mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-10 07:08:08 -05:00
Merge pull request #4240 from peterjunpark/docs/6.3.1
Add JAX compatibility and docs fixes to 6.3.1
This commit is contained in:
@@ -26,6 +26,7 @@ ASm
|
||||
ATI
|
||||
AddressSanitizer
|
||||
AlexNet
|
||||
Andrej
|
||||
Arb
|
||||
Autocast
|
||||
BARs
|
||||
@@ -187,15 +188,17 @@ Interop
|
||||
Intersphinx
|
||||
Intra
|
||||
Ioffe
|
||||
JAX's
|
||||
Jinja
|
||||
JSON
|
||||
Jupyter
|
||||
KFD
|
||||
KFDTest
|
||||
KiB
|
||||
KMD
|
||||
KV
|
||||
KVM
|
||||
Karpathy's
|
||||
KiB
|
||||
Keras
|
||||
Khronos
|
||||
LAPACK
|
||||
@@ -288,6 +291,7 @@ OpenVX
|
||||
OpenXLA
|
||||
Oversubscription
|
||||
PagedAttention
|
||||
Pallas
|
||||
PCC
|
||||
PCI
|
||||
PCIe
|
||||
@@ -662,6 +666,7 @@ mutex
|
||||
mvffr
|
||||
namespace
|
||||
namespaces
|
||||
nanoGPT
|
||||
num
|
||||
numref
|
||||
ocl
|
||||
@@ -673,7 +678,9 @@ optimizers
|
||||
os
|
||||
oversubscription
|
||||
pageable
|
||||
pallas
|
||||
parallelization
|
||||
parallelizing
|
||||
parameterization
|
||||
passthrough
|
||||
perfcounter
|
||||
@@ -761,6 +768,7 @@ runtimes
|
||||
sL
|
||||
scalability
|
||||
scalable
|
||||
scipy
|
||||
seealso
|
||||
sendmsg
|
||||
seqs
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 - 2024 Advanced Micro Devices, Inc. All rights reserved.
|
||||
Copyright (c) 2023 - 2025 Advanced Micro Devices, Inc. All rights reserved.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
@@ -275,7 +275,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<th rowspan="7">System management</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.1/index.html">AMD SMI</a></td>
|
||||
<td>24.7.1 ⇒ <a href="#amd-smi-24-7-1">24.7.1</a></td>
|
||||
<td><a href="https://github.com/ROCm/rocm-cmake"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.1/index.html">ROCm Data Center Tool</a></td>
|
||||
|
||||
@@ -25,15 +25,15 @@ additional licenses. Please review individual repositories for more information.
|
||||
<!-- spellcheck-disable -->
|
||||
| Component | License |
|
||||
|:---------------------|:-------------------------|
|
||||
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/develop/LICENCE) |
|
||||
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/develop/LICENSE) |
|
||||
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/LICENCE) |
|
||||
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/amd-staging/LICENSE) |
|
||||
| [aomp](https://github.com/ROCm/aomp/) | [Apache 2.0](https://github.com/ROCm/aomp/blob/aomp-dev/LICENSE) |
|
||||
| [aomp-extras](https://github.com/ROCm/aomp-extras/) | [MIT](https://github.com/ROCm/aomp-extras/blob/aomp-dev/LICENSE) |
|
||||
| [Code Object Manager (Comgr)](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/comgr) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/comgr/LICENSE.txt) |
|
||||
| [Composable Kernel](https://github.com/ROCm/composable_kernel) | [MIT](https://github.com/ROCm/composable_kernel/blob/develop/LICENSE) |
|
||||
| [half](https://github.com/ROCm/half/) | [MIT](https://github.com/ROCm/half/blob/rocm/LICENSE.txt) |
|
||||
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/develop/LICENSE.txt) |
|
||||
| [hipamd](https://github.com/ROCm/clr/tree/develop/hipamd) | [MIT](https://github.com/ROCm/clr/blob/develop/hipamd/LICENSE.txt) |
|
||||
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/amd-staging/LICENSE.txt) |
|
||||
| [hipamd](https://github.com/ROCm/clr/tree/amd-staging/hipamd) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/hipamd/LICENSE.txt) |
|
||||
| [hipBLAS](https://github.com/ROCm/hipBLAS/) | [MIT](https://github.com/ROCm/hipBLAS/blob/develop/LICENSE.md) |
|
||||
| [hipBLASLt](https://github.com/ROCm/hipBLASLt/) | [MIT](https://github.com/ROCm/hipBLASLt/blob/develop/LICENSE.md) |
|
||||
| [HIPCC](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc) | [MIT](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/hipcc/LICENSE.txt) |
|
||||
@@ -58,7 +58,7 @@ additional licenses. Please review individual repositories for more information.
