mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-08 06:13:59 -05:00
docs: Update vLLM benchmark doc for 20250812 Docker release (#5196)
This commit is contained in:
@@ -5,6 +5,7 @@ ACEs
|
||||
ACS
|
||||
AccVGPR
|
||||
AccVGPRs
|
||||
AITER
|
||||
ALU
|
||||
AllReduce
|
||||
AMD
|
||||
|
||||
@@ -147,6 +147,8 @@ article_pages = [
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.5-20250521", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.0.1-20250605", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.0.1-20250702", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250702", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250715", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
|
||||
|
||||
|
||||
@@ -0,0 +1,163 @@
|
||||
vllm_benchmark:
|
||||
unified_docker:
|
||||
latest:
|
||||
# TODO: update me
|
||||
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250715/images/sha256-4a429705fa95a58f6d20aceab43b1b76fa769d57f32d5d28bd3f4e030e2a78ea
|
||||
rocm_version: 6.4.1
|
||||
vllm_version: 0.9.1 (0.9.2.dev364+gb432b7a28.rocm641)
|
||||
pytorch_version: 2.7.0+gitf717b2a
|
||||
hipblaslt_version: 0.15
|
||||
model_groups:
|
||||
- group: Meta Llama
|
||||
tag: llama
|
||||
models:
|
||||
- model: Llama 3.1 8B
|
||||
mad_tag: pyt_vllm_llama-3.1-8b
|
||||
model_repo: meta-llama/Llama-3.1-8B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-8B
|
||||
precision: float16
|
||||
- model: Llama 3.1 70B
|
||||
mad_tag: pyt_vllm_llama-3.1-70b
|
||||
model_repo: meta-llama/Llama-3.1-70B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
|
||||
precision: float16
|
||||
- model: Llama 3.1 405B
|
||||
mad_tag: pyt_vllm_llama-3.1-405b
|
||||
model_repo: meta-llama/Llama-3.1-405B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
|
||||
precision: float16
|
||||
- model: Llama 2 7B
|
||||
mad_tag: pyt_vllm_llama-2-7b
|
||||
model_repo: meta-llama/Llama-2-7b-chat-hf
|
||||
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
|
||||
precision: float16
|
||||
- model: Llama 2 70B
|
||||
mad_tag: pyt_vllm_llama-2-70b
|
||||
model_repo: meta-llama/Llama-2-70b-chat-hf
|
||||
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
|
||||
precision: float16
|
||||
- model: Llama 3.1 8B FP8
|
||||
mad_tag: pyt_vllm_llama-3.1-8b_fp8
|
||||
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
|
||||
precision: float8
|
||||
- model: Llama 3.1 70B FP8
|
||||
mad_tag: pyt_vllm_llama-3.1-70b_fp8
|
||||
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
|
||||
precision: float8
|
||||
- model: Llama 3.1 405B FP8
|
||||
mad_tag: pyt_vllm_llama-3.1-405b_fp8
|
||||
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
|
||||
precision: float8
|
||||
- group: Mistral AI
|
||||
tag: mistral
|
||||
models:
|
||||
- model: Mixtral MoE 8x7B
|
||||
mad_tag: pyt_vllm_mixtral-8x7b
|
||||
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
|
||||
precision: float16
|
||||
- model: Mixtral MoE 8x22B
|
||||
mad_tag: pyt_vllm_mixtral-8x22b
|
||||
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
precision: float16
|
||||
- model: Mistral 7B
|
||||
mad_tag: pyt_vllm_mistral-7b
|
||||
model_repo: mistralai/Mistral-7B-Instruct-v0.3
|
||||
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
|
||||
precision: float16
|
||||
- model: Mixtral MoE 8x7B FP8
|
||||
mad_tag: pyt_vllm_mixtral-8x7b_fp8
|
||||
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- model: Mixtral MoE 8x22B FP8
|
||||
mad_tag: pyt_vllm_mixtral-8x22b_fp8
|
||||
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- model: Mistral 7B FP8
|
||||
mad_tag: pyt_vllm_mistral-7b_fp8
|
||||
