Update LLM inference performance validation on AMD Instinct MI300X guide to filter by desired model (#4424)

* WIP

(cherry picked from commit a06a5b5b959a9425e7384fb58b88c3716f380e48)

rm unneeded files

(cherry picked from commit f1d0c00056a83299bdea74a43cd17454999cf2d8)

* add sphinxcontrib.datatemplates

(cherry picked from commit d056b93a325d87b81f54f70c6eb4ae78f4fb0bc1)

* add template

(cherry picked from commit 0691d59f0a1efbda7908762b7a906e30a65c0ee1)

fix template

(cherry picked from commit 01e4bea5522aa5deeaade58c105ff850f449df8b)

WIPO

(cherry picked from commit 4d8daf7445e7be92cd9ee1d39dff564bd8de41f4)

WIP

(cherry picked from commit 9eefd1f5833bc4dc8de9d777ff65a5fe5f826dbd)

update models yaml schema

(cherry picked from commit a5f0fc1e6cc51104dc2d42029bfcf3eea276d270)

add model groups functionality

(cherry picked from commit 13f49f96dd3e5a160d37c52e48a4fbcccdcf4f9e)

add selector headings and fix template

(cherry picked from commit 35f7f2314bcf74b4fd0a8ca10aaabf0de7063bb0)

update template

(cherry picked from commit 9e2dcfe0c7f6e7c2c685866ea83375fbacbc5032)

fix

(cherry picked from commit be51e32791550ddc21785effccb889228394b242)

use classes instead of data tags

(cherry picked from commit cd52d68c504f7e7435d156ae70cf4bde1dfe703e)

update template

(cherry picked from commit 9ed89fee6874b39ee3535fbde54a0a59f346ea2b)

clean up extra wip files

(cherry picked from commit a9f965a104baa966c184054638e935b011526278)

update wordlist

(cherry picked from commit f783656814e896aedd21acd1c8c87b4700c14469)

remove unused template

(cherry picked from commit cac894bd9c2b1262c9c006e5fddbcb742dc6d882)

improve script

(cherry picked from commit ca20ffd4922916616e0924d625652a815f27c35f)

fix template

(cherry picked from commit 752c61fda856fd5b244734636c036c8877e823b9)

fix standalone benchmark output path in template

(cherry picked from commit d8c04203b5ec0f6c2e2307f7890304a3dc5687be)

fix toc

(cherry picked from commit 8df42faf53488ef29f5a263d25032f3d35cd58ed)

update script to prevent flash of unstyled content

import a11y

(cherry picked from commit 46c852717f223a1d8744fab035807cebab4c5404)

add tabindex to wordlist

(cherry picked from commit 11492593f9692f5453045e7ec52c8f8ae9624ae9)

text

update script

* remove unused config option

* reorganize assets

* fix linting warning

* move js from data/ to extension/
This commit is contained in:
Peter Park
2025-02-28 12:39:02 -05:00
committed by GitHub
parent e984954088
commit 1fb42c2591
8 changed files with 664 additions and 366 deletions

View File

@@ -481,6 +481,7 @@ ZenDNN
accuracies
activations
addr
ai
alloc
allocatable
allocator
@@ -546,6 +547,7 @@ cTDP
dataset
datasets
dataspace
datatemplate
datatype
datatypes
dbgapi
@@ -574,6 +576,7 @@ el
embeddings
enablement
encodings
endfor
endpgm
enqueue
env
@@ -694,6 +697,7 @@ pageable
pallas
parallelization
parallelizing
param
parameterization
passthrough
perfcounter
@@ -811,6 +815,7 @@ supercomputing
symlink
symlinks
sys
tabindex
td
tensorfloat
th
@@ -856,6 +861,7 @@ vectorizes
virtualize
virtualized
vjxb
vllm
voxel
walkthrough
walkthroughs