|
||||
| [ROCdbgapi](https://github.com/ROCm/ROCdbgapi/) | [MIT](https://github.com/ROCm/ROCdbgapi/blob/amd-staging/LICENSE.txt) |
|
||||
| [rocDecode](https://github.com/ROCm/rocDecode) | [MIT](https://github.com/ROCm/rocDecode/blob/develop/LICENSE) |
|
||||
| [rocFFT](https://github.com/ROCm/rocFFT/) | [MIT](https://github.com/ROCm/rocFFT/blob/develop/LICENSE.md) |
|
||||
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-master/COPYING3) |
|
||||
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-staging/COPYING3) |
|
||||
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
|
||||
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
|
||||
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
|
||||
@@ -67,20 +67,20 @@ additional licenses. Please review individual repositories for more information.
|
||||
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
|
||||
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
|
||||
| [ROCm Compute Profiler](https://github.com/ROCm/rocprofiler-compute) | [MIT](https://github.com/ROCm/rocprofiler-compute/blob/amd-staging/LICENSE) |
|
||||
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/develop/LICENSE) |
|
||||
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/amd-staging/LICENSE) |
|
||||
| [ROCm-Device-Libs](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/device-libs) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/device-libs/LICENSE.TXT) |
|
||||
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/develop/opencl) | [MIT](https://github.com/ROCm/clr/blob/develop/opencl/LICENSE.txt) |
|
||||
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/amd-staging/opencl) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/opencl/LICENSE.txt) |
|
||||
| [ROCm Performance Primitives (RPP)](https://github.com/ROCm/rpp) | [MIT](https://github.com/ROCm/rpp/blob/develop/LICENSE) |
|
||||
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/develop/License.txt) |
|
||||
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/amd-staging/License.txt) |
|
||||
| [ROCm Systems Profiler](https://github.com/ROCm/rocprofiler-systems) | [MIT](https://github.com/ROCm/rocprofiler-systems/blob/amd-staging/LICENSE) |
|
||||
| [ROCm Validation Suite](https://github.com/ROCm/ROCmValidationSuite/) | [MIT](https://github.com/ROCm/ROCmValidationSuite/blob/master/LICENSE) |
|
||||
| [rocPRIM](https://github.com/ROCm/rocPRIM/) | [MIT](https://github.com/ROCm/rocPRIM/blob/develop/LICENSE.txt) |
|
||||
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-master/LICENSE) |
|
||||
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-staging/LICENSE) |
|
||||
| [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) | [MIT](https://github.com/ROCm/rocprofiler-sdk/blob/amd-mainline/LICENSE) |
|
||||
| [rocPyDecode](https://github.com/ROCm/rocPyDecode) | [MIT](https://github.com/ROCm/rocPyDecode/blob/develop/LICENSE) |
|
||||
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
|
||||
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
|
||||
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/master/LICENSE.txt) |
|
||||
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
|
||||
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
|
||||
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
|
||||
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |
|
||||
@@ -99,7 +99,7 @@ repositories to distinguish from open sourced packages.
|
||||
The following additional terms and conditions apply to your use of ROCm technical documentation.
|
||||
```
|
||||
|
||||
©2023 - 2024 Advanced Micro Devices, Inc. All rights reserved.
|
||||
©2023 - 2025 Advanced Micro Devices, Inc. All rights reserved.
|
||||
|
||||
The information presented in this document is for informational purposes only
|
||||
and may contain technical inaccuracies, omissions, and typographical errors. The
|
||||
|
||||
@@ -24,7 +24,7 @@ ROCm Version,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,
|
||||
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,
|
||||
|
||||
|
@@ -47,9 +47,9 @@ compatibility and system requirements.
