Add TensorFlow compatibility docs (#4247)

* Add Tensorflow

* WIP

* WIP

* minor fmt

* PR feedbacks

* fix missed inconsistent formatting

* WIP

WIP

WIP

WIP

* minor formatting

update tensorflow-rocm docker images to rocm6.3.1

fix urls

* WIP

* fix typo and update wordlist

* fix tables not rendering

* fix table headings

* add period

* update tf dockers

* fix link

* fix link

* wording

* update historical compat

* fix tensile link

---------

Co-authored-by: Mátyás Aradi <matyas@streamhpc.com>
Co-authored-by: Istvan Kiss <neon60@gmail.com>
This commit is contained in:
Peter Park
2025-01-09 14:24:58 -05:00
committed by GitHub
parent 8459624e21
commit 26553d725b
8 changed files with 520 additions and 29 deletions

View File

@@ -151,8 +151,9 @@ HCA
HGX
HIPCC
HIPExtension
HIPification
HIPIFY
HIPification
HIPify
HPC
HPCG
HPE
@@ -250,6 +251,7 @@ MyST
NBIO
NBIOs
NCCL
NCF
NIC
NICs
NLI
@@ -711,6 +713,7 @@ protobuf
pseudorandom
py
recommender
recommenders
quantile
quantizer
quasirandom

View File

@@ -22,9 +22,9 @@ ROCm Version,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,
@@ -71,7 +71,7 @@ ROCm Version,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:index>`,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
1 ROCm Version 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
22 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
23
24 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60:
25 :doc:`PyTorch <../compatibility/pytorch-compatibility>` :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
26 :doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>` :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
27 :doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>` :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
28 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
29
30 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
71 :doc:`rocSOLVER <rocsolver:index>` 3.27.0 3.27.0 3.26.2 3.26.0 3.26.0 3.26.0 3.25.0 3.25.0 3.25.0 3.24.0 3.24.0
72 :doc:`rocSPARSE <rocsparse:index>` 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
73 :doc:`rocWMMA <rocwmma:index>` 1.6.0 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
74 :doc:`Tensile <tensile:index>` :doc:`Tensile <tensile:src/index>` 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
75
76 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60:
77 :doc:`hipCUB <hipcub:index>` 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0

View File

@@ -48,7 +48,7 @@ compatibility and system requirements.
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3
,,,
@@ -94,7 +94,7 @@ compatibility and system requirements.
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.26.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.5.0
:doc:`Tensile <tensile:index>`,4.42.0,4.42.0,4.41.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.41.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.2.0

View File

@@ -54,8 +54,8 @@ Docker image compatibility
AMD validates and publishes ready-made `JAX <https://hub.docker.com/r/rocm/jax/>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click |docker-icon|
to see the image on Docker Hub.
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
:header-rows: 1
@@ -605,7 +605,7 @@ ROCm.
.. list-table::
:header-rows: 1
* - Data type
* - Feature
- Description
- Since JAX
* - Mixed Precision with TF32
@@ -660,5 +660,4 @@ Use cases and recommendations
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.

View File

@@ -40,7 +40,7 @@ The upstream PyTorch includes an automatic HIPification solution that automatica
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
Development of ROCm is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
.. _pytorch-docker-compat:
@@ -55,7 +55,7 @@ Docker image compatibility
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to see the image on Docker Hub.
Click the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
@@ -469,7 +469,7 @@ leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Data type
* - Feature
- Description
- Since PyTorch
- Since ROCm
@@ -537,14 +537,14 @@ torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of CUDA or ROCm operations. It is part of the
and flags to control the behavior of ROCm or CUDA operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the CUDA or ROCm environment.
PyTorch interacts with the ROCm or CUDA environment.
.. list-table::
:header-rows: 1
* - Data type
* - Feature
- Description
- Since PyTorch
- Since ROCm
@@ -588,12 +588,12 @@ PyTorch interacts with the CUDA or ROCm environment.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported ``torch`` options:
Supported ``torch`` options include:
.. list-table::
:header-rows: 1
* - Data type
* - Option
- Description
- Since PyTorch
- Since ROCm
@@ -618,7 +618,7 @@ training and inference.
.. list-table::
:header-rows: 1
* - Data type
* - Feature
- Description
- Since PyTorch
- Since ROCm
@@ -658,7 +658,7 @@ of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Features
* - Feature
- Description
- Since PyTorch
- Since ROCm
@@ -683,7 +683,7 @@ torch.compiler
.. list-table::
:header-rows: 1
* - Features
* - Feature
- Description
- Since PyTorch
- Since ROCm
@@ -717,7 +717,7 @@ The following ``torchaudio`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
* - Feature
- Description
- Since torchaudio version
- Since ROCm
@@ -750,7 +750,7 @@ The following ``torchvision`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
* - Feature
- Description
- Since torchvision version
- Since ROCm
@@ -834,7 +834,7 @@ The following are GPU-accelerated PyTorch features not currently supported by RO
:widths: 30, 60, 10
:header-rows: 1
* - Data type
* - Feature
- Description
- Since PyTorch
* - APEX batch norm
@@ -919,4 +919,4 @@ Use cases and recommendations
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_.