View File

@@ -66,7 +66,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-quantization", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries", "os": ["linux"]},
@@ -89,7 +89,7 @@ article_pages = [
external_toc_path = "./sphinx/_toc.yml"
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap"]
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates"]
external_projects_current_project = "rocm"
@@ -104,8 +104,9 @@ if os.environ.get("READTHEDOCS", "") == "True":
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
html_static_path = ["sphinx/static/css"]
html_css_files = ["rocm_custom.css", "rocm_rn.css"]
html_static_path = ["sphinx/static/css", "extension/how-to/rocm-for-ai/inference"]
html_css_files = ["rocm_custom.css", "rocm_rn.css", "vllm-benchmark.css"]
html_js_files = ["vllm-benchmark.js"]
html_title = "ROCm Documentation"

View File

@@ -0,0 +1,153 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9
rocm_version: 6.3.1
vllm_version: 0.6.6
pytorch_version: 2.7.0 (2.7.0a0+git3a58512)
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,212 @@
function ready(proc) {
// Check if page is loaded. If so, init.
if (document.readyState !== "loading") {
proc();
} else {
// Otherwise, wait for DOMContentLoaded event.
document.addEventListener("DOMContentLoaded", proc);
}
}
ready(() => {
const ModelPicker = {
// Selector strings for DOM elements
SELECTORS: {
CONTAINER: "#vllm-benchmark-ud-params-picker",
MODEL_GROUP_BTN: 'div[data-param-k="model-group"][data-param-v]',
MODEL_PARAM_BTN: 'div[data-param-k="model"][data-param-v]',
MODEL_DOC: "div.model-doc",
},
CSS_CLASSES: {
HIDDEN: "hidden",
},
ATTRIBUTES: {
PARAM_KEY: "data-param-k", // URL search parameter key (i.e., "model")
PARAM_VALUE: "data-param-v", // URL search param value (e.g., "pyt_vllm_llama-3.1-8b", "pyt_vllm_llama-3.1-70b") -- these are MAD model tags
PARAM_GROUP: "data-param-group", // Model group (e.g., "llama", "mistral")
PARAM_STATE: "data-param-state", // Selection state
},
// Cache DOM elements
elements: {
container: null,
modelGroups: null,
modelParams: null,
modelDocs: null,
},
data: {
availableModels: new Set(),
modelsByGroup: new Map(),
modelToGroupMap: new Map(),
formattedModelClassMap: new Map(), //TODO
},
init() {
this.elements.container = document.querySelector(
this.SELECTORS.CONTAINER,
);
if (!this.elements.container) return;
this.cacheDOMElements();
if (!this.validateElements()) return;
this.buildModelData();
this.bindEvents();
this.initializeState();
},
cacheDOMElements() {
const { CONTAINER, MODEL_GROUP_BTN, MODEL_PARAM_BTN, MODEL_DOC } =
this.SELECTORS;
this.elements = {
container: document.querySelector(CONTAINER),
modelGroups: document.querySelectorAll(MODEL_GROUP_BTN),
modelParams: document.querySelectorAll(MODEL_PARAM_BTN),
modelDocs: document.querySelectorAll(MODEL_DOC),
};
},
validateElements() {
const { modelGroups, modelParams } = this.elements;
if (!modelGroups.length || !modelParams.length) {
console.warn("Model picker is missing required elements");
return false;
}
return true;
},
buildModelData() {
const { PARAM_VALUE, PARAM_GROUP } = this.ATTRIBUTES;
this.elements.modelParams.forEach((model) => {
const modelTag = model.getAttribute(PARAM_VALUE);
const groupTag = model.getAttribute(PARAM_GROUP);
if (!modelTag || !groupTag) return;
this.data.availableModels.add(modelTag);
this.data.modelToGroupMap.set(modelTag, groupTag);
