Compare commits

..

58 Commits

Author SHA1 Message Date
Daniel Su
393df3e05c [Ex CI] hipSPARSELt monorepo enablement (#5033) 2025-07-11 16:40:18 -04:00
Daniel Su
aa3cdcb3c3 [Ex CI] increase hipSPARSELt test timeout (#5028) 2025-07-10 12:04:06 -04:00
Pratik Basyal
e8bb027c20 HIP 7.0 upcoming changes blog link updated (#5021) 2025-07-10 09:53:44 -04:00
Pratik Basyal
544186aef8 ROCm for HPC table update for Develop (#5015) (#5016) (#5019)
* ROCm for HPC table update for 6.4.0 (#5015) (#5016)

* 6.4.0 updates synced

* Minor change

* Link update
2025-07-09 14:57:53 -04:00
Peter Park
22524eeaa5 fix xrefs in vllm-0.9.0.1-20250605.rst (#5017) 2025-07-09 14:38:24 -04:00
Peter Park
d471b04cd5 Update vLLM Docker doc for 07/02 2025-07-09 11:38:27 -04:00
Di Nguyen
1c7cff8a47 Merge pull request #5011 from ROCm/zenguyen/disable-device-merge-inplace-rocprim
[rocPRIM] Disable device_merge_inplace unit test for rocPRIM
2025-07-09 09:12:08 -06:00
Daniel Su
84c664074f [Ex CI] add OS to copyHIP filenames (#5012) 2025-07-09 10:37:23 -04:00
NguyenNhuDi
7c6083d840 disabled device_merge_inplace 2025-07-08 14:08:53 -06:00
Daniel Su
94099b1398 [Ex CI] rocPyDecode: fix test running (#5002) 2025-07-08 14:32:30 -04:00
Peter Park
3b3fc4894b Fix xrefs and Sphinx warnings in documentation
Fix xrefs and Sphinx warnings in documentation
2025-07-08 13:22:53 -04:00
Daniel Su
8aba1d2318 [Ex CI] fix printed artifact download links (#4998) 2025-07-04 14:41:33 -04:00
Mirza Halilčević
e9e75cfc46 Merge pull request #4963 from ROCm/pybind11
Add pybind11 as a pip module requirement for azure
2025-07-04 13:35:24 +02:00
Peter Park
58b3ad0509 Fix Docker run commands in Megatron-LM Docker doc (#4996)
* fix megatron-lm docker run commands

* update --shm-size option
2025-07-02 14:19:27 -04:00
Daniel Su
523d8520f3 [Ex CI] rocBLAS: increase test timeout to 2 hours (#4995) 2025-07-02 12:16:50 -04:00
Peter Park
d0c8ba0805 Add Wan2.1 to PyTorch inference Docker documentation (#4984)
* add wan2.1 to pyt inference models

* update group name

* fix container tag

* fix group name

* change documented data type to bfloat16

* fix col width
2025-07-02 09:58:37 -04:00
ammallya
73de8a3e46 Removing failing checkout step 2025-07-01 11:25:17 -07:00
Daniel Su
1fc312f90f [Ex CI] fix hardcoded gfx in MIOpen CK script (#4993) 2025-06-30 15:34:54 -04:00
Daniel Su
fde2647ccd [Ex CI] migrate rocBLAS to monorepo (#4987) 2025-06-30 15:16:58 -04:00
Daniel Su
798c8debb5 [Ex CI] consolidate artifact extraction and deletion in deps-rocm (#4961) 2025-06-30 14:12:52 -04:00
dependabot[bot]
393ba600c2 Build(deps): Bump sphinx-sitemap from 2.6.0 to 2.7.2 in /docs/sphinx (#4985)
Bumps [sphinx-sitemap](https://github.com/jdillard/sphinx-sitemap) from 2.6.0 to 2.7.2.
- [Release notes](https://github.com/jdillard/sphinx-sitemap/releases)
- [Changelog](https://github.com/jdillard/sphinx-sitemap/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jdillard/sphinx-sitemap/compare/v2.6.0...v2.7.2)

