mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-09 14:48:06 -05:00
MIOpen kdb installation instructions for PyTorch warmup performance improvement (#2248)
This commit is contained in:
2
.github/workflows/linting.yml
vendored
2
.github/workflows/linting.yml
vendored
@@ -5,10 +5,12 @@ on:
|
||||
branches:
|
||||
- develop
|
||||
- main
|
||||
- 'roc**'
|
||||
pull_request:
|
||||
branches:
|
||||
- develop
|
||||
- main
|
||||
- 'roc**'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.ref }}-${{ github.workflow }}
|
||||
|
||||
@@ -27,3 +27,6 @@ DGEMM
|
||||
HPCG
|
||||
HPL
|
||||
IOPM
|
||||
# pytorch_install
|
||||
kdb
|
||||
precompiled
|
||||
|
||||
@@ -405,6 +405,22 @@ Follow these steps:
|
||||
python3 main.py
|
||||
```
|
||||
|
||||
## Using MIOpen kdb files with ROCm PyTorch wheels
|
||||
|
||||
PyTorch uses MIOpen for machine learning primitives. These primitives are compiled into kernels at runtime. Runtime compilation causes a small warm-up phase when starting PyTorch. MIOpen kdb files contain precompiled kernels that can speed up the warm-up phase of an application. More information is available in the {doc}`MIOpeninstallation page <miopen:install>`.
|
||||
|
||||
MIOpen kdb files can be used with ROCm PyTorch wheels. However, the kdb files need to be placed in a specific location with respect to the PyTorch installation path. A helper script simplifies this task for the user. The script takes in the ROCm version and user's GPU architecture as inputs, and works for Ubuntu and CentOS.
|
||||
|
||||
Helper script: [install_kdb_files_for_pytorch_wheels.sh](https://raw.githubusercontent.com/wiki/ROCmSoftwarePlatform/pytorch/files/install_kdb_files_for_pytorch_wheels.sh)
|
||||
|
||||
Usage:
|
||||
|
||||
After installing ROCm PyTorch wheels:
|
||||
|
||||
1. [Optional] `export GFX_ARCH=gfx90a`
|
||||
2. [Optional] `export ROCM_VERSION=5.5`
|
||||
3. `./install_kdb_files_for_pytorch_wheels.sh`
|
||||
|
||||
## References
|
||||
|
||||
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," CoRR, p. abs/1512.00567, 2015
|
||||
|
||||
Reference in New Issue
Block a user