|
||||
,gfx908,gfx908,gfx908
|
||||
,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
|
||||
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
|
||||
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3
|
||||
,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
|
||||
|
||||
664
docs/compatibility/ml-compatibility/jax-compatibility.rst
Normal file
664
docs/compatibility/ml-compatibility/jax-compatibility.rst
Normal file
@@ -0,0 +1,664 @@
|
||||
.. meta::
|
||||
:description: JAX compatibility
|
||||
:keywords: GPU, JAX compatibility
|
||||
|
||||
*******************************************************************************
|
||||
JAX compatibility
|
||||
*******************************************************************************
|
||||
|
||||
JAX provides a NumPy-like API, which combines automatic differentiation and the
|
||||
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
|
||||
learning at scale.
|
||||
|
||||
JAX uses composable transformations of Python and NumPy through just-in-time (JIT) compilation,
|
||||
automatic vectorization, and parallelization. To learn about JAX, including profiling and
|
||||
optimizations, see the official `JAX documentation
|
||||
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
|
||||
|
||||
ROCm support for JAX is upstreamed and users can build the official source code with ROCm
|
||||
support:
|
||||
|
||||
- ROCm JAX release:
|
||||
|
||||
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>` with ROCm and JAX pre-installed.
|
||||
|
||||
- ROCm JAX repository: `<https://github.com/ROCm/jax>`__
|
||||
|
||||
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
|
||||
to get started.
|
||||
|
||||
- Official JAX release:
|
||||
|
||||
- Official JAX repository: `<https://github.com/jax-ml/jax>`__
|
||||
|
||||
- See the `AMD GPU (Linux) installation section
|
||||
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in the JAX
|
||||
documentation.
|
||||
|
||||
.. note::
|
||||
|
||||
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
|
||||
quarterly alongside new ROCm releases. These images undergo full AMD testing.
|
||||
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
|
||||
follow upstream JAX releases and use the latest available ROCm version.
|
||||
|
||||
.. _jax-docker-compat:
|
||||
|
||||
Docker image compatibility
|
||||
================================================================================
|
||||
|
||||
.. |docker-icon| raw:: html
|
||||
|
||||
<i class="fab fa-docker"></i>
|
||||
|
||||
AMD validates and publishes ready-made `JAX <https://hub.docker.com/r/rocm/jax/>`_
|
||||
images with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are validated for
|
||||
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click |docker-icon|
|
||||
to see the image on Docker Hub.
|
||||
|
||||
.. list-table:: JAX Docker image components
|
||||
:header-rows: 1
|
||||
|
||||
* - Docker image
|
||||
- JAX
|
||||
- Linux
|
||||
- Python
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.12/images/sha256-085a0cd5207110922f1fca684933a9359c66d42db6c5aba4760ed5214fdabde0"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
|
||||
|
||||
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
|
||||
- Ubuntu 24.04
|
||||
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.10/images/sha256-f88eddad8f47856d8640b694da4da347ffc1750d7363175ab7dc872e82b43324"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
|
||||
|
||||
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
|
||||
- Ubuntu 22.04
|
||||
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
|
||||
|
||||
AMD publishes community `JAX <https://hub.docker.com/r/rocm/jax-community>`_
|
||||
images with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/apt/6.2.4/>`_.
|
||||
|
||||
.. list-table:: JAX community Docker image components
|
||||
:header-rows: 1
|
||||
|
||||
* - Docker image
|
||||
- JAX
|
||||
- Linux
|
||||
- Python
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.12.7/images/sha256-a6032d89c07573b84c44e42c637bf9752b1b7cd2a222d39344e603d8f4c63beb?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
|
||||
|
||||
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
|
||||
- Ubuntu 22.04
|
||||
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.11.10/images/sha256-d462f7e445545fba2f3b92234a21beaa52fe6c5f550faabcfdcd1bf53486d991?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
|
||||
|
||||
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
|
||||
- Ubuntu 22.04
|
||||
- `3.11.10 <https://www.python.org/downloads/release/python-31110/>`_
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.10.15/images/sha256-6f2d4d0f529378d9572f0e8cfdcbc101d1e1d335bd626bb3336fff87814e9d60?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
|
||||
|
||||
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
|
||||
- Ubuntu 22.04
|
||||
- `3.10.15 <https://www.python.org/downloads/release/python-31015/>`_
|
||||
|
||||
Critical ROCm libraries for JAX
|
||||
================================================================================
|
||||
|
||||
The functionality of JAX with ROCm is determined by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - ROCm library
|
||||
- Version
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
|
||||
``jax.lax.dot_general``, operations like ``jax.numpy.dot``, which
|
||||
involve vector and matrix computations and batch matrix multiplications
|
||||
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
|
||||
operations.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- hipBLASLt is an extension of hipBLAS, providing additional
|
||||
features like epilogues fused into the matrix multiplication kernel or
|
||||
use of integer tensor cores.
