Merge pull request #4240 from peterjunpark/docs/6.3.1

Add JAX compatibility and docs fixes to 6.3.1
This commit is contained in:
Peter Park
2025-01-07 11:58:22 -05:00
committed by GitHub
10 changed files with 721 additions and 41 deletions

View File

@@ -26,6 +26,7 @@ ASm
ATI
AddressSanitizer
AlexNet
Andrej
Arb
Autocast
BARs
@@ -187,15 +188,17 @@ Interop
Intersphinx
Intra
Ioffe
JAX's
Jinja
JSON
Jupyter
KFD
KFDTest
KiB
KMD
KV
KVM
Karpathy's
KiB
Keras
Khronos
LAPACK
@@ -288,6 +291,7 @@ OpenVX
OpenXLA
Oversubscription
PagedAttention
Pallas
PCC
PCI
PCIe
@@ -662,6 +666,7 @@ mutex
mvffr
namespace
namespaces
nanoGPT
num
numref
ocl
@@ -673,7 +678,9 @@ optimizers
os
oversubscription
pageable
pallas
parallelization
parallelizing
parameterization
passthrough
perfcounter
@@ -761,6 +768,7 @@ runtimes
sL
scalability
scalable
scipy
seealso
sendmsg
seqs

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 - 2024 Advanced Micro Devices, Inc. All rights reserved.
Copyright (c) 2023 - 2025 Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -275,7 +275,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<th rowspan="7">System management</th>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.1/index.html">AMD SMI</a></td>
<td>24.7.1&nbsp;&Rightarrow;&nbsp;<a href="#amd-smi-24-7-1">24.7.1</a></td>
<td><a href="https://github.com/ROCm/rocm-cmake"><i class="fab fa-github fa-lg"></i></a></td>
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.1/index.html">ROCm Data Center Tool</a></td>

View File

@@ -25,15 +25,15 @@ additional licenses. Please review individual repositories for more information.
<!-- spellcheck-disable -->
| Component | License |
|:---------------------|:-------------------------|
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/develop/LICENCE) |
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/develop/LICENSE) |
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/LICENCE) |
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/amd-staging/LICENSE) |
| [aomp](https://github.com/ROCm/aomp/) | [Apache 2.0](https://github.com/ROCm/aomp/blob/aomp-dev/LICENSE) |
| [aomp-extras](https://github.com/ROCm/aomp-extras/) | [MIT](https://github.com/ROCm/aomp-extras/blob/aomp-dev/LICENSE) |
| [Code Object Manager (Comgr)](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/comgr) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/comgr/LICENSE.txt) |
| [Composable Kernel](https://github.com/ROCm/composable_kernel) | [MIT](https://github.com/ROCm/composable_kernel/blob/develop/LICENSE) |
| [half](https://github.com/ROCm/half/) | [MIT](https://github.com/ROCm/half/blob/rocm/LICENSE.txt) |
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/develop/LICENSE.txt) |
| [hipamd](https://github.com/ROCm/clr/tree/develop/hipamd) | [MIT](https://github.com/ROCm/clr/blob/develop/hipamd/LICENSE.txt) |
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/amd-staging/LICENSE.txt) |
| [hipamd](https://github.com/ROCm/clr/tree/amd-staging/hipamd) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/hipamd/LICENSE.txt) |
| [hipBLAS](https://github.com/ROCm/hipBLAS/) | [MIT](https://github.com/ROCm/hipBLAS/blob/develop/LICENSE.md) |
| [hipBLASLt](https://github.com/ROCm/hipBLASLt/) | [MIT](https://github.com/ROCm/hipBLASLt/blob/develop/LICENSE.md) |
| [HIPCC](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc) | [MIT](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/hipcc/LICENSE.txt) |
@@ -58,7 +58,7 @@ additional licenses. Please review individual repositories for more information.
| [ROCdbgapi](https://github.com/ROCm/ROCdbgapi/) | [MIT](https://github.com/ROCm/ROCdbgapi/blob/amd-staging/LICENSE.txt) |
| [rocDecode](https://github.com/ROCm/rocDecode) | [MIT](https://github.com/ROCm/rocDecode/blob/develop/LICENSE) |
| [rocFFT](https://github.com/ROCm/rocFFT/) | [MIT](https://github.com/ROCm/rocFFT/blob/develop/LICENSE.md) |
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-master/COPYING3) |
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-staging/COPYING3) |
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
@@ -67,20 +67,20 @@ additional licenses. Please review individual repositories for more information.