model_repo: amd/Mistral-7B-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- group: Qwen
|
||||
tag: qwen
|
||||
models:
|
||||
- model: Qwen2 7B
|
||||
mad_tag: pyt_vllm_qwen2-7b
|
||||
model_repo: Qwen/Qwen2-7B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
|
||||
precision: float16
|
||||
- model: Qwen2 72B
|
||||
mad_tag: pyt_vllm_qwen2-72b
|
||||
model_repo: Qwen/Qwen2-72B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
|
||||
precision: float16
|
||||
- model: QwQ-32B
|
||||
mad_tag: pyt_vllm_qwq-32b
|
||||
model_repo: Qwen/QwQ-32B
|
||||
url: https://huggingface.co/Qwen/QwQ-32B
|
||||
precision: float16
|
||||
tunableop: true
|
||||
- group: Databricks DBRX
|
||||
tag: dbrx
|
||||
models:
|
||||
- model: DBRX Instruct
|
||||
mad_tag: pyt_vllm_dbrx-instruct
|
||||
model_repo: databricks/dbrx-instruct
|
||||
url: https://huggingface.co/databricks/dbrx-instruct
|
||||
precision: float16
|
||||
- model: DBRX Instruct FP8
|
||||
mad_tag: pyt_vllm_dbrx_fp8
|
||||
model_repo: amd/dbrx-instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
|
||||
precision: float8
|
||||
- group: Google Gemma
|
||||
tag: gemma
|
||||
models:
|
||||
- model: Gemma 2 27B
|
||||
mad_tag: pyt_vllm_gemma-2-27b
|
||||
model_repo: google/gemma-2-27b
|
||||
url: https://huggingface.co/google/gemma-2-27b
|
||||
precision: float16
|
||||
- group: Cohere
|
||||
tag: cohere
|
||||
models:
|
||||
- model: C4AI Command R+ 08-2024
|
||||
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
|
||||
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
|
||||
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
|
||||
precision: float16
|
||||
- model: C4AI Command R+ 08-2024 FP8
|
||||
mad_tag: pyt_vllm_command-r-plus_fp8
|
||||
model_repo: amd/c4ai-command-r-plus-FP8-KV
|
||||
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
|
||||
precision: float8
|
||||
- group: DeepSeek
|
||||
tag: deepseek
|
||||
models:
|
||||
- model: DeepSeek MoE 16B
|
||||
mad_tag: pyt_vllm_deepseek-moe-16b-chat
|
||||
model_repo: deepseek-ai/deepseek-moe-16b-chat
|
||||
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
|
||||
precision: float16
|
||||
- group: Microsoft Phi
|
||||
tag: phi
|
||||
models:
|
||||
- model: Phi-4
|
||||
mad_tag: pyt_vllm_phi-4
|
||||
model_repo: microsoft/phi-4
|
||||
url: https://huggingface.co/microsoft/phi-4
|
||||
- group: TII Falcon
|
||||
tag: falcon
|
||||
models:
|
||||
- model: Falcon 180B
|
||||
mad_tag: pyt_vllm_falcon-180b
|
||||
model_repo: tiiuae/falcon-180B
|
||||
url: https://huggingface.co/tiiuae/falcon-180B
|
||||
precision: float16
|
||||
@@ -2,11 +2,11 @@ vllm_benchmark:
|
||||
unified_docker:
|
||||
latest:
|
||||
# TODO: update me
|
||||
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250715/images/sha256-4a429705fa95a58f6d20aceab43b1b76fa769d57f32d5d28bd3f4e030e2a78ea
|
||||
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.10.0_20250812
|
||||
docker_hub_url:
|
||||
rocm_version: 6.4.1
|
||||
vllm_version: 0.9.1 (0.9.2.dev364+gb432b7a28.rocm641)
|
||||
pytorch_version: 2.7.0+gitf717b2a
|
||||
vllm_version: 0.10.0 (0.10.1.dev395+g340ea86df.rocm641)
|
||||
pytorch_version: 2.7.0+gitf717b2a (2.7.0+gitf717b2a)
|
||||
hipblaslt_version: 0.15
|
||||
model_groups:
|
||||
- group: Meta Llama
|
||||
@@ -27,11 +27,6 @@ vllm_benchmark:
|
||||
model_repo: meta-llama/Llama-3.1-405B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
|
||||
precision: float16
|
||||
- model: Llama 2 7B
|
||||
mad_tag: pyt_vllm_llama-2-7b
|
||||
model_repo: meta-llama/Llama-2-7b-chat-hf
|
||||
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
|
||||