|
||||
- Matrix multiplication in ``jax.numpy.matmul`` or ``jax.lax.dot``, and
|
||||
the XLA (Accelerated Linear Algebra) use hipBLASLt for optimized matrix
|
||||
operations, mixed-precision support, and hardware-specific
|
||||
optimizations.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
|
||||
``jax.numpy.prod``, ``jax.numpy.max`` and ``jax.numpy.min``), prefix sum
|
||||
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
|
||||
(``jax.numpy.sort``, ``jax.numpy.argsort``).
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
|
||||
- Used in functions like ``jax.numpy.fft``.
|
||||
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
|
||||
- 2.11.0
|
||||
- Provides fast random number generation for GPUs.
|
||||
- The ``jax.random.uniform``, ``jax.random.normal``,
|
||||
``jax.random.randint`` and ``jax.random.split``.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
|
||||
singular value decompositions (SVD).
|
||||
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
|
||||
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
|
||||
(``jax.numpy.linalg.eig``).
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
|
||||
matrix-vector and matrix-matrix products
|
||||
(``jax.experimental.sparse.dot``), sparse linear system solvers and
|
||||
sparse data handling.
|
||||
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
|
||||
- 0.2.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
|
||||
matrix-vector and matrix-matrix products
|
||||
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- Optimized for deep learning primitives such as convolutions, pooling,
|
||||
normalization, and activation functions.
|
||||
- Speeds up convolutional neural networks (CNNs), recurrent neural
|
||||
networks (RNNs), and other layers. Used in operations like
|
||||
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- Optimized for multi-GPU communication for operations like all-reduce,
|
||||
broadcast, and scatter.
|
||||
- Distribute computations across multiple GPU with ``pmap`` and
|
||||
``jax.distributed``. XLA automatically uses rccl when executing
|
||||
operations across multiple GPUs on AMD hardware.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
|
||||
distributed training, which involves parallel reductions or
|
||||
operations like ``jax.numpy.cumsum`` can use rocThrust.
|
||||
|
||||
Supported and unsupported features
|
||||
===============================================================================
|
||||
|
||||
The following table maps GPU-accelerated JAX modules to their supported
|
||||
ROCm and JAX versions.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Description
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.numpy``
|
||||
- Implements the NumPy API, using the primitives in ``jax.lax``.
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy``
|
||||
- Provides GPU-accelerated and differentiable implementations of many
|
||||
functions from the SciPy library, leveraging JAX's transformations
|
||||
(e.g., ``grad``, ``jit``, ``vmap``).
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.lax``
|
||||
- A library of primitives operations that underpins libraries such as
|
||||
``jax.numpy.`` Transformation rules, such as Jacobian-vector product
|
||||
(JVP) and batching rules, are typically defined as transformations on
|
||||
``jax.lax`` primitives.
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.random``
|
||||
- Provides a number of routines for deterministic generation of sequences
|
||||
of pseudorandom numbers.
|
||||
- 0.1.58
|
||||
- 5.0.0
|
||||
* - ``jax.sharding``
|
||||
- Allows to define partitioning and distributing arrays across multiple
|
||||
devices.
|
||||
- 0.3.20
|
||||
- 5.1.0
|
||||
* - ``jax.dlpack``
|
||||
- For exchanging tensor data between JAX and other libraries that support the
|
||||
DLPack standard.
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.distributed``
|
||||
- Enables the scaling of computations across multiple devices on a single
|
||||
machine or across multiple machines.
|
||||
- 0.1.74
|
||||
- 5.0.0
|
||||
* - ``jax.dtypes``
|
||||
- Provides utilities for working with and managing data types in JAX
|
||||
arrays and computations.
|
||||
- 0.1.66
|
||||
- 5.0.0
|
||||
* - ``jax.image``
|
||||
- Contains image manipulation functions like resize, scale and translation.
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.nn``
|
||||
- Contains common functions for neural network libraries.
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.ops``
|
||||
- Computes the minimum, maximum, sum or product within segments of an
|
||||
array.
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.profiler``
|
||||
- Contains JAX’s tracing and time profiling features.