// FIXME: this is because Sphinx auto-formats class names to use dashes
this.data.formattedModelClassMap.set(
modelTag,
modelTag.replace(/[^a-zA-Z0-9]/g, "-"),
);
if (!this.data.modelsByGroup.has(groupTag)) {
this.data.modelsByGroup.set(groupTag, []);
}
this.data.modelsByGroup.get(groupTag).push(modelTag);
});
},
// Event listeners for user interactions
bindEvents() {
const handleInteraction = (event) => {
const target = event.target.closest(`[${this.ATTRIBUTES.PARAM_KEY}]`);
if (!target) return;
const paramType = target.getAttribute(this.ATTRIBUTES.PARAM_KEY);
const paramValue = target.getAttribute(this.ATTRIBUTES.PARAM_VALUE);
if (paramType === "model") {
const groupTag = target.getAttribute(this.ATTRIBUTES.PARAM_GROUP);
if (groupTag) this.updateUI(paramValue, groupTag);
} else if (paramType === "model-group") {
const firstModelInGroup = this.data.modelsByGroup.get(paramValue)
?.[0];
if (firstModelInGroup) this.updateUI(firstModelInGroup, paramValue);
}
};
this.elements.container.addEventListener("click", handleInteraction);
this.elements.container.addEventListener("keydown", (event) => {
if (event.key === "Enter" || event.key === " ") {
event.preventDefault();
handleInteraction(event);
}
});
},
// Update the page based on the selected model
updateUI(modelTag, groupTag) {
const validModel = this.setModelSearchParam(modelTag);
// Update model group buttons
this.elements.modelGroups.forEach((group) => {
const isSelected =
group.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === groupTag;
group.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelected ? "selected" : "",
);
group.setAttribute("aria-selected", isSelected.toString());
});
// Update model buttons
this.elements.modelParams.forEach((model) => {
const isInSelectedGroup =
model.getAttribute(this.ATTRIBUTES.PARAM_GROUP) === groupTag;
const isSelectedModel =
model.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === validModel;
model.classList.toggle(this.CSS_CLASSES.HIDDEN, !isInSelectedGroup);
model.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelectedModel ? "selected" : "",
);
model.setAttribute("aria-selected", isSelectedModel.toString());
});
// Update visibility of doc sections
const formattedClass = this.data.formattedModelClassMap.get(validModel);
if (formattedClass) {
this.elements.modelDocs.forEach((doc) => {
doc.classList.toggle(
this.CSS_CLASSES.HIDDEN,
!doc.classList.contains(formattedClass),
);
});
}
},
// Get the current model from the URL search parameters.
getModelSearchParam() {
return new URLSearchParams(location.search).get("model");
},
// Set the model in the URL search parameters, or fallback to the first available one.
setModelSearchParam(modelTag) {
const defaultModel = [...this.data.availableModels][0];
const model = this.data.availableModels.has(modelTag)
? modelTag
: defaultModel;
const searchParams = new URLSearchParams(location.search);
searchParams.set("model", model);
history.replaceState(
{},
"",
`${location.pathname}?${searchParams.toString()}`,
);
return model;
},
// Initialize the UI state based on the current URL search parameter or default values.
initializeState() {
const currentModel = this.getModelSearchParam();
const validModel = this.setModelSearchParam(currentModel);
const initialGroup = this.data.modelToGroupMap.get(validModel) ??
[...this.data.modelsByGroup.keys()][0];
if (initialGroup) {
this.updateUI(validModel, initialGroup);
}
},
};
ModelPicker.init();
});