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
| [ROCm Compute Profiler](https://github.com/ROCm/rocprofiler-compute) | [MIT](https://github.com/ROCm/rocprofiler-compute/blob/amd-staging/LICENSE) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/develop/LICENSE) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/amd-staging/LICENSE) |
| [ROCm-Device-Libs](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/device-libs) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/device-libs/LICENSE.TXT) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/develop/opencl) | [MIT](https://github.com/ROCm/clr/blob/develop/opencl/LICENSE.txt) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/amd-staging/opencl) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/opencl/LICENSE.txt) |
| [ROCm Performance Primitives (RPP)](https://github.com/ROCm/rpp) | [MIT](https://github.com/ROCm/rpp/blob/develop/LICENSE) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/develop/License.txt) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/amd-staging/License.txt) |
| [ROCm Systems Profiler](https://github.com/ROCm/rocprofiler-systems) | [MIT](https://github.com/ROCm/rocprofiler-systems/blob/amd-staging/LICENSE) |
| [ROCm Validation Suite](https://github.com/ROCm/ROCmValidationSuite/) | [MIT](https://github.com/ROCm/ROCmValidationSuite/blob/master/LICENSE) |
| [rocPRIM](https://github.com/ROCm/rocPRIM/) | [MIT](https://github.com/ROCm/rocPRIM/blob/develop/LICENSE.txt) |
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-master/LICENSE) |
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-staging/LICENSE) |
| [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) | [MIT](https://github.com/ROCm/rocprofiler-sdk/blob/amd-mainline/LICENSE) |
| [rocPyDecode](https://github.com/ROCm/rocPyDecode) | [MIT](https://github.com/ROCm/rocPyDecode/blob/develop/LICENSE) |
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/master/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |
@@ -99,7 +99,7 @@ repositories to distinguish from open sourced packages.
The following additional terms and conditions apply to your use of ROCm technical documentation.
```
©2023 - 2024 Advanced Micro Devices, Inc. All rights reserved.
©2023 - 2025 Advanced Micro Devices, Inc. All rights reserved.
The information presented in this document is for informational purposes only
and may contain technical inaccuracies, omissions, and typographical errors. The

View File

@@ -24,7 +24,7 @@ ROCm Version,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,
1 ROCm Version 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
24 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60:
25 :doc:`PyTorch <../compatibility/pytorch-compatibility>` 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
26 :doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>` 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
27 :doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>` 0.4.35 0.4.31 0.4.35 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
28 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
29
30 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:

View File

@@ -47,9 +47,9 @@ compatibility and system requirements.
,gfx908,gfx908,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,

View File

@@ -0,0 +1,664 @@
.. meta::
:description: JAX compatibility
:keywords: GPU, JAX compatibility
*******************************************************************************
JAX compatibility
*******************************************************************************
JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
JAX uses composable transformations of Python and NumPy through just-in-time (JIT) compilation,
automatic vectorization, and parallelization. To learn about JAX, including profiling and
optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
ROCm support for JAX is upstreamed and users can build the official source code with ROCm
support:
- ROCm JAX release:
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>` with ROCm and JAX pre-installed.
- ROCm JAX repository: `<https://github.com/ROCm/jax>`__
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
to get started.
- Official JAX release:
- Official JAX repository: `<https://github.com/jax-ml/jax>`__
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in the JAX
documentation.
.. note::
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
.. _jax-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `JAX <https://hub.docker.com/r/rocm/jax/>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click |docker-icon|
to see the image on Docker Hub.
