mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-07 22:03:58 -05:00
ROCm for HPC topic updated Develop (#5504)
* ROCm for HPC topic updated * ROCm for HPC topic udpated * Minor editorial
This commit is contained in:
@@ -2,7 +2,7 @@ ROCm Version,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6 [#rhel-10-702-past-60], 9.4 [#rhel-94-702-past-60]_","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,"RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,SLES 15 SP7 [#sles-db-700-past-60]_,SLES 15 SP7 [#sles-db-700-past-60]_,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
|
||||
|
@@ -76,6 +76,14 @@ Ubuntu versions.
|
||||
single node workstations, multi and many-core nodes, clusters of nodes via
|
||||
QMP, and classic vector computers.
|
||||
|
||||
* -
|
||||
- `Grid <https://github.com/amd/InfinityHub-CI/tree/main/grid/>`_
|
||||
- Grid is a library for lattice QCD calculations that employs a high-level data parallel
|
||||
approach while using a number of techniques to target multiple types of parallelism.
|
||||
The library currently supports MPI, OpenMP, and short vector parallelism. The SIMD
|
||||
instruction sets covered include SSE, AVX, AVX2, FMA4, IMCI, and AVX512. Recent
|
||||
releases expanded this support to include GPU offloading.
|
||||
|
||||
* -
|
||||
- `MILC <https://github.com/amd/InfinityHub-CI/tree/main/milc/>`_
|
||||
- The MILC Code is a set of research codes developed by MIMD Lattice Computation
|
||||
@@ -148,24 +156,6 @@ Ubuntu versions.
|
||||
backends ranging from general-purpose processors, CUDA and HIP enabled
|
||||
accelerators to SX-Aurora vector processors.
|
||||
|
||||
* -
|
||||
- `nekRS <https://github.com/amd/InfinityHub-CI/tree/main/nekrs>`_
|
||||
- nekRS is an open-source Navier Stokes solver based on the spectral element
|
||||
method targeting classical processors and accelerators like GPUs.
|
||||
|
||||
* -
|
||||
- `OpenFOAM <https://github.com/amd/InfinityHub-CI/tree/main/openfoam>`_
|
||||
- OpenFOAM is a free, open-source computational fluid dynamics (CFD)
|
||||
tool developed primarily by OpenCFD Ltd. It has a large user
|
||||
base across most areas of engineering and science, from both commercial and
|
||||
academic organizations. OpenFOAM has extensive features to solve
|
||||
anything from complex fluid flows involving chemical reactions, turbulence, and
|
||||
heat transfer, to acoustics, solid mechanics, and electromagnetics.
|
||||
|
||||
* -
|
||||
- `PeleC <https://github.com/amd/InfinityHub-CI/tree/main/pelec>`_
|
||||
- PeleC is an adaptive mesh refinement(AMR) solver for compressible reacting flows.
|
||||
|
||||
* -
|
||||
- `Simcenter Star-CCM+ <https://github.com/amd/InfinityHub-CI/tree/main/siemens-star-ccm>`_
|
||||
- Simcenter Star-CCM+ is a comprehensive computational fluid dynamics (CFD) and multiphysics
|
||||
@@ -199,15 +189,6 @@ Ubuntu versions.
|
||||
defined in SymPy to create and execute highly optimized Finite Difference stencil
|
||||
kernels on multiple computer platforms.
|
||||
|
||||
* -
|
||||
- `ECHELON <https://github.com/amd/InfinityHub-CI/tree/main/srt-echelon>`_
|
||||
- ECHELON by Stone Ridge Technology is a reservoir simulation tool. With
|
||||
fast processing, it retains precise accuracy and preserves legacy simulator results.
|
||||
Faster reservoir simulation enables reservoir engineers to produce many realizations,
|
||||
address larger models, and use advanced physics. It opens new workflows based on
|
||||
ensemble methodologies for history matching and forecasting that yield
|
||||
increased accuracy and more predictive results.
|
||||
|
||||
* - Benchmark
|
||||
- `rocHPL <https://github.com/amd/InfinityHub-CI/tree/main/rochpl>`_
|
||||
- HPL, or High-Performance Linpack, is a benchmark which solves a uniformly
|
||||
@@ -240,6 +221,10 @@ Ubuntu versions.
|
||||
- Base container for GPU-aware MPI with ROCm for HPC applications. This
|
||||
project provides a boilerplate for building and running a Docker
|
||||
container with ROCm supporting GPU-aware MPI implementations using MPICH.
|
||||
|
||||
* -
|
||||
- `AMD ROCm with Conda Environment Container <https://github.com/amd/InfinityHub-CI/tree/main/conda-rocm-environment>`_
|
||||
- Container recipe that uses the `base-gpu-mpi-rocm-docker` as the base and adds Conda. The container can be used as a base for applications that require conda applications.
|
||||
|
||||
* -
|
||||
- `Kokkos <https://github.com/amd/InfinityHub-CI/tree/main/kokkos>`_
|
||||
@@ -258,14 +243,6 @@ Ubuntu versions.
|
||||
range of hardware platforms via use of an in-built domain specific language derived
|
||||
from the Mako templating engine.
|
||||
|
||||
* -
|
||||
- `PETSc <https://github.com/amd/InfinityHub-CI/tree/main/petsc>`_
|
||||
- Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures
|
||||
and routines for the scalable (parallel) solution of scientific applications modeled by partial
|
||||
differential equations. It supports MPI, GPUs through CUDA, HIP, and OpenCL,
|
||||
as well as hybrid MPI-GPU parallelism. It also supports the NEC-SX Tsubasa Vector Engine.
|
||||
PETSc also includes the Toolkit for Advanced Optimization (TAO) library.
|
||||
|
||||
* -
|
||||
- `RAJA <https://github.com/amd/InfinityHub-CI/tree/main/raja>`_
|
||||
- RAJA is a library of C++ software abstractions, primarily developed at Lawrence
|
||||
@@ -278,4 +255,9 @@ Ubuntu versions.
|
||||
within an object-oriented software framework for the solution of large-scale,
|
||||
complex multi-physics engineering and scientific problems.
|
||||
|
||||
* -
|
||||
- `VLLM <https://github.com/amd/InfinityHub-CI/tree/main/vllm>`_
|
||||
- The VLLM project helps to build a Dockerfile for performance testing of the LLAMA2 applications.
|
||||
This Dockerfile uses a base install that includes Ubuntu 20.04, ROCm 6.1.2 and Python 3.9. The container can host the LLAMA2 applications (LLMs) and requires some large input files for testing.
|
||||
|
||||
To learn about ROCm for AI applications, see :doc:`../rocm-for-ai/index`.
|
||||
|
||||
Reference in New Issue
Block a user