mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-07 22:03:58 -05:00
Fix heading levels in pages using embedded templates (#5468)
This commit is contained in:
@@ -138,13 +138,12 @@ To test for optimal performance, consult the recommended :ref:`System health ben
|
||||
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
||||
system's configuration.
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
@@ -153,8 +152,13 @@ system's configuration.
|
||||
|
||||
docker pull {{ docker.pull_tag }}
|
||||
|
||||
Benchmarking
|
||||
============
|
||||
Benchmarking
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
@@ -25,7 +25,7 @@ It includes the following software components:
|
||||
{% for docker in dockers %}
|
||||
{% set jax_version = docker.components["JAX"] %}
|
||||
|
||||
.. tab-item:: JAX {{ jax_version }}
|
||||
.. tab-item:: ``{{ docker.pull_tag }}``
|
||||
:sync: {{ docker.pull_tag }}
|
||||
|
||||
.. list-table::
|
||||
@@ -132,6 +132,28 @@ This Docker image is optimized for specific model configurations outlined
|
||||
as follows. Performance can vary for other training workloads, as AMD
|
||||
doesn’t validate configurations and run conditions outside those described.
|
||||
|
||||
Pull the Docker image
|
||||
---------------------
|
||||
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
.. tab-set::
|
||||
|
||||
{% for docker in dockers %}
|
||||
{% set jax_version = docker.components["JAX"] %}
|
||||
|
||||
.. tab-item:: JAX {{ jax_version }}
|
||||
:sync: {{ docker.pull_tag }}
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ docker.pull_tag }}
|
||||
|
||||
{% endfor %}
|
||||
|
||||
.. _amd-maxtext-multi-node-setup-v257:
|
||||
|
||||
Multi-node configuration
|
||||
|
||||
@@ -105,21 +105,26 @@ system's configuration.
|
||||
|
||||
.. _mi300x-amd-primus-megatron-lm-training:
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on MI300X series GPUs with the ``{{ docker.pull_tag }}`` image.
|
||||
|
||||
.. _amd-primus-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
|
||||
@@ -104,22 +104,25 @@ This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t test configurations and run conditions outside those described.
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Use the following command to pull the `Docker image <{{ unified_docker.docker_hub_url }}>`_ from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
Run training
|
||||
============
|
||||
Run training
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between the following two workflows to start benchmarking training.
|
||||
|
||||
Reference in New Issue
Block a user