mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-10 23:28:03 -05:00
add suggestions to vllm perf validation doc (#3968)
(cherry picked from commit f1fb476f6f)
This commit is contained in:
@@ -27,18 +27,41 @@ With this Docker image, you can quickly validate the expected inference
|
||||
performance numbers on the MI300X accelerator. This topic also provides tips on
|
||||
optimizing performance with popular AI models.
|
||||
|
||||
.. hlist::
|
||||
:columns: 6
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* Llama 3.1 405B
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Mixtral 8x7B
|
||||
|
||||
* Mixtral 8x22B
|
||||
|
||||
* Mixtral 7B
|
||||
|
||||
* Qwen2 7B
|
||||
|
||||
* Qwen2 72B
|
||||
|
||||
* JAIS 13B
|
||||
|
||||
* JAIS 30B
|
||||
|
||||
.. _vllm-benchmark-vllm:
|
||||
|
||||
.. note::
|
||||
|
||||
vLLM is a toolkit and library for LLM inference and
|
||||
serving. It deploys the PagedAttention algorithm, which reduces memory
|
||||
consumption and increases throughput by leveraging dynamic key and value
|
||||
allocation in GPU memory. vLLM also incorporates many LLM acceleration
|
||||
and quantization algorithms. In addition, AMD implements high-performance
|
||||
custom kernels and modules in vLLM to enhance performance further. See
|
||||
:ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for more
|
||||
information.
|
||||
vLLM is a toolkit and library for LLM inference and serving. AMD implements
|
||||
high-performance custom kernels and modules in vLLM to enhance performance.
|
||||
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
|
||||
more information.
|
||||
|
||||
Getting started
|
||||
===============
|
||||
@@ -111,6 +134,7 @@ Available models
|
||||
----------------
|
||||
|
||||
.. hlist::
|
||||
:columns: 3
|
||||
|
||||
* ``pyt_vllm_llama-3.1-8b``
|
||||
|
||||
@@ -308,8 +332,8 @@ Here are some examples of running the benchmark with various options.
|
||||
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
|
||||
options and their descriptions.
|
||||
|
||||
Latency benchmark example
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Example 1: latency benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
|
||||
@@ -324,8 +348,8 @@ Find the latency reports at:
|
||||
|
||||
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
|
||||
|
||||
Throughput benchmark example
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Example 2: throughput benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
|
||||
@@ -366,9 +390,6 @@ Further reading
|
||||
- To learn more about the options for latency and throughput benchmark scripts,
|
||||
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
|
||||
|
||||
- For application performance optimization strategies for HPC and AI workloads,
|
||||
including inference with vLLM, see :doc:`/how-to/tuning-guides/mi300x/workload`.
|
||||
|
||||
- To learn more about system settings and management practices to configure your system for
|
||||
MI300X accelerators, see :doc:`/how-to/system-optimization/mi300x`.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user