precision: float16
|
||||
- model: Llama 2 70B
|
||||
mad_tag: pyt_vllm_llama-2-70b
|
||||
model_repo: meta-llama/Llama-2-70b-chat-hf
|
||||
@@ -65,11 +60,6 @@ vllm_benchmark:
|
||||
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
precision: float16
|
||||
- model: Mistral 7B
|
||||
mad_tag: pyt_vllm_mistral-7b
|
||||
model_repo: mistralai/Mistral-7B-Instruct-v0.3
|
||||
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
|
||||
precision: float16
|
||||
- model: Mixtral MoE 8x7B FP8
|
||||
mad_tag: pyt_vllm_mixtral-8x7b_fp8
|
||||
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
|
||||
@@ -80,72 +70,15 @@ vllm_benchmark:
|
||||
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- model: Mistral 7B FP8
|
||||
mad_tag: pyt_vllm_mistral-7b_fp8
|
||||
model_repo: amd/Mistral-7B-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- group: Qwen
|
||||
tag: qwen
|
||||
models:
|
||||
- model: Qwen2 7B
|
||||
mad_tag: pyt_vllm_qwen2-7b
|
||||
model_repo: Qwen/Qwen2-7B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
|
||||
precision: float16
|
||||
- model: Qwen2 72B
|
||||
mad_tag: pyt_vllm_qwen2-72b
|
||||
model_repo: Qwen/Qwen2-72B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
|
||||
precision: float16
|
||||
- model: QwQ-32B
|
||||
mad_tag: pyt_vllm_qwq-32b
|
||||
model_repo: Qwen/QwQ-32B
|
||||
url: https://huggingface.co/Qwen/QwQ-32B
|
||||
precision: float16
|
||||
tunableop: true
|
||||
- group: Databricks DBRX
|
||||
tag: dbrx
|
||||
models:
|
||||
- model: DBRX Instruct
|
||||
mad_tag: pyt_vllm_dbrx-instruct
|
||||
model_repo: databricks/dbrx-instruct
|
||||
url: https://huggingface.co/databricks/dbrx-instruct
|
||||
precision: float16
|
||||
- model: DBRX Instruct FP8
|
||||
mad_tag: pyt_vllm_dbrx_fp8
|
||||
model_repo: amd/dbrx-instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
|
||||
precision: float8
|
||||
- group: Google Gemma
|
||||
tag: gemma
|
||||
models:
|
||||
- model: Gemma 2 27B
|
||||
mad_tag: pyt_vllm_gemma-2-27b
|
||||
model_repo: google/gemma-2-27b
|
||||
url: https://huggingface.co/google/gemma-2-27b
|
||||
precision: float16
|
||||
- group: Cohere
|
||||
tag: cohere
|
||||
models:
|
||||
- model: C4AI Command R+ 08-2024
|
||||
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
|
||||
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
|
||||
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
|
||||
precision: float16
|
||||
- model: C4AI Command R+ 08-2024 FP8
|
||||
mad_tag: pyt_vllm_command-r-plus_fp8
|
||||
model_repo: amd/c4ai-command-r-plus-FP8-KV
|
||||
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
|
||||
precision: float8
|
||||
- group: DeepSeek
|
||||
tag: deepseek
|
||||
models:
|
||||
- model: DeepSeek MoE 16B
|
||||
mad_tag: pyt_vllm_deepseek-moe-16b-chat
|
||||
model_repo: deepseek-ai/deepseek-moe-16b-chat
|
||||
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
|
||||
precision: float16
|
||||
- group: Microsoft Phi
|
||||
tag: phi
|
||||
models:
|
||||
@@ -153,11 +86,3 @@ vllm_benchmark:
|
||||
mad_tag: pyt_vllm_phi-4
|
||||
model_repo: microsoft/phi-4
|
||||
url: https://huggingface.co/microsoft/phi-4
|
||||
- group: TII Falcon
|
||||
tag: falcon
|
||||
models:
|
||||
- model: Falcon 180B
|
||||
mad_tag: pyt_vllm_falcon-180b
|
||||
model_repo: tiiuae/falcon-180B
|
||||
url: https://huggingface.co/tiiuae/falcon-180B
|
||||
precision: float16
|
||||
|
||||
@@ -14,7 +14,7 @@ vLLM inference performance testing
|
||||
This documentation does not reflect the latest version of ROCm vLLM
|
||||
inference performance documentation. See :doc:`../vllm` for the latest version.