View File

@@ -0,0 +1,489 @@
.. meta::
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow compatibility
*******************************************************************************
TensorFlow compatibility
*******************************************************************************
`TensorFlow <https://www.tensorflow.org/>`_ is an open-source library for
solving machine learning, deep learning, and AI problems. It can solve many
problems across different sectors and industries but primarily focuses on
neural network training and inference. It is one of the most popular and
in-demand frameworks and is very active in open-source contribution and
development.
The `official TensorFlow repository <http://github.com/tensorflow/tensorflow>`_
includes full ROCm support. AMD maintains a TensorFlow `ROCm repository
<http://github.com/rocm/tensorflow-upstream>`_ in order to quickly add bug
fixes, updates, and support for the latest ROCM versions.
- ROCm TensorFlow release:
- Offers :ref:`Docker images <tensorflow-docker-compat>` with
ROCm and TensorFlow pre-installed.
- ROCm TensorFlow repository: `<https://github.com/ROCm/tensorflow-upstream>`_
- See the :doc:`ROCm TensorFlow installation guide <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
to get started.
- Official TensorFlow release:
- Official TensorFlow repository: `<https://github.com/tensorflow/tensorflow>`_
- See the `TensorFlow API versions <https://www.tensorflow.org/versions>`_ list.
.. note::
The official TensorFlow documentation does not cover ROCm support. Use the
ROCm documentation for installation instructions for Tensorflow on ROCm.
See :doc:`rocm-install-on-linux:install/3rd-party/tensorflow-install`.
.. _tensorflow-docker-compat:
Docker image compatibility
===============================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `TensorFlow
<https://hub.docker.com/r/rocm/tensorflow>`_ images with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
:header-rows: 1
* - Docker image
- TensorFlow
- Dev
- Python
- TensorBoard
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
Critical ROCm libraries for TensorFlow
===============================================================================
TensorFlow depends on multiple components and the supported features of those
components can affect the TensorFlow ROCm supported feature set. The versions
in the following table refer to the first TensorFlow version where the ROCm
library was introduced as a dependency.
.. list-table::
:widths: 25, 10, 35, 30
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Accelerates operations like ``tf.matmul``, ``tf.linalg.matmul``, and
other matrix multiplications commonly used in neural network layers.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- Extends hipBLAS with additional optimizations like fused kernels and
integer tensor cores.
- Optimizes matrix multiplications and linear algebra operations used in
layers like dense, convolutional, and RNNs in TensorFlow.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``tf.reduce_sum``, ``tf.cumsum``, ``tf.sort``
and other tensor operations in TensorFlow, especially those involving
scanning, sorting, and filtering.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- Accelerates Fast Fourier Transforms (FFT) for signal processing tasks.
- Used for operations like signal processing, image filtering, and
certain types of neural networks requiring FFT-based transformations.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- Provides GPU-accelerated direct linear solvers for dense and sparse
systems.
- Optimizes linear algebra functions such as solving systems of linear
equations, often used in optimization and training tasks.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- Optimizes sparse matrix operations for efficient computations on sparse
data.
- Accelerates sparse matrix operations in models with sparse weight
matrices or activations, commonly used in neural networks.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- Provides optimized deep learning primitives such as convolutions,
pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs) and other layers. Used
in TensorFlow for layers like ``tf.nn.conv2d``, ``tf.nn.relu``, and
``tf.nn.lstm_cell``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``tf.distribute.MirroredStrategy``).
Handles communication in multi-GPU setups.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``tf.reduce_sum``, ``tf.cumsum`` for computing