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.stages``
|
||||
- Contains interfaces to stages of the compiled execution process.
|
||||
- 0.3.4
|
||||
- 5.0.0
|
||||
* - ``jax.tree``
|
||||
- Provides utilities for working with tree-like container data structures.
|
||||
- 0.4.26
|
||||
- 5.6.0
|
||||
* - ``jax.tree_util``
|
||||
- Provides utilities for working with nested data structures, or
|
||||
``pytrees``.
|
||||
- 0.1.65
|
||||
- 5.0.0
|
||||
* - ``jax.typing``
|
||||
- Provides JAX-specific static type annotations.
|
||||
- 0.3.18
|
||||
- 5.1.0
|
||||
* - ``jax.extend``
|
||||
- Provides modules for access to JAX internal machinery module. The
|
||||
``jax.extend`` module defines a library view of some of JAX’s internal
|
||||
components.
|
||||
- 0.4.15
|
||||
- 5.5.0
|
||||
* - ``jax.example_libraries``
|
||||
- Serves as a collection of example code and libraries that demonstrate
|
||||
various capabilities of JAX.
|
||||
- 0.1.74
|
||||
- 5.0.0
|
||||
* - ``jax.experimental``
|
||||
- Namespace for experimental features and APIs that are in development or
|
||||
are not yet fully stable for production use.
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.lib``
|
||||
- Set of internal tools and types for bridging between JAX’s Python
|
||||
frontend and its XLA backend.
|
||||
- 0.4.6
|
||||
- 5.3.0
|
||||
* - ``jax_triton``
|
||||
- Library that integrates the Triton deep learning compiler with JAX.
|
||||
- jax_triton 0.2.0
|
||||
- 6.2.4
|
||||
|
||||
jax.scipy module
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
A SciPy-like API for scientific computing.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.scipy.cluster``
|
||||
- 0.3.11
|
||||
- 5.1.0
|
||||
* - ``jax.scipy.fft``
|
||||
- 0.1.71
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.integrate``
|
||||
- 0.4.15
|
||||
- 5.5.0
|
||||
* - ``jax.scipy.interpolate``
|
||||
- 0.1.76
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.linalg``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.ndimage``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.optimize``
|
||||
- 0.1.57
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.signal``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.spatial.transform``
|
||||
- 0.4.12
|
||||
- 5.4.0
|
||||
* - ``jax.scipy.sparse.linalg``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.special``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
|
||||
jax.scipy.stats module
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.scipy.stats.bernouli``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.beta``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.betabinom``
|
||||
- 0.1.61
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.binom``
|
||||
- 0.4.14
|
||||
- 5.4.0
|
||||
* - ``jax.scipy.stats.cauchy``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.chi2``
|
||||
- 0.1.61
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.dirichlet``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.expon``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.gamma``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.gennorm``
|
||||
- 0.3.15
|
||||
- 5.2.0
|
||||
* - ``jax.scipy.stats.geom``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.laplace``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.logistic``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.multinomial``
|
||||
- 0.3.18
|
||||
- 5.1.0
|
||||
* - ``jax.scipy.stats.multivariate_normal``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.nbinom``
|
||||
- 0.1.72
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.norm``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.pareto``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.poisson``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.t``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.truncnorm``
|
||||
- 0.4.0
|
||||
- 5.3.0
|
||||
* - ``jax.scipy.stats.uniform``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.scipy.stats.vonmises``
|
||||
- 0.4.2
|
||||
- 5.3.0
|
||||
* - ``jax.scipy.stats.wrapcauchy``
|
||||
- 0.4.20
|
||||
- 5.6.0
|
||||
|
||||
jax.extend module
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Modules for JAX extensions.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.extend.ffi``
|
||||
- 0.4.30
|
||||
- 6.0.0
|
||||
* - ``jax.extend.linear_util``
|
||||
- 0.4.17
|
||||
- 5.6.0
|
||||
* - ``jax.extend.mlir``
|
||||
- 0.4.26
|
||||
- 5.6.0
|
||||
* - ``jax.extend.random``
|
||||
- 0.4.15
|
||||
- 5.5.0
|
||||
|
||||
jax.experimental module
