mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-09 14:48:06 -05:00
Fixed wording related to VLLM_V1_USE_PREFILL_DECODE_ATTENTION (#5605)
Co-authored-by: Hongxia Yang <hongxia.yang@amd.com>
This commit is contained in:
@@ -67,7 +67,7 @@ Quick start examples:
|
||||
export VLLM_ROCM_USE_AITER=1
|
||||
vllm serve MODEL_NAME
|
||||
|
||||
# Enable only AITER Triton Prefill-Decode (split) attention
|
||||
# Enable AITER Fused MoE and enable Triton Prefill-Decode (split) attention
|
||||
export VLLM_ROCM_USE_AITER=1
|
||||
export VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1
|
||||
export VLLM_ROCM_USE_AITER_MHA=0
|
||||
@@ -244,14 +244,17 @@ Most users won't need this, but you can override the defaults:
|
||||
* - AITER MHA (standard models)
|
||||
- ``VLLM_ROCM_USE_AITER=1`` (auto-selects for non-MLA models)
|
||||
|
||||
* - AITER Triton Prefill-Decode (split)
|
||||
* - vLLM Triton Unified (default)
|
||||
- ``VLLM_ROCM_USE_AITER=0`` (or unset)
|
||||
|
||||
* - Triton Prefill-Decode (split) without AITER
|
||||
- | ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``
|
||||
|
||||
* - Triton Prefill-Decode (split) along with AITER Fused-MoE
|
||||
- | ``VLLM_ROCM_USE_AITER=1``
|
||||
| ``VLLM_ROCM_USE_AITER_MHA=0``
|
||||
| ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``
|
||||
|
||||
* - vLLM Triton Unified (default)
|
||||
- ``VLLM_ROCM_USE_AITER=0`` (or unset)
|
||||
|
||||
* - AITER Unified Attention
|
||||
- | ``VLLM_ROCM_USE_AITER=1``
|
||||
| ``VLLM_ROCM_USE_AITER_MHA=0``
|
||||
@@ -269,11 +272,11 @@ Most users won't need this, but you can override the defaults:
|
||||
--block-size 1 \
|
||||
--tensor-parallel-size 8
|
||||
|
||||
# Advanced: Use Prefill-Decode split (for short input cases)
|
||||
# Advanced: Use Prefill-Decode split (for short input cases) with AITER Fused-MoE
|
||||
VLLM_ROCM_USE_AITER=1 \
|
||||
VLLM_ROCM_USE_AITER_MHA=0 \
|
||||
VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1 \
|
||||
vllm serve meta-llama/Llama-3.3-70B-Instruct
|
||||
vllm serve meta-llama/Llama-4-Scout-17B-16E
|
||||
|
||||
**Which backend should I choose?**
|
||||
|
||||
@@ -352,14 +355,14 @@ vLLM V1 on ROCm provides these attention implementations:
|
||||
|
||||
3. **AITER Triton Prefill–Decode Attention** (hybrid, Instinct MI300X-optimized)
|
||||
|
||||
* Enable with ``VLLM_ROCM_USE_AITER=1``, ``VLLM_ROCM_USE_AITER_MHA=0``, and ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``
|
||||
* Enable with ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``
|
||||
* Uses separate kernels for prefill and decode phases:
|
||||
|
||||
* **Prefill**: ``context_attention_fwd`` Triton kernel
|
||||
* **Primary decode**: ``torch.ops._rocm_C.paged_attention`` (custom ROCm kernel optimized for head sizes 64/128, block sizes 16/32, GQA 1–16, context ≤131k; sliding window not supported)
|
||||
* **Fallback decode**: ``kernel_paged_attention_2d`` Triton kernel when shapes don't meet primary decode requirements
|
||||
|
||||
* Usually better compared to unified Triton kernels (both vLLM and AITER variants)
|
||||
* Usually better compared to unified Triton kernels
|
||||
* Performance vs AITER MHA varies: AITER MHA is typically faster overall, but Prefill-Decode split may win in short input scenarios
|
||||
* The custom paged attention decode kernel is controlled by ``VLLM_ROCM_CUSTOM_PAGED_ATTN`` (default **True**)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user