|
||||
|
||||
.. _vllm-benchmark-unified-docker:
|
||||
.. _vllm-benchmark-unified-docker-702:
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.9.1_20250702-benchmark-models.yaml
|
||||
|
||||
@@ -77,7 +77,7 @@ vLLM inference performance testing
|
||||
</div>
|
||||
</div>
|
||||
|
||||
.. _vllm-benchmark-vllm:
|
||||
.. _vllm-benchmark-vllm-702:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
@@ -159,7 +159,7 @@ vLLM inference performance testing
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
.. _vllm-benchmark-mad:
|
||||
.. _vllm-benchmark-mad-702:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
@@ -0,0 +1,450 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
|
||||
ROCm vLLM Docker image.
|
||||
:keywords: model, MAD, automation, dashboarding, validate
|
||||
|
||||
**********************************
|
||||
vLLM inference performance testing
|
||||
**********************************
|
||||
|
||||
.. caution::
|
||||
|
||||
This documentation does not reflect the latest version of ROCm vLLM
|
||||
inference performance documentation. See :doc:`../vllm` for the latest version.
|
||||
|
||||
.. _vllm-benchmark-unified-docker-715:
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.9.1_20250715-benchmark_models.yaml
|
||||
|
||||
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
|
||||
{% set model_groups = data.vllm_benchmark.model_groups %}
|
||||
|
||||
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
|
||||
a prebuilt, optimized environment for validating large language model (LLM)
|
||||
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
|
||||
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
|
||||
accelerators and includes the following components:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Software component
|
||||
- Version
|
||||
|
||||
* - `ROCm <https://github.com/ROCm/ROCm>`__
|
||||
- {{ unified_docker.rocm_version }}
|
||||
|
||||
* - `vLLM <https://docs.vllm.ai/en/latest>`__
|
||||
- {{ unified_docker.vllm_version }}
|
||||
|
||||
* - `PyTorch <https://github.com/ROCm/pytorch>`__
|
||||
- {{ unified_docker.pytorch_version }}
|
||||
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`__
|
||||
- {{ unified_docker.hipblaslt_version }}
|
||||
|
||||
With this Docker image, you can quickly test the :ref:`expected
|
||||
inference performance numbers <vllm-benchmark-performance-measurements>` for
|
||||
MI300X series accelerators.
|
||||
|
||||
What's new
|
||||
==========
|
||||
|
||||
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
|
||||
|
||||
* The ``--compilation-config-parameter`` is no longer required as its options are now enabled by default.
|
||||
This parameter has been removed from the benchmarking script.
|
||||
|
||||
* Resolved Llama 3.1 405 B custom all-reduce issue, eliminating the need for ``--disable-custom-all-reduce``.
|
||||
This parameter has been removed from the benchmarking script.
|
||||
|
||||
* Fixed a ``+rms_norm`` custom kernel issue.
|
||||
|
||||
* Added quick reduce functionality. Set ``VLLM_ROCM_QUICK_REDUCE_QUANTIZATION=FP`` to enable; supported modes are ``FP``, ``INT8``, ``INT6``, ``INT4``.
|
||||
|
||||
* Implemented a workaround to potentially mitigate GPU crashes experienced with the Command R+ model, pending a driver fix.
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
|
||||
{% set model_groups = data.vllm_benchmark.model_groups %}
|
||||
|
||||
.. _vllm-benchmark-available-models-715:
|
||||
|
||||
The following models are supported for inference performance benchmarking
|
||||
with vLLM and ROCm. Some instructions, commands, and recommendations in this
|
||||
documentation might vary by model -- select one to get started.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
||||
<div class="row">
|
||||
<div class="col-2 me-2 model-param-head">Model group</div>
|
||||
<div class="row col-10">
|
||||
{% for model_group in model_groups %}
|
||||
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row mt-1">
|
||||
<div class="col-2 me-2 model-param-head">Model</div>
|
||||
<div class="row col-10">
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if models|length % 3 == 0 %}
|
||||
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% else %}
|
||||
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
.. _vllm-benchmark-vllm-715:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{model.mad_tag}}
|
||||
|
||||
.. note::
|
||||
|
||||
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
|
||||
Some models require access authorization prior to use via an external license agreement through a third party.