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Experimental modules and APIs.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.experimental.checkify``
|
||||
- 0.1.75
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.compilation_cache.compilation_cache``
|
||||
- 0.1.68
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.custom_partitioning``
|
||||
- 0.4.0
|
||||
- 5.3.0
|
||||
* - ``jax.experimental.jet``
|
||||
- 0.1.56
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.key_reuse``
|
||||
- 0.4.26
|
||||
- 5.6.0
|
||||
* - ``jax.experimental.mesh_utils``
|
||||
- 0.1.76
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.multihost_utils``
|
||||
- 0.3.2
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.pallas``
|
||||
- 0.4.15
|
||||
- 5.5.0
|
||||
* - ``jax.experimental.pjit``
|
||||
- 0.1.61
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.serialize_executable``
|
||||
- 0.4.0
|
||||
- 5.3.0
|
||||
* - ``jax.experimental.shard_map``
|
||||
- 0.4.3
|
||||
- 5.3.0
|
||||
* - ``jax.experimental.sparse``
|
||||
- 0.1.75
|
||||
- 5.0.0
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - API
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.experimental.enable_x64``
|
||||
- 0.1.60
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.disable_x64``
|
||||
- 0.1.60
|
||||
- 5.0.0
|
||||
|
||||
jax.experimental.pallas module
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Module for Pallas, a JAX extension for custom kernels.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.experimental.pallas.mosaic_gpu``
|
||||
- 0.4.31
|
||||
- 6.1.3
|
||||
* - ``jax.experimental.pallas.tpu``
|
||||
- 0.4.15
|
||||
- 5.5.0
|
||||
* - ``jax.experimental.pallas.triton``
|
||||
- 0.4.32
|
||||
- 6.1.3
|
||||
|
||||
jax.experimental.sparse module
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Experimental support for sparse matrix operations.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Module
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.experimental.sparse.linalg``
|
||||
- 0.3.15
|
||||
- 5.2.0
|
||||
* - ``jax.experimental.sparse.sparsify``
|
||||
- 0.3.25
|
||||
- ❌
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - ``sparse`` data structure API
|
||||
- Since JAX
|
||||
- Since ROCm
|
||||
* - ``jax.experimental.sparse.BCOO``
|
||||
- 0.1.72
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.sparse.BCSR``
|
||||
- 0.3.20
|
||||
- 5.1.0
|
||||
* - ``jax.experimental.sparse.CSR``
|
||||
- 0.1.75
|
||||
- 5.0.0
|
||||
* - ``jax.experimental.sparse.NM``
|
||||
- 0.4.27
|
||||
- 5.6.0
|
||||
* - ``jax.experimental.sparse.COO``
|
||||
- 0.1.75
|
||||
- 5.0.0
|
||||
|
||||
Unsupported JAX features
|
||||
------------------------
|
||||
|
||||
The following are GPU-accelerated JAX features not currently supported by
|
||||
ROCm.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since JAX
|
||||
* - Mixed Precision with TF32
|
||||
- Mixed precision with TF32 is used for matrix multiplications,
|
||||
convolutions, and other linear algebra operations, particularly in
|
||||
deep learning workloads like CNNs and transformers.
|
||||
- 0.2.25
|
||||
* - RNN support
|
||||
- Currently only LSTM with double bias is supported with float32 input
|
||||
and weight.
|
||||
- 0.3.25
|
||||
* - XLA int4 support
|
||||
- 4-bit integer (int4) precision in the XLA compiler.
|
||||
- 0.4.0
|
||||
* - ``jax.experimental.sparsify``
|
||||
- Converts a dense matrix to a sparse matrix representation.
|
||||
- Experimental
|
||||
|
||||
Use cases and recommendations
|
||||
================================================================================
|
||||
|
||||
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
|
||||
blog explores the implementation and training of a Generative Pre-trained
|
||||
Transformer (GPT) model in JAX, inspired by Andrej Karpathy’s PyTorch-based
|
||||
nanoGPT. By comparing how essential GPT components—such as self-attention
|
||||
mechanisms and optimizers—are realized in PyTorch and JAX, also highlight
|
||||
JAX’s unique features.
|
||||
|
||||
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
|
||||
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
|
||||
blog post provides a comprehensive guide on enhancing the training efficiency
|
||||
of GPT models by implementing mixed precision techniques in JAX, specifically
|
||||
tailored for AMD GPUs utilizing the ROCm platform.
|
||||
|
||||
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
|
||||
blog demonstrates how to develop a custom fused dropout-activation kernel for
|
||||
matrices using Triton, integrate it with JAX, and benchmark its performance
|
||||
using ROCm.