the cumulative sum of elements along a given axis or ``tf.unique`` to
finds unique elements in a tensor can use rocThrust.
Supported and unsupported features
===============================================================================
The following section maps supported data types and GPU-accelerated TensorFlow
features to their minimum supported ROCm and TensorFlow versions.
Data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or
argument, and TensorFlow supports a wide range of data types for different use
cases.
The basic, single data types of `tf.dtypes <https://www.tensorflow.org/api_docs/python/tf/dtypes>`_
are as follows:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since TensorFlow
- Since ROCm
* - ``bfloat16``
- 16-bit bfloat (brain floating point).
- 1.0.0
- 1.7
* - ``bool``
- Boolean.
- 1.0.0
- 1.7
* - ``complex128``
- 128-bit complex.
- 1.0.0
- 1.7
* - ``complex64``
- 64-bit complex.
- 1.0.0
- 1.7
* - ``double``
- 64-bit (double precision) floating-point.
- 1.0.0
- 1.7
* - ``float16``
- 16-bit (half precision) floating-point.
- 1.0.0
- 1.7
* - ``float32``
- 32-bit (single precision) floating-point.
- 1.0.0
- 1.7
* - ``float64``
- 64-bit (double precision) floating-point.
- 1.0.0
- 1.7
* - ``half``
- 16-bit (half precision) floating-point.
- 2.0.0
- 2.0
* - ``int16``
- Signed 16-bit integer.
- 1.0.0
- 1.7
* - ``int32``
- Signed 32-bit integer.
- 1.0.0
- 1.7
* - ``int64``
- Signed 64-bit integer.
- 1.0.0
- 1.7
* - ``int8``
- Signed 8-bit integer.
- 1.0.0
- 1.7
* - ``qint16``
- Signed quantized 16-bit integer.
- 1.0.0
- 1.7
* - ``qint32``
- Signed quantized 32-bit integer.
- 1.0.0
- 1.7
* - ``qint8``
- Signed quantized 8-bit integer.
- 1.0.0
- 1.7
* - ``quint16``
- Unsigned quantized 16-bit integer.
- 1.0.0
- 1.7
* - ``quint8``
- Unsigned quantized 8-bit integer.
- 1.0.0
- 1.7
* - ``resource``
- Handle to a mutable, dynamically allocated resource.
- 1.0.0
- 1.7
* - ``string``
- Variable-length string, represented as byte array.
- 1.0.0
- 1.7
* - ``uint16``
- Unsigned 16-bit (word) integer.
- 1.0.0
- 1.7
* - ``uint32``
- Unsigned 32-bit (dword) integer.
- 1.5.0
- 1.7
* - ``uint64``
- Unsigned 64-bit (qword) integer.
- 1.5.0
- 1.7
* - ``uint8``
- Unsigned 8-bit (byte) integer.
- 1.0.0
- 1.7
* - ``variant``
- Data of arbitrary type (known at runtime).
- 1.4.0
- 1.7
Features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This table provides an overview of key features in TensorFlow and their
availability in ROCm.
.. list-table::
:header-rows: 1
* - Module
- Description
- Since TensorFlow
- Since ROCm
* - ``tf.linalg`` (Linear Algebra)
- Operations for matrix and tensor computations, such as
``tf.linalg.matmul`` (matrix multiplication), ``tf.linalg.inv``
(matrix inversion) and ``tf.linalg.cholesky`` (Cholesky decomposition).
These leverage GPUs for high-performance linear algebra operations.
- 1.4
- 1.8.2
* - ``tf.nn`` (Neural Network Operations)
- GPU-accelerated building blocks for deep learning models, such as 2D
convolutions with ``tf.nn.conv2d``, max pooling operations with
``tf.nn.max_pool``, activation functions like ``tf.nn.relu`` or softmax
for output layers with ``tf.nn.softmax``.
- 1.0
- 1.8.2
* - ``tf.image`` (Image Processing)
- GPU-accelerated functions for image preprocessing and augmentations,
such as resize images with ``tf.image.resize``, flip images horizontally
with ``tf.image.flip_left_right`` and adjust image brightness randomly
with ``tf.image.random_brightness``.
- 1.1
- 1.8.2
* - ``tf.keras`` (High-Level API)
- GPU acceleration for Keras layers and models, including dense layers
(``tf.keras.layers.Dense``), convolutional layers
(``tf.keras.layers.Conv2D``) and recurrent layers
(``tf.keras.layers.LSTM``).
- 1.4
- 1.8.2
* - ``tf.math`` (Mathematical Operations)
- GPU-accelerated mathematical operations, such as sum across dimensions
with ``tf.math.reduce_sum``, elementwise exponentiation with
``tf.math.exp`` and sigmoid activation (``tf.math.sigmoid``).
- 1.5
- 1.8.2
* - ``tf.signal`` (Signal Processing)
- Functions for spectral analysis and signal transformations.
- 1.13
- 2.1
* - ``tf.data`` (Data Input Pipeline)
- GPU-accelerated data preprocessing for efficient input pipelines,
Prefetching with ``tf.data.experimental.AUTOTUNE``. GPU-enabled
transformations like map and batch.
- 1.4
- 1.8.2
* - ``tf.distribute`` (Distributed Training)
- Enabling to scale computations across multiple devices on a single
machine or across multiple machines.