View File

@@ -9,422 +9,266 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
.. _vllm-benchmark-vllm:
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
.. note::
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-available-models:
Getting started
===============
Available models
================
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. raw:: html
.. _vllm-benchmark-get-started:
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
1. Disable NUMA auto-balancing.
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. _vllm-benchmark-vllm:
.. code-block:: shell
{% for model_group in model_groups %}
{% for model in model_group.models %}
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. container:: model-doc {{model.mad_tag}}
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
.. note::
Use the following command to pull the Docker image from Docker Hub.
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
.. code-block:: shell
{% endfor %}
{% endfor %}
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. note::
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
Getting started
===============
.. _vllm-benchmark-mad:
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MAD-integrated benchmarking
===========================
.. _vllm-benchmark-get-started:
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
1. Disable NUMA auto-balancing.
.. code-block:: shell
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
.. code-block:: shell
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. code-block:: shell
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
Use the following command to pull the Docker image from Docker Hub.
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
.. code-block:: shell
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
docker pull {{ unified_docker.pull_tag }}
.. _vllm-benchmark-mad-models:
Benchmarking
============
Available models
----------------
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. list-table::
:header-rows: 1
:widths: 2, 3
.. _vllm-benchmark-mad:
* - Model name
- Tag
{% for model_group in model_groups %}
{% for model in model_group.models %}
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
.. container:: model-doc {{model.mad_tag}}
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
.. tab-set::
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
.. tab-item:: MAD-integrated benchmarking
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
.. code-block:: shell
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
.. code-block:: shell
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
.. tab-item:: Standalone benchmarking
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
Run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
.. code-block::
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
.. code-block::
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
To start the benchmark, use the following command with the appropriate options.
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
.. code-block::
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
.. list-table::
:header-rows: 1
:align: center
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - Name
- Options
- Description
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
* - ``$test_option``
- latency
- Measure decoding token latency
.. _vllm-benchmark-standalone:
* -
- throughput
- Measure token generation throughput
Standalone benchmarking
=======================
* -
- all
- Measure both throughput and latency
You can run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
.. code-block::
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
.. note::
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. code-block::
.. note::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
Command
-------
.. code-block::
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
OSError: You are trying to access a gated repo.
.. code-block:: shell
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
Here are some examples of running the benchmark with various options.
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
* Latency benchmark
.. note::
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. code-block::
.. note::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
.. code-block:: shell
* Throughput benchmark
OSError: You are trying to access a gated repo.
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. code-block:: shell
.. _vllm-benchmark-standalone-options:
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Options and available models
----------------------------
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. list-table::
:header-rows: 1
:align: center
.. raw:: html
* - Name
- Options
- Description
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
* - ``$test_option``
- latency
- Measure decoding token latency
.. note::
* -
- throughput
- Measure token generation throughput
Throughput is calculated as:
* -
- all
- Measure both throughput and latency
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
* - ``$model_repo``
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
@@ -446,33 +290,3 @@ Further reading
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -1,3 +1,4 @@
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -2,7 +2,7 @@
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile requirements.in
# pip-compile docs/sphinx/requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
@@ -43,6 +43,8 @@ debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
# via pygithub
docutils==0.21.2
@@ -175,6 +177,7 @@ pyyaml==6.0.2
# myst-parser
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.2.0
# via
# ipykernel
@@ -215,6 +218,8 @@ sphinx==8.1.3
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
# via rocm-docs-core
sphinx-copybutton==0.5.2
@@ -226,11 +231,13 @@ sphinx-external-toc==1.0.1
sphinx-notfound-page==1.0.4
# via rocm-docs-core
sphinx-reredirects==0.1.5
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinx-sitemap==2.6.0
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
sphinxcontrib-datatemplates==0.11.0
# via -r docs/sphinx/requirements.in
sphinxcontrib-devhelp==2.0.0
# via sphinx
sphinxcontrib-htmlhelp==2.1.0
@@ -239,6 +246,8 @@ sphinxcontrib-jsmath==1.0.1
# via sphinx
sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37

View File

@@ -0,0 +1,102 @@
/* ------------------ Compatibility options grid ------------------ */
html {
--compat-border-radius: 2px;
--compat-accent-color: var(--pst-color-primary);
--compat-bg-color: var(--pst-color-on-background);
--compat-fg-color: var(--pst-color-primary-text);
--compat-head-color: var(--pst-color-surface);
--compat-param-hover-color: var(--pst-color-link-hover);
--compat-param-selected-color: var(--pst-color-primary);
}
html[data-theme="light"] {
--compat-border-color: var(--pst-gray-500);
--compat-param-disabled-color: var(--pst-gray-300);
}
html[data-theme="dark"] {
--compat-border-color: var(--pst-gray-600);
--compat-param-disabled-color: var(--pst-gray-600);
}
div#vllm-benchmark-ud-params-picker.container-fluid {
padding: 0 0 1rem 0;
}
div[data-param-k="model"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
div[data-param-k="model-group"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model-group"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model-group"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
.model-param-head {
background-color: var(--compat-head-color);
padding: 0.15rem 0.15rem 0.15rem 0.67rem;
/* margin: 2px; */
border-right: solid 2px var(--compat-accent-color);
font-weight: 600;
}
.model-param {
/* padding: 2px; */
/* margin: 0 2px 0 2px; */
/* margin: 2px; */
border: solid 1px var(--compat-border-color);
font-weight: 500;
}
.hidden {
display: none !important;
}