Fix heading levels in pages using embedded templates (#5468)

This commit is contained in:
peterjunpark
2025-10-03 13:33:14 -04:00
committed by GitHub
parent 93c6d17922
commit eeea0d2180
4 changed files with 51 additions and 17 deletions

View File

@@ -138,13 +138,12 @@ To test for optimal performance, consult the recommended :ref:`System health ben
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
@@ -153,8 +152,13 @@ system's configuration.
docker pull {{ docker.pull_tag }}
Benchmarking
============
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:

View File

@@ -25,7 +25,7 @@ It includes the following software components:
{% for docker in dockers %}
{% set jax_version = docker.components["JAX"] %}
.. tab-item:: JAX {{ jax_version }}
.. tab-item:: ``{{ docker.pull_tag }}``
:sync: {{ docker.pull_tag }}
.. list-table::
@@ -132,6 +132,28 @@ This Docker image is optimized for specific model configurations outlined
as follows. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Pull the Docker image
---------------------
Use the following command to pull the Docker image from Docker Hub.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for docker in dockers %}
{% set jax_version = docker.components["JAX"] %}
.. tab-item:: JAX {{ jax_version }}
:sync: {{ docker.pull_tag }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
.. _amd-maxtext-multi-node-setup-v257:
Multi-node configuration

View File

@@ -105,21 +105,26 @@ system's configuration.
.. _mi300x-amd-primus-megatron-lm-training:
Environment setup
=================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
Environment setup
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series GPUs with the ``{{ docker.pull_tag }}`` image.
.. _amd-primus-megatron-lm-requirements:
Download the Docker image
-------------------------
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
1. Use the following command to pull the Docker image from Docker Hub.

View File

@@ -104,22 +104,25 @@ This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set unified_docker = data.dockers[0] %}
Pull the Docker image
=====================
Use the following command to pull the `Docker image <{{ unified_docker.docker_hub_url }}>`_ from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Run training
============
Run training
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set unified_docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between the following two workflows to start benchmarking training.