|
||||
|
||||
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
|
||||
outlines the process of fine-tuning a Bidirectional Encoder Representations
|
||||
from Transformers (BERT)-based large language model (LLM) using JAX for a text
|
||||
classification task. The blog post discuss techniques for parallelizing the
|
||||
fine-tuning across multiple AMD GPUs and assess the model's performance on a
|
||||
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
|
||||
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
|
||||
used on a multi-GPU setup.
|
||||
|
||||
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
|
||||
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
|
||||
accelerator using ROCm. The page is aimed at helping users achieve optimal
|
||||
performance for deep learning and other high-performance computing tasks on
|
||||
the MI300X GPU.
|
||||
|
||||
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_
|
||||
|
||||
@@ -11,8 +11,9 @@ deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
|
||||
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
|
||||
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
|
||||
|
||||
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
|
||||
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
|
||||
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due
|
||||
to independent compatibility considerations, this results in two distinct
|
||||
release cycles for PyTorch on ROCm:
|
||||
|
||||
- ROCm PyTorch release:
|
||||
|
||||
@@ -22,7 +23,7 @@ compatibility considerations, this results in two distinct release cycles for Py
|
||||
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
|
||||
pre-installed.
|
||||
|
||||
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
|
||||
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`__
|
||||
|
||||
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
|
||||
|
||||
@@ -47,9 +48,14 @@ the stable release of ROCm to maintain consistency.
|
||||
Docker image compatibility
|
||||
================================================================================
|
||||
|
||||
.. |docker-icon| raw:: html
|
||||
|
||||
<i class="fab fa-docker"></i>
|
||||
|
||||
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
|
||||
images with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
|
||||
Click |docker-icon| to see the image on Docker Hub.
|
||||
|
||||
.. list-table:: PyTorch Docker image components
|
||||
:header-rows: 1
|
||||
@@ -190,7 +196,7 @@ associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/ro
|
||||
Critical ROCm libraries for PyTorch
|
||||
================================================================================
|
||||
|
||||
The functionality of PyTorch with ROCm is shaped by its underlying library
|
||||
The functionality of PyTorch with ROCm is determined by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
|
||||
@@ -269,7 +275,7 @@ performance, and feature set available to developers.
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
|
||||
- 2.11.0
|
||||
- Add graph-level optimizations, ONNX models and mixed precision support
|
||||
- Adds graph-level optimizations, ONNX models and mixed precision support
|
||||
and enable Ahead-of-Time (AOT) Compilation.
|
||||
- Speeds up inference models and executes ONNX models for
|
||||
compatibility with other frameworks.
|
||||
@@ -295,19 +301,19 @@ performance, and feature set available to developers.
|
||||
Handles communication in multi-GPU setups.
|
||||
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
|
||||
- 0.8.0
|
||||
- Provide hardware-accelerated data decoding capabilities, particularly
|
||||
- Provides hardware-accelerated data decoding capabilities, particularly
|
||||
for image, video, and other dataset formats.
|
||||
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
|
||||
and ``torch.distributed``.
|
||||
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
|
||||
- 0.6.0
|
||||
- Provide hardware-accelerated JPEG image decoding and encoding.
|
||||
- Provides hardware-accelerated JPEG image decoding and encoding.
|
||||
- GPU accelerated ``torchvision.io.decode_jpeg`` and
|
||||
``torchvision.io.encode_jpeg`` and can be integrated in
|
||||
``torch.utils.data`` and ``torchvision``.
|
||||
* - `RPP <https://github.com/ROCm/RPP>`_
|
||||
- 1.9.1
|
||||
- Speed up data augmentation, transformation, and other preprocessing step.
|
||||
- Speeds up data augmentation, transformation, and other preprocessing steps.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
@@ -472,13 +478,13 @@ leveraging ROCm and CUDA as the underlying frameworks.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Tensor operations on GPU
|
||||
- Perform tensor operations such as addition and matrix multiplications on
|
||||
- Performs tensor operations such as addition and matrix multiplications on
|
||||
the GPU.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Streams and events
|
||||
- Streams allow overlapping computation and communication for optimized
|
||||
performance, events enable synchronization.
|
||||
performance. Events enable synchronization.
|
||||
- 1.6.0
|
||||
- 3.8
|
||||
* - Memory management
|
||||
@@ -488,13 +494,13 @@ leveraging ROCm and CUDA as the underlying frameworks.