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. note::
|
||||
|
||||
vLLM is a toolkit and library for LLM inference and serving. AMD implements
|
||||
high-performance custom kernels and modules in vLLM to enhance performance.
|
||||
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
|
||||
more information.
|
||||
|
||||
.. _vllm-benchmark-performance-measurements-715:
|
||||
|
||||
Performance measurements
|
||||
========================
|
||||
|
||||
To evaluate performance, the
|
||||
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
|
||||
page provides reference throughput and latency measurements for inferencing popular AI models.
|
||||
|
||||
.. important::
|
||||
|
||||
The performance data presented in
|
||||
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
|
||||
only reflects the latest version of this inference benchmarking environment.
|
||||
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
Before running AI workloads, it's important to validate that your AMD hardware is configured
|
||||
correctly and performing optimally.
|
||||
|
||||
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
|
||||
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
|
||||
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
|
||||
before starting training.
|
||||
|
||||
To test for optimal performance, consult the recommended :ref:`System health benchmarks
|
||||
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
||||
system's configuration.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
|
||||
{% set model_groups = data.vllm_benchmark.model_groups %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
Benchmarking
|
||||
============
|
||||
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
.. _vllm-benchmark-mad-715:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{model.mad_tag}}
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: MAD-integrated benchmarking
|
||||
|
||||
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
||||
directory and install the required packages on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
|
||||
2. Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
|
||||
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
madengine run \
|
||||
--tags {{model.mad_tag}} \
|
||||
--keep-model-dir \
|
||||
--live-output \
|
||||
--timeout 28800
|
||||
|
||||
MAD launches a Docker container with the name
|
||||
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
|
||||
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
|
||||
|
||||
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
|
||||
to collect latency and throughput performance data, you can also change the benchmarking
|
||||
parameters. See the standalone benchmarking tab for more information.
|
||||
|
||||
{% if model.tunableop %}
|
||||
|
||||
.. note::
|
||||
|
||||
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
|
||||
TunableOp automatically explores different implementations and configurations of certain PyTorch
|
||||
operators to find the fastest one for your hardware.
|
||||
|
||||
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
|
||||
(see
|
||||
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__).
|
||||
To enable it, include the ``--tunableop on`` argument in your
|
||||
run.
|
||||
|
||||
Enabling TunableOp triggers a two-pass run -- a warm-up followed
|
||||
by the performance-collection run.
|
||||
|
||||
{% endif %}
|
||||
|
||||
.. tab-item:: Standalone benchmarking
|
||||
|
||||
.. rubric:: Download the Docker image and required scripts
|
||||
|
||||
1. Run the vLLM benchmark tool independently by starting the
|
||||
`Docker container <{{ unified_docker.docker_hub_url }}>`_
|
||||
as shown in the following snippet.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
docker run -it \
|
||||
--device=/dev/kfd \
|
||||
--device=/dev/dri \
|
||||
--group-add video \
|
||||
--shm-size 16G \
|
||||
--security-opt seccomp=unconfined \
|
||||
--security-opt apparmor=unconfined \
|
||||
--cap-add=SYS_PTRACE \
|
||||
-v $(pwd):/workspace \
|
||||
--env HUGGINGFACE_HUB_CACHE=/workspace \
|
||||
--name test \
|
||||
{{ unified_docker.pull_tag }}
|
||||
|
||||
2. In the Docker container, clone the ROCm MAD repository and navigate to the
|
||||
benchmark scripts directory at ``~/MAD/scripts/vllm``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/vllm
|
||||
|
||||
3. To start the benchmark, use the following command with the appropriate options.
|
||||
|
||||
.. dropdown:: Benchmark options
|
||||
:open:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:align: center
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* - ``$test_option``
|
||||
- latency
|
||||
- Measure decoding token latency
|
||||
|
||||
* -
|
||||
- throughput
|
||||
- Measure token generation throughput
|
||||
|
||||
* -
|
||||
- all
|
||||
- Measure both throughput and latency
|
||||
|
||||
* - ``$num_gpu``
|
||||
- 1 or 8
|
||||
- Number of GPUs
|
||||
|
||||
* - ``$datatype``
|
||||
- ``float16`` or ``float8``
|
||||
- Data type
|
||||
|
||||
The input sequence length, output sequence length, and tensor parallel (TP) are
|
||||
already configured. You don't need to specify them with this script.
|
||||
|
||||
Command:
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s $test_option \
|
||||
-m {{model.model_repo}} \
|
||||
-g $num_gpu \
|
||||
-d {{model.precision}}
|
||||
|
||||
.. note::
|
||||
|
||||
For best performance, it's recommend to run with ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``.