.. list-table:: JAX Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.12/images/sha256-085a0cd5207110922f1fca684933a9359c66d42db6c5aba4760ed5214fdabde0"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- Ubuntu 24.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.10/images/sha256-f88eddad8f47856d8640b694da4da347ffc1750d7363175ab7dc872e82b43324"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- Ubuntu 22.04
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
AMD publishes community `JAX <https://hub.docker.com/r/rocm/jax-community>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/apt/6.2.4/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.12.7/images/sha256-a6032d89c07573b84c44e42c637bf9752b1b7cd2a222d39344e603d8f4c63beb?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.11.10/images/sha256-d462f7e445545fba2f3b92234a21beaa52fe6c5f550faabcfdcd1bf53486d991?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.11.10 <https://www.python.org/downloads/release/python-31110/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.10.15/images/sha256-6f2d4d0f529378d9572f0e8cfdcbc101d1e1d335bd626bb3336fff87814e9d60?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.15 <https://www.python.org/downloads/release/python-31015/>`_
Critical ROCm libraries for JAX
================================================================================
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
``jax.lax.dot_general``, operations like ``jax.numpy.dot``, which
involve vector and matrix computations and batch matrix multiplications
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- Matrix multiplication in ``jax.numpy.matmul`` or ``jax.lax.dot``, and
the XLA (Accelerated Linear Algebra) use hipBLASLt for optimized matrix
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
``jax.numpy.prod``, ``jax.numpy.max`` and ``jax.numpy.min``), prefix sum
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
Supported and unsupported features
===============================================================================
The following table maps GPU-accelerated JAX modules to their supported
ROCm and JAX versions.
.. list-table::
:header-rows: 1
* - Module
- Description
- Since JAX
- Since ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
- 5.0.0
* - ``jax.scipy``
- Provides GPU-accelerated and differentiable implementations of many
functions from the SciPy library, leveraging JAX's transformations
(e.g., ``grad``, ``jit``, ``vmap``).
- 0.1.56
- 5.0.0
* - ``jax.lax``
- A library of primitives operations that underpins libraries such as
``jax.numpy.`` Transformation rules, such as Jacobian-vector product
(JVP) and batching rules, are typically defined as transformations on
``jax.lax`` primitives.
- 0.1.57
- 5.0.0
* - ``jax.random``
- Provides a number of routines for deterministic generation of sequences
of pseudorandom numbers.
- 0.1.58
- 5.0.0
* - ``jax.sharding``
- Allows to define partitioning and distributing arrays across multiple
devices.
- 0.3.20
- 5.1.0
* - ``jax.dlpack``
- For exchanging tensor data between JAX and other libraries that support the
DLPack standard.
- 0.1.57
- 5.0.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.dtypes``
- Provides utilities for working with and managing data types in JAX
arrays and computations.
- 0.1.66
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
- 5.0.0
* - ``jax.nn``
- Contains common functions for neural network libraries.
- 0.1.56
- 5.0.0
* - ``jax.ops``
- Computes the minimum, maximum, sum or product within segments of an
array.
- 0.1.57
- 5.0.0
* - ``jax.profiler``
- Contains JAXs tracing and time profiling features.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.tree``
- Provides utilities for working with tree-like container data structures.
- 0.4.26
- 5.6.0
* - ``jax.tree_util``
- Provides utilities for working with nested data structures, or
``pytrees``.
- 0.1.65
- 5.0.0
* - ``jax.typing``
- Provides JAX-specific static type annotations.
- 0.3.18
- 5.1.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
components.
- 0.4.15
- 5.5.0
* - ``jax.example_libraries``
- Serves as a collection of example code and libraries that demonstrate
various capabilities of JAX.
- 0.1.74
- 5.0.0
* - ``jax.experimental``
- Namespace for experimental features and APIs that are in development or
are not yet fully stable for production use.
- 0.1.56
- 5.0.0
* - ``jax.lib``
- Set of internal tools and types for bridging between JAXs Python
frontend and its XLA backend.
- 0.4.6
- 5.3.0
* - ``jax_triton``
- Library that integrates the Triton deep learning compiler with JAX.
