Deep learning frameworks edits for scale (#5189)

* Deep learning frameworks edits for scale

Based on https://ontrack-internal.amd.com/browse/ROCDOC-1809

* update table

table

* leo comments

* formatting

* format

* update table based on feedback

* header

* Update machine learning page

* headers

* Apply suggestions from code review

Co-authored-by: anisha-amd <anisha.sankar@amd.com>

* Update .wordlist.txt

* formatting

* Update docs/how-to/deep-learning-rocm.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

---------

Co-authored-by: Matt Williams <Matt.Williams+amdeng@amd.com>
Co-authored-by: anisha-amd <anisha.sankar@amd.com>
Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
This commit is contained in:
Matt Williams
2025-08-22 11:46:07 -04:00
committed by GitHub
parent 98029db4ee
commit 1d42f7cc62
4 changed files with 140 additions and 59 deletions

View File

@@ -124,6 +124,7 @@ ENDPGM
EPYC
ESXi
EoS
fas
FBGEMM
FFT
FFTs
@@ -196,6 +197,7 @@ HWE
HWS
Haswell
Higgs
href
Hyperparameters
Huggingface
ICD

View File

@@ -2,58 +2,132 @@
:description: How to install deep learning frameworks for ROCm
:keywords: deep learning, frameworks, ROCm, install, PyTorch, TensorFlow, JAX, MAGMA, DeepSpeed, ML, AI
********************************************
Installing deep learning frameworks for ROCm
********************************************
**********************************
Deep learning frameworks for ROCm
**********************************
ROCm provides a comprehensive ecosystem for deep learning development, including
:ref:`libraries <artificial-intelligence-apis>` for optimized deep learning operations and ROCm-aware versions of popular
deep learning frameworks and libraries such as PyTorch, TensorFlow, and JAX. ROCm works closely with these
frameworks to ensure that framework-specific optimizations take advantage of AMD accelerator and GPU architectures.
Deep learning frameworks provide environments for machine learning, training, fine-tuning, inference, and performance optimization.
The following guides provide information on compatibility and supported
features for these ROCm-enabled deep learning frameworks.
ROCm offers a complete ecosystem for developing and running deep learning applications efficiently. It also provides ROCm-compatible versions of popular frameworks and libraries, such as PyTorch, TensorFlow, JAX, and others.
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
* :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
* :doc:`verl compatibility <../compatibility/ml-compatibility/verl-compatibility>`
* :doc:`Stanford Megatron-LM compatibility <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`
* :doc:`DGL compatibility <../compatibility/ml-compatibility/dgl-compatibility>`
* :doc:`Megablocks compatibility <../compatibility/ml-compatibility/megablocks-compatibility>`
* :doc:`Taichi compatibility <../compatibility/ml-compatibility/taichi-compatibility>`
The AMD ROCm organization actively contributes to open-source development and collaborates closely with framework organizations. This collaboration ensures that framework-specific optimizations effectively leverage AMD GPUs and accelerators.
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
The table below summarizes information about ROCm-enabled deep learning frameworks. It includes details on ROCm compatibility and third-party tool support, installation steps and options, and links to GitHub resources. For a complete list of supported framework versions on ROCm, see the :doc:`Compatibility matrix <../compatibility/compatibility-matrix>` topic.
.. image:: ../data/how-to/framework_install_2024_07_04.png
:alt: Flowchart for installing ROCm-aware machine learning frameworks
:align: center
.. list-table::
:header-rows: 1
:widths: 5 3 6 3
See the installation instructions to get started.
* - Framework
- Installation
- Installation options
- GitHub
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
* :doc:`verl for ROCm <rocm-install-on-linux:install/3rd-party/verl-install>`
* :doc:`Stanford Megatron-LM for ROCm <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>`
* :doc:`DGL for ROCm <rocm-install-on-linux:install/3rd-party/dgl-install>`
* :doc:`Megablocks for ROCm <rocm-install-on-linux:install/3rd-party/megablocks-install>`
* :doc:`Taichi for ROCm <rocm-install-on-linux:install/3rd-party/taichi-install>`
* - `PyTorch <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/pytorch-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/pytorch-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/pytorch-install.html#using-a-docker-image-with-pytorch-pre-installed>`_
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/pytorch-install.html#using-a-wheels-package>`_
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/pytorch-install.html#using-the-pytorch-rocm-base-docker-image>`_
- `Upstream Docker file <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/pytorch-install.html#using-the-pytorch-upstream-dockerfile>`_
- .. raw:: html
<a href="https://github.com/ROCm/pytorch"><i class="fab fa-github fa-lg"></i></a>
* - `TensorFlow <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/tensorflow-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/tensorflow-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/tensorflow-install.html#using-a-docker-image-with-tensorflow-pre-installed>`_
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/tensorflow-install.html#using-a-wheels-package>`_
.. note::
- .. raw:: html
<a href="https://github.com/ROCm/tensorflow-upstream"><i class="fab fa-github fa-lg"></i></a>
* - `JAX <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/jax-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/jax-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/jax-install.html#using-a-prebuilt-docker-image>`_
- .. raw:: html
<a href="https://github.com/ROCm/jax"><i class="fab fa-github fa-lg"></i></a>
* - `verl <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/verl-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/verl-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/verl-install.html#use-a-prebuilt-docker-image-with-verl-pre-installed>`_
- .. raw:: html
<a href="https://github.com/ROCm/verl"><i class="fab fa-github fa-lg"></i></a>
* - `Stanford Megatron-LM <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/stanford-megatron-lm-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/stanford-megatron-lm-install.html#use-a-prebuilt-docker-image-with-stanford-megatron-lm-pre-installed>`_
- .. raw:: html
<a href="https://github.com/ROCm/Stanford-Megatron-LM"><i class="fab fa-github fa-lg"></i></a>
* - `DGL <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/dgl-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html#use-a-prebuilt-docker-image-with-dgl-pre-installed>`_
- .. raw:: html
<a href="https://github.com/ROCm/dgl"><i class="fab fa-github fa-lg"></i></a>
* - `Megablocks <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/megablocks-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/megablocks-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/megablocks-install.html#using-a-prebuilt-docker-image-with-megablocks-pre-installed>`_
- .. raw:: html
<a href="https://github.com/ROCm/megablocks"><i class="fab fa-github fa-lg"></i></a>
* - `Taichi <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/taichi-compatibility.html>`_
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html#use-a-prebuilt-docker-image-with-taichi-pre-installed>`_
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html#use-a-wheels-package>`_
- .. raw:: html
<a href="https://github.com/ROCm/taichi"><i class="fab fa-github fa-lg"></i></a>
For guidance on installing ROCm itself, refer to :doc:`ROCm installation for Linux <rocm-install-on-linux:index>`.
Learn how to use your ROCm deep learning environment for training, fine-tuning, inference, and performance optimization
through the following guides.
* :doc:`rocm-for-ai/index`
* :doc:`Training <rocm-for-ai/training/index>`
* :doc:`Use ROCm for training <rocm-for-ai/training/index>`
* :doc:`Use ROCm for fine-tuning LLMs <rocm-for-ai/fine-tuning/index>`
* :doc:`Use ROCm for AI inference <rocm-for-ai/inference/index>`
* :doc:`Use ROCm for AI inference optimization <rocm-for-ai/inference-optimization/index>`
* :doc:`Fine-tuning LLMs <rocm-for-ai/fine-tuning/index>`
* :doc:`Inference <rocm-for-ai/inference/index>`
* :doc:`Inference optimization <rocm-for-ai/inference-optimization/index>`