|
||||
|
||||
If you encounter the following error, pass your access-authorized Hugging
|
||||
Face token to the gated models.
|
||||
|
||||
.. code-block::
|
||||
|
||||
OSError: You are trying to access a gated repo.
|
||||
|
||||
# pass your HF_TOKEN
|
||||
export HF_TOKEN=$your_personal_hf_token
|
||||
|
||||
.. rubric:: Benchmarking examples
|
||||
|
||||
Here are some examples of running the benchmark with various options:
|
||||
|
||||
* Latency benchmark
|
||||
|
||||
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s latency \
|
||||
-m {{model.model_repo}} \
|
||||
-g 8 \
|
||||
-d {{model.precision}}
|
||||
|
||||
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
|
||||
|
||||
* Throughput benchmark
|
||||
|
||||
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s throughput \
|
||||
-m {{model.model_repo}} \
|
||||
-g 8 \
|
||||
-d {{model.precision}}
|
||||
|
||||
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<style>
|
||||
mjx-container[jax="CHTML"][display="true"] {
|
||||
text-align: left;
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
|
||||
.. note::
|
||||
|
||||
Throughput is calculated as:
|
||||
|
||||
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
|
||||
|
||||
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
Advanced usage
|
||||
==============
|
||||
|
||||
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
|
||||
see the developer's guide at `<https://github.com/ROCm/vllm/tree/f94ec9beeca1071cc34f9d1e206d8c7f3ac76129/docs/dev-docker>`__.
|
||||
|
||||
Reproducing the Docker image
|
||||
----------------------------
|
||||
|
||||
To reproduce this ROCm/vLLM Docker image release, follow these steps:
|
||||
|
||||
1. Clone the `vLLM repository <https://github.com/ROCm/vllm>`__.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/vllm.git
|
||||
|
||||
2. Checkout the specific release commit.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cd vllm
|
||||
git checkout b432b7a285aa0dcb9677380936ffa74931bb6d6f
|
||||
|
||||
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
Known issues and workarounds
|
||||
============================
|
||||
|
||||
AITER does not support FP8 KV cache yet.
|
||||
|
||||
Further reading
|
||||
===============
|
||||
|
||||
- To learn more about the options for latency and throughput benchmark scripts,
|
||||
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
|
||||
|
||||
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
|
||||
|
||||
- To learn more about system settings and management practices to configure your system for
|
||||
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
|
||||
|
||||
- For application performance optimization strategies for HPC and AI workloads,
|
||||
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
|
||||
|
||||
- To learn how to run community models from Hugging Face on AMD GPUs, see
|
||||
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
|
||||
|
||||
- To learn how to fine-tune LLMs and optimize inference, see
|
||||
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
|
||||
|
||||
- For a list of other ready-made Docker images for AI with ROCm, see
|
||||
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
See :doc:`vllm-history` to find documentation for previous releases
|
||||
of the ``ROCm/vllm`` Docker image.
|
||||
@@ -16,14 +16,23 @@ previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.
|
||||
- Components
|
||||
- Resources
|
||||
|
||||
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715``
|
||||
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.0_20250812``
|
||||
(latest)
|
||||
-
|
||||
* ROCm 6.4.1
|
||||
* vLLM 0.10.0
|
||||
* PyTorch 2.7.0
|
||||
-
|
||||
* :doc:`Documentation <../vllm>`
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.0_20250812/images/sha256-4c277ad39af3a8c9feac9b30bf78d439c74d9b4728e788a419d3f1d0c30cacaa>`__
|
||||
|
||||
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715``
|
||||
-
|
||||
* ROCm 6.4.1
|
||||
* vLLM 0.9.1
|
||||
* PyTorch 2.7.0
|
||||
-
|
||||
* :doc:`Documentation <../vllm>`
|
||||
* :doc:`Documentation <vllm-0.9.1-20250715>`
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250715/images/sha256-4a429705fa95a58f6d20aceab43b1b76fa769d57f32d5d28bd3f4e030e2a78ea>`__
|
||||
|
||||
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.1_20250702``
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
vLLM inference performance testing
|
||||
**********************************
|
||||
|
||||
.. _vllm-benchmark-unified-docker:
|
||||
.. _vllm-benchmark-unified-docker-812:
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
@@ -47,17 +47,11 @@ What's new
|
||||
|
||||
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <previous-versions/vllm-history>`.
|
||||
|
||||
* The ``--compilation-config-parameter`` is no longer required as its options are now enabled by default.