- 1.13
- 2.1
* - ``tf.random`` (Random Number Generation)
- GPU-accelerated random number generation
- 1.12
- 1.9.2
* - ``tf.TensorArray`` (Dynamic Array Operations)
- Enables dynamic tensor manipulation on GPUs.
- 1.0
- 1.8.2
* - ``tf.sparse`` (Sparse Tensor Operations)
- GPU-accelerated sparse matrix manipulations.
- 1.9
- 1.9.0
* - ``tf.experimental.numpy``
- GPU-accelerated NumPy-like API for numerical computations.
- 2.4
- 4.1.1
* - ``tf.RaggedTensor``
- Handling of variable-length sequences and ragged tensors with GPU
support.
- 1.13
- 2.1
* - ``tf.function`` with XLA (Accelerated Linear Algebra)
- Enable GPU-accelerated functions in optimization.
- 1.14
- 2.4
* - ``tf.quantization``
- Quantized operations for inference, accelerated on GPUs.
- 1.12
- 1.9.2
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Enables developers to scale computations across multiple devices on a single machine or
across multiple machines.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since TensorFlow
- Since ROCm
* - ``MultiWorkerMirroredStrategy``
- Synchronous training across multiple workers using mirrored variables.
- 2.0
- 3.0
* - ``MirroredStrategy``
- Synchronous training across multiple GPUs on one machine.
- 1.5
- 2.5
* - ``TPUStrategy``
- Efficiently trains models on Google TPUs.
- 1.9
- ❌
* - ``ParameterServerStrategy``
- Asynchronous training using parameter servers for variable management.
- 2.1
- 4.0
* - ``CentralStorageStrategy``
- Keeps variables on a single device and performs computation on multiple
devices.
- 2.3
- 4.1
* - ``CollectiveAllReduceStrategy``
- Synchronous training across multiple devices and hosts.
- 1.14
- 3.5
* - Distribution Strategies API
- High-level API to simplify distributed training configuration and
execution.
- 1.10
- 3.0
Unsupported TensorFlow features
===============================================================================
The following are GPU-accelerated TensorFlow features not currently supported by
ROCm.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since TensorFlow
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
- 2.4
* - ``tf.distribute.TPUStrategy``
- Efficiently trains models on Google TPUs.
- 1.9
Use cases and recommendations
===============================================================================
* The `Training a Neural Collaborative Filtering (NCF) Recommender on an AMD
GPU <https://rocm.blogs.amd.com/artificial-intelligence/ncf/README.html>`_
blog post discusses training an NCF recommender system using TensorFlow. It
explains how NCF improves traditional collaborative filtering methods by
leveraging neural networks to model non-linear user-item interactions. The
post outlines the implementation using the recommenders library, focusing on
the use of implicit data (for example, user interactions like viewing or
purchasing) and how it addresses challenges like the lack of negative values.
* The `Creating a PyTorch/TensorFlow code environment on AMD GPUs
<https://rocm.blogs.amd.com/software-tools-optimization/pytorch-tensorflow-env/README.html>`_
blog post provides instructions for creating a machine learning environment
for PyTorch and TensorFlow on AMD GPUs using ROCm. It covers steps like
installing the libraries, cloning code repositories, installing dependencies,
and troubleshooting potential issues with CUDA-based code. Additionally, it
explains how to HIPify code (port CUDA code to HIP) and manage Docker images
for a better experience on AMD GPUs. This guide aims to help data scientists
and ML practitioners adapt their code for AMD GPUs.
For more use cases and recommendations, see the `ROCm Tensorflow blog posts <https://rocm.blogs.amd.com/blog/tag/tensorflow.html>`_.

View File

@@ -40,6 +40,7 @@ all_article_info_author = ""
article_pages = [
{"file": "about/release-notes", "os": ["linux", "windows"], "date": "2024-12-20"},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/tensorflow-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/jax-compatibility", "os": ["linux"]},
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},

View File

@@ -15,10 +15,9 @@ The following guides provide information on compatibility and supported
features for these ROCm-enabled deep learning frameworks.
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
* :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
.. * :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
.. image:: ../data/how-to/framework_install_2024_07_04.png