View File

@@ -1,14 +1,14 @@
.. meta::
:description: How to install ROCm and popular machine learning frameworks.
:description: How to install ROCm and popular deep learning frameworks.
:keywords: ROCm, AI, LLM, train, fine-tune, FSDP, DeepSpeed, LLaMA, tutorial
.. _rocm-for-ai-install:
***********************************************
Installing ROCm and machine learning frameworks
***********************************************
********************************************
Installing ROCm and deep learning frameworks
********************************************
Before getting started, install ROCm and supported machine learning frameworks.
Before getting started, install ROCm and supported deep learning frameworks.
.. grid:: 1
@@ -43,29 +43,16 @@ distribution's package manager. See the following documentation resources to get
If you encounter any issues during installation, refer to the
:doc:`Installation troubleshooting <rocm-install-on-linux:reference/install-faq>` guide.
Machine learning frameworks
===========================
Deep learning frameworks
========================
ROCm supports popular machine learning frameworks and libraries including `PyTorch
ROCm supports deep learning frameworks and libraries including `PyTorch
<https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package>`_, `TensorFlow
<https://tensorflow.org>`_, `JAX <https://jax.readthedocs.io/en/latest>`_, and `DeepSpeed
<https://cloudblogs.microsoft.com/opensource/2022/03/21/supporting-efficient-large-model-training-on-amd-instinct-gpus-with-deepspeed/>`_.
<https://tensorflow.org>`_, `JAX <https://jax.readthedocs.io/en/latest>`_, and more.
Review the framework installation documentation. For ease-of-use, it's recommended to use official ROCm prebuilt Docker
Review the :doc:`framework installation documentation <../deep-learning-rocm>`. For ease-of-use, it's recommended to use official ROCm prebuilt Docker
images with the framework pre-installed.
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
* :doc:`verl for ROCm <rocm-install-on-linux:install/3rd-party/verl-install>`
* :doc:`Stanford Megatron-LM for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
* :doc:`DGL for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
Next steps
==========

View File

@@ -27,6 +27,24 @@ subtrees:
title: ROCm on Radeon GPUs
- file: how-to/deep-learning-rocm.md
title: Deep learning frameworks
subtrees:
- entries:
- file: compatibility/ml-compatibility/pytorch-compatibility.rst
title: PyTorch compatibility
- file: compatibility/ml-compatibility/tensorflow-compatibility.rst
title: TensorFlow compatibility
- file: compatibility/ml-compatibility/jax-compatibility.rst
title: JAX compatibility
- file: compatibility/ml-compatibility/verl-compatibility.rst
title: verl compatibility
- file: compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst
title: Stanford Megatron-LM compatibility
- file: compatibility/ml-compatibility/dgl-compatibility.rst
title: DGL compatibility
- file: compatibility/ml-compatibility/megablocks-compatibility.rst
title: Megablocks compatibility
- file: compatibility/ml-compatibility/taichi-compatibility.rst
title: Taichi compatibility
- file: how-to/build-rocm.rst
title: Build ROCm from source