|
||||
This parameter has been removed from the benchmarking script.
|
||||
* Upgraded to vLLM v0.10.
|
||||
|
||||
* Resolved Llama 3.1 405 B custom all-reduce issue, eliminating the need for ``--disable-custom-all-reduce``.
|
||||
This parameter has been removed from the benchmarking script.
|
||||
* FP8 KV cache support via AITER.
|
||||
|
||||
* Fixed a ``+rms_norm`` custom kernel issue.
|
||||
|
||||
* Added quick reduce functionality. Set ``VLLM_ROCM_QUICK_REDUCE_QUANTIZATION=FP`` to enable; supported modes are ``FP``, ``INT8``, ``INT6``, ``INT4``.
|
||||
|
||||
* Implemented a workaround to potentially mitigate GPU crashes experienced with the Command R+ model, pending a driver fix.
|
||||
* Full graph capture support via AITER.
|
||||
|
||||
Supported models
|
||||
================
|
||||
@@ -67,7 +61,7 @@ Supported models
|
||||
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
|
||||
{% set model_groups = data.vllm_benchmark.model_groups %}
|
||||
|
||||
.. _vllm-benchmark-available-models:
|
||||
.. _vllm-benchmark-available-models-812:
|
||||
|
||||
The following models are supported for inference performance benchmarking
|
||||
with vLLM and ROCm. Some instructions, commands, and recommendations in this
|
||||
@@ -102,7 +96,7 @@ Supported models
|
||||
</div>
|
||||
</div>
|
||||
|
||||
.. _vllm-benchmark-vllm:
|
||||
.. _vllm-benchmark-vllm-812:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
@@ -124,14 +118,14 @@ Supported models
|
||||
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
|
||||
more information.
|
||||
|
||||
.. _vllm-benchmark-performance-measurements:
|
||||
.. _vllm-benchmark-performance-measurements-812:
|
||||
|
||||
Performance measurements
|
||||
========================
|
||||
|
||||
To evaluate performance, the
|
||||
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
|
||||
page provides reference throughput and latency measurements for inferencing popular AI models.
|
||||
page provides reference throughput and serving measurements for inferencing popular AI models.
|
||||
|
||||
.. important::
|
||||
|
||||
@@ -176,7 +170,7 @@ system's configuration.
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
.. _vllm-benchmark-mad:
|
||||
.. _vllm-benchmark-mad-812:
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
@@ -209,12 +203,15 @@ system's configuration.
|
||||
--timeout 28800
|
||||
|
||||
MAD launches a Docker container with the name
|
||||
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
|
||||
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
|
||||
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
|
||||
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
|
||||
and ``{{ model.mad_tag }}_serving.csv``.
|
||||
|
||||
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
|
||||
to collect latency and throughput performance data, you can also change the benchmarking
|
||||
parameters. See the standalone benchmarking tab for more information.
|
||||
Although the :ref:`available models
|
||||
<vllm-benchmark-available-models>` are preconfigured to collect
|
||||
offline throughput and online serving performance data, you can
|
||||
also change the benchmarking parameters. See the standalone
|
||||
benchmarking tab for more information.
|
||||
|
||||
{% if model.tunableop %}
|
||||
|
||||
@@ -224,14 +221,12 @@ system's configuration.
|
||||
TunableOp automatically explores different implementations and configurations of certain PyTorch
|
||||
operators to find the fastest one for your hardware.
|
||||
|
||||
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
|
||||
(see
|
||||
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__).
|
||||
To enable it, include the ``--tunableop on`` argument in your
|
||||
run.
|
||||
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
|
||||
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
|
||||
the ``--tunableop on`` argument in your run.
|
||||
|
||||
Enabling TunableOp triggers a two-pass run -- a warm-up followed
|
||||
by the performance-collection run.
|
||||
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
|
||||
performance-collection run.
|
||||
|
||||
{% endif %}
|
||||
|
||||
@@ -269,6 +264,13 @@ system's configuration.
|
||||
|
||||
3. To start the benchmark, use the following command with the appropriate options.
|
||||
|
||||
.. code-block::
|
||||
|
||||
./run.sh \
|
||||
--config $CONFIG_CSV \
|
||||
--model_repo {{ model.model_repo }} \
|
||||
<overrides>
|
||||
|
||||
.. dropdown:: Benchmark options
|
||||
:open:
|
||||
|
||||
@@ -280,42 +282,40 @@ system's configuration.