- jax_triton 0.2.0
- 6.2.4
jax.scipy module
-------------------------------------------------------------------------------
A SciPy-like API for scientific computing.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
* - ``jax.scipy.fft``
- 0.1.71
- 5.0.0
* - ``jax.scipy.integrate``
- 0.4.15
- 5.5.0
* - ``jax.scipy.interpolate``
- 0.1.76
- 5.0.0
* - ``jax.scipy.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.ndimage``
- 0.1.56
- 5.0.0
* - ``jax.scipy.optimize``
- 0.1.57
- 5.0.0
* - ``jax.scipy.signal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.spatial.transform``
- 0.4.12
- 5.4.0
* - ``jax.scipy.sparse.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.special``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats``
- 0.1.56
- 5.0.0
jax.scipy.stats module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.beta``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.betabinom``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.binom``
- 0.4.14
- 5.4.0
* - ``jax.scipy.stats.cauchy``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.chi2``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.dirichlet``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.expon``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gamma``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gennorm``
- 0.3.15
- 5.2.0
* - ``jax.scipy.stats.geom``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.laplace``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.logistic``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.multinomial``
- 0.3.18
- 5.1.0
* - ``jax.scipy.stats.multivariate_normal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.nbinom``
- 0.1.72
- 5.0.0
* - ``jax.scipy.stats.norm``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.pareto``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.poisson``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.t``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.truncnorm``
- 0.4.0
- 5.3.0
* - ``jax.scipy.stats.uniform``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.vonmises``
- 0.4.2
- 5.3.0
* - ``jax.scipy.stats.wrapcauchy``
- 0.4.20
- 5.6.0
jax.extend module
-------------------------------------------------------------------------------
Modules for JAX extensions.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
* - ``jax.extend.linear_util``
- 0.4.17
- 5.6.0
* - ``jax.extend.mlir``
- 0.4.26
- 5.6.0
* - ``jax.extend.random``
- 0.4.15
- 5.5.0
jax.experimental module
-------------------------------------------------------------------------------
Experimental modules and APIs.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.checkify``
- 0.1.75
- 5.0.0
* - ``jax.experimental.compilation_cache.compilation_cache``
- 0.1.68
- 5.0.0
* - ``jax.experimental.custom_partitioning``
- 0.4.0
- 5.3.0
* - ``jax.experimental.jet``
- 0.1.56
- 5.0.0
* - ``jax.experimental.key_reuse``
- 0.4.26
- 5.6.0
* - ``jax.experimental.mesh_utils``
- 0.1.76
- 5.0.0
* - ``jax.experimental.multihost_utils``
- 0.3.2
- 5.0.0
* - ``jax.experimental.pallas``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pjit``
- 0.1.61
- 5.0.0
* - ``jax.experimental.serialize_executable``
- 0.4.0
- 5.3.0
* - ``jax.experimental.shard_map``
- 0.4.3
- 5.3.0
* - ``jax.experimental.sparse``
- 0.1.75
- 5.0.0
.. list-table::
:header-rows: 1
* - API
- Since JAX
- Since ROCm
* - ``jax.experimental.enable_x64``
- 0.1.60
- 5.0.0
* - ``jax.experimental.disable_x64``
- 0.1.60
- 5.0.0
jax.experimental.pallas module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Module for Pallas, a JAX extension for custom kernels.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.pallas.mosaic_gpu``
- 0.4.31
- 6.1.3
* - ``jax.experimental.pallas.tpu``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pallas.triton``
- 0.4.32
- 6.1.3
jax.experimental.sparse module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Experimental support for sparse matrix operations.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.linalg``
- 0.3.15
- 5.2.0
* - ``jax.experimental.sparse.sparsify``
- 0.3.25
- ❌
.. list-table::
:header-rows: 1
* - ``sparse`` data structure API
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.BCOO``
- 0.1.72
- 5.0.0
* - ``jax.experimental.sparse.BCSR``
- 0.3.20
- 5.1.0
* - ``jax.experimental.sparse.CSR``
- 0.1.75
- 5.0.0
* - ``jax.experimental.sparse.NM``
- 0.4.27
- 5.6.0
* - ``jax.experimental.sparse.COO``
- 0.1.75
- 5.0.0
Unsupported JAX features
------------------------
The following are GPU-accelerated JAX features not currently supported by
ROCm.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since JAX
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
- 0.2.25
* - RNN support
- Currently only LSTM with double bias is supported with float32 input
and weight.
