(5, 5, 1),
|
|
(3, 6, 2),
|
|
(3, 8, 2),
|
|
(3, 10, 2),
|
|
(7, 5, 2),
|
|
(9, 5, 2)
|
|
] # [x,y,size(radius)]
|
|
|
|
# Set Initial parameters
|
|
rrt = RRT(start=[0, 0], goal=[5, 10],
|
|
randArea=[-2, 15], obstacleList=obstacleList)
|
|
path = rrt.Planning(animation=show_animation)
|
|
|
|
# Draw final path
|
|
if show_animation:
|
|
rrt.DrawGraph()
|
|
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
|
plt.grid(True)
|
|
plt.pause(0.01) # Need for Mac
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|