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* - ``$test_option``
|
||||
- latency
|
||||
- Measure decoding token latency
|
||||
* - ``--config``
|
||||
- ``configs/default.csv``
|
||||
- Run configs from the CSV for the chosen model repo and benchmark.
|
||||
|
||||
* -
|
||||
- throughput
|
||||
- Measure token generation throughput
|
||||
- ``configs/extended.csv``
|
||||
-
|
||||
|
||||
* -
|
||||
- all
|
||||
- Measure both throughput and latency
|
||||
- ``configs/performance.csv``
|
||||
-
|
||||
|
||||
* - ``$num_gpu``
|
||||
- 1 or 8
|
||||
- Number of GPUs
|
||||
* - ``--benchmark``
|
||||
- ``throughput``
|
||||
- Measure offline end-to-end throughput.
|
||||
|
||||
* - ``$datatype``
|
||||
- ``float16`` or ``float8``
|
||||
- Data type
|
||||
* -
|
||||
- ``serving``
|
||||
- Measure online serving performance.
|
||||
|
||||
* -
|
||||
- ``all``
|
||||
- Measure both throughput and serving.
|
||||
|
||||
* - `<overrides>`
|
||||
- See `run.sh <https://github.com/ROCm/MAD/blob/develop/scripts/vllm/run.sh>`__ for more info.
|
||||
- Additional overrides to the config CSV.
|
||||
|
||||
The input sequence length, output sequence length, and tensor parallel (TP) are
|
||||
already configured. You don't need to specify them with this script.
|
||||
|
||||
Command:
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s $test_option \
|
||||
-m {{model.model_repo}} \
|
||||
-g $num_gpu \
|
||||
-d {{model.precision}}
|
||||
|
||||
.. note::
|
||||
|
||||
For best performance, it's recommend to run with ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``.
|
||||
For best performance, it's recommended to run with ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``.
|
||||
|
||||
If you encounter the following error, pass your access-authorized Hugging
|
||||
Face token to the gated models.
|
||||
@@ -331,33 +331,33 @@ system's configuration.
|
||||
|
||||
Here are some examples of running the benchmark with various options:
|
||||
|
||||
* Latency benchmark
|
||||
|
||||
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s latency \
|
||||
-m {{model.model_repo}} \
|
||||
-g 8 \
|
||||
-d {{model.precision}}
|
||||
|
||||
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
|
||||
|
||||
* Throughput benchmark
|
||||
|
||||
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./vllm_benchmark_report.sh \
|
||||
-s throughput \
|
||||
-m {{model.model_repo}} \
|
||||
-g 8 \
|
||||
-d {{model.precision}}
|
||||
export MAD_MODEL_NAME={{ model.mad_tag }}
|
||||
./run.sh \
|
||||
--config configs/default.csv \
|
||||
--model_repo {{model.model_repo}} \
|
||||
--benchmark throughput
|
||||
|
||||
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
|
||||
Find the throughput benchmark report at ``./{{ model.mad_tag }}_throughput.csv``.
|
||||
|
||||
* Serving benchmark
|
||||
|
||||
Use this command to benchmark the serving performance of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
|
||||
|
||||
.. code-block::
|
||||
|
||||
export MAD_MODEL_NAME={{ model.mad_tag }}
|
||||
./run.sh \
|
||||
--config configs/default.csv \
|
||||
--model_repo {{model.model_repo}} \
|
||||
--benchmark serving
|
||||
|
||||
Find the serving benchmark report at ``./{{ model.mad_tag }}_serving.csv``.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
@@ -400,7 +400,7 @@ To reproduce this ROCm/vLLM Docker image release, follow these steps:
|
||||
.. code-block:: shell
|
||||
|
||||
cd vllm
|
||||
git checkout b432b7a285aa0dcb9677380936ffa74931bb6d6f
|
||||
git checkout 340ea86dfe5955d6f9a9e767d6abab5aacf2c978
|
||||
|
||||
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
|
||||
|
||||
@@ -408,11 +408,6 @@ To reproduce this ROCm/vLLM Docker image release, follow these steps:
|
||||
|
||||
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
Known issues and workarounds
|
||||
============================
|
||||
|
||||
AITER does not support FP8 KV cache yet.
|
||||
|
||||
Further reading
|
||||
===============
|
||||
|
||||
|
||||
Reference in New Issue
Block a user