- 0.3.25
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
- 0.4.0
* - ``jax.experimental.sparsify``
- Converts a dense matrix to a sparse matrix representation.
- Experimental
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys PyTorch-based
nanoGPT. By comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in PyTorch and JAX, also highlight
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_

View File

@@ -11,8 +11,9 @@ deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due
to independent compatibility considerations, this results in two distinct
release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
@@ -22,7 +23,7 @@ compatibility considerations, this results in two distinct release cycles for Py
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`__
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
@@ -47,9 +48,14 @@ the stable release of ROCm to maintain consistency.
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to see the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
@@ -190,7 +196,7 @@ associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/ro
Critical ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is shaped by its underlying library
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
@@ -269,7 +275,7 @@ performance, and feature set available to developers.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- Add graph-level optimizations, ONNX models and mixed precision support
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
@@ -295,19 +301,19 @@ performance, and feature set available to developers.
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- Provide hardware-accelerated data decoding capabilities, particularly
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- Provide hardware-accelerated JPEG image decoding and encoding.
- Provides hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- Speed up data augmentation, transformation, and other preprocessing step.
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
@@ -472,13 +478,13 @@ leveraging ROCm and CUDA as the underlying frameworks.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Perform tensor operations such as addition and matrix multiplications on
- Performs tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance, events enable synchronization.
performance. Events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
@@ -488,13 +494,13 @@ leveraging ROCm and CUDA as the underlying frameworks.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Return a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
- Returns a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- A set of APIs that enable efficient communication between multiple GPUs,
- Set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
@@ -657,14 +663,14 @@ of computational resources and scalability for large-scale tasks.
- Since PyTorch
- Since ROCm
* - TensorPipe
- TensorPipe is a point-to-point communication library integrated into
- A point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
- 1.8
- 5.4
* - Gloo
- Gloo is designed for multi-machine and multi-GPU setups, enabling
- Designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
@@ -716,11 +722,11 @@ The following ``torchaudio`` features are GPU-accelerated.
- Since torchaudio version
- Since ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate spectrogram of an input waveform using STFT.
- Generates spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generate the mel-scale spectrogram of raw audio signals.
- Generates the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
@@ -728,7 +734,7 @@ The following ``torchaudio`` features are GPU-accelerated.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resample a signal from one frequency to another
- Resamples a signal from one frequency to another.
- 0.9.0
- 4.5
@@ -766,7 +772,7 @@ The following ``torchvision`` features are GPU-accelerated.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Video decoding and frame extraction using GPU acceleration with NVIDIAs
- Enables video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3

View File

@@ -29,7 +29,7 @@ if os.environ.get("READTHEDOCS", "") == "True":
# configurations for PDF output by Read the Docs
project = "ROCm Documentation"
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "6.3.1"
release = "6.3.1"
setting_all_article_info = True
@@ -39,7 +39,8 @@ all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux", "windows"], "date": "2024-12-20"},
{"file": "compatibility/pytorch-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/jax-compatibility", "os": ["linux"]},
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},

View File

@@ -14,9 +14,10 @@ frameworks to ensure that framework-specific optimizations take advantage of AMD
The following guides provide information on compatibility and supported
features for these ROCm-enabled deep learning frameworks.
* :doc:`PyTorch compatibility <../compatibility/pytorch-compatibility>`
.. * :doc:`TensorFlow compatibility <../compatibility/tensorflow-compatibility>`
.. * :doc:`JAX compatibility <../compatibility/jax-compatibility>`
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
.. * :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.