|
||||
- 0.3.0
|
||||
- 1.9.2
|
||||
* - Running process lists of memory management
|
||||
- Return a human-readable printout of the running processes and their GPU
|
||||
memory use for a given device with functions like
|
||||
- Returns a human-readable printout of the running processes and their GPU
|
||||
memory use for a given device with functions like
|
||||
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
|
||||
- 1.8.0
|
||||
- 4.0
|
||||
* - Communication collectives
|
||||
- A set of APIs that enable efficient communication between multiple GPUs,
|
||||
- Set of APIs that enable efficient communication between multiple GPUs,
|
||||
allowing for distributed computing and data parallelism.
|
||||
- 1.9.0
|
||||
- 5.0
|
||||
@@ -657,14 +663,14 @@ of computational resources and scalability for large-scale tasks.
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - TensorPipe
|
||||
- TensorPipe is a point-to-point communication library integrated into
|
||||
- A point-to-point communication library integrated into
|
||||
PyTorch for distributed training. It is designed to handle tensor data
|
||||
transfers efficiently between different processes or devices, including
|
||||
those on separate machines.
|
||||
- 1.8
|
||||
- 5.4
|
||||
* - Gloo
|
||||
- Gloo is designed for multi-machine and multi-GPU setups, enabling
|
||||
- Designed for multi-machine and multi-GPU setups, enabling
|
||||
efficient communication and synchronization between processes. Gloo is
|
||||
one of the default backends for PyTorch's Distributed Data Parallel
|
||||
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
|
||||
@@ -716,11 +722,11 @@ The following ``torchaudio`` features are GPU-accelerated.
|
||||
- Since torchaudio version
|
||||
- Since ROCm
|
||||
* - ``torchaudio.transforms.Spectrogram``
|
||||
- Generate spectrogram of an input waveform using STFT.
|
||||
- Generates spectrogram of an input waveform using STFT.
|
||||
- 0.6.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MelSpectrogram``
|
||||
- Generate the mel-scale spectrogram of raw audio signals.
|
||||
- Generates the mel-scale spectrogram of raw audio signals.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MFCC``
|
||||
@@ -728,7 +734,7 @@ The following ``torchaudio`` features are GPU-accelerated.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.Resample``
|
||||
- Resample a signal from one frequency to another
|
||||
- Resamples a signal from one frequency to another.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
|
||||
@@ -766,7 +772,7 @@ The following ``torchvision`` features are GPU-accelerated.
|
||||
- 0.1.6
|
||||
- 2.x
|
||||
* - ``torchvision.io``
|
||||
- Video decoding and frame extraction using GPU acceleration with NVIDIA’s
|
||||
- Enables video decoding and frame extraction using GPU acceleration with NVIDIA’s
|
||||
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
|
||||
- 0.4.0
|
||||
- 6.3
|
||||
@@ -29,7 +29,7 @@ if os.environ.get("READTHEDOCS", "") == "True":
|
||||
# configurations for PDF output by Read the Docs
|
||||
project = "ROCm Documentation"
|
||||
author = "Advanced Micro Devices, Inc."
|
||||
copyright = "Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved."
|
||||
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
|
||||
version = "6.3.1"
|
||||
release = "6.3.1"
|
||||
setting_all_article_info = True
|
||||
@@ -39,7 +39,8 @@ all_article_info_author = ""
|
||||
# pages with specific settings
|
||||
article_pages = [
|
||||
{"file": "about/release-notes", "os": ["linux", "windows"], "date": "2024-12-20"},
|
||||
{"file": "compatibility/pytorch-compatibility", "os": ["linux"]},
|
||||
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
|
||||
{"file": "compatibility/ml-compatibility/jax-compatibility", "os": ["linux"]},
|
||||
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
|
||||
|
||||
@@ -14,9 +14,10 @@ frameworks to ensure that framework-specific optimizations take advantage of AMD
|
||||
The following guides provide information on compatibility and supported
|
||||
features for these ROCm-enabled deep learning frameworks.
|
||||
|
||||
* :doc:`PyTorch compatibility <../compatibility/pytorch-compatibility>`
|
||||
.. * :doc:`TensorFlow compatibility <../compatibility/tensorflow-compatibility>`
|
||||
.. * :doc:`JAX compatibility <../compatibility/jax-compatibility>`
|
||||
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
|
||||
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
|
||||
|
||||
.. * :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
|
||||
|
||||
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user