---
updated-dependencies:
- dependency-name: sphinx-sitemap
  dependency-version: 2.7.2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-30 09:33:28 -06:00
Daniel Su
c64c545b52 [Ex CI] hipBLASLt: build some archs on medium pool (#4986) 2025-06-30 11:32:35 -04:00
Daniel Su
76ee1d720f [Ex CI] rocAL: switch to medium pool (#4983) 2025-06-27 13:41:07 -04:00
Daniel Su
5adc040367 [Ex CI] migrate hipBLAS-common & hipBLASLt pipeline IDs (#4982) 2025-06-27 12:09:58 -04:00
Daniel Su
061da8f306 [Ex CI] enable almalinux8 and gfx1100 builds for hipBLASLt, rocBLAS, rocSOLVER (#4955) 2025-06-27 10:39:30 -04:00
Daniel Su
e26767bca6 [Ex CI] Tensile: add boost filesystem (#4980) 2025-06-27 10:38:31 -04:00
Daniel Su
7b6f1800d4 [Ex CI] fix miopen-get-ck for new artifact naming scheme (#4979) 2025-06-26 15:49:13 -04:00
Pratik Basyal
a6221937f2 KMD UMD support footnote update ROCm 640 (#4973) (#4976)
* KMD UMD support footnote update ROCm 640

* Histotical footnote
2025-06-26 15:34:21 -04:00
Daniel Su
ac2df2961d [Ex CI] add component name to artifact download filter (#4974) 2025-06-26 13:55:03 -04:00
Mirza Halilcevic
9b102061f4 Add pybind11 as a pip module requirement for azure. 2025-06-24 08:06:52 -05:00
Daniel Su
f20e8dec8b [Ex CI] revert PRIM default branch to develop (#4960) 2025-06-23 16:35:02 -04:00
Daniel Su
10e9157f39 [Ex CI] allow rerun jobs to upload artifacts (#4959) 2025-06-23 15:37:52 -04:00
Daniel Su
a2ce6021cb [Ex CI] add more OSs to nightly build (#4958) 2025-06-23 15:13:11 -04:00
Peter Park
2196fc9a2f Fix pytorch training 25.6 doc (#4956)
* fix pytorch-training history

* fix pytorch-training

fix
2025-06-23 13:45:50 -04:00
Daniel Su
925689f89e [Ex CI] enable gfx1100 builds (#4954) 2025-06-23 11:26:35 -04:00
Peter Park
91a541f8b9 Update PyTorch training benchmark doc for v25.6 (#4950)
* update pytorch-training docker details

* add previous version

* add models data

* update models data id

* add models picker

* update data

* update fmt

fmt

* update data yaml

* update template

* update data

* fix

* fix vllm-0.6.4 broken link

* fix vllm history
2025-06-23 09:26:15 -04:00
Peter Park
34f8d57ece Organize version histories in ROCm for AI benchmark Docker docs (#4948)
* add vllm 0.8.3 20250415

update prev versions table

* add vllm previous versions page

* move index to vllm-history

* add standalone megatron-lm version history

* add pytorch training version history

* fix

* add vllm-0.4.3

* add vllm-0.6.4

* update vllm-history

* add vllm-0.7.3

* add vllm-0.6.6

* add notes

* fix vllm readme links

fix main page link

* add latest version to previous versions list

* add jax-maxtext history

* fix jax-maxtext history

* add pytorch-training history

* add link in jax-maxtext 25.4

* add megatron-lm history

* fix datatemplate path for vllm 0.8.3

* fix jax-maxtext history link

* update note about performance measurements

* add vllm 0.8.5_20250521 previous version

* consistency fixes
2025-06-20 15:01:38 -04:00
yugang-amd
55f95adc7c Update for vllm -06/10 (#4943) 2025-06-20 08:41:37 -04:00
Daniel Su
e05b1702d8 [Ex CI] fix experimental HIP to CLR triggers (#4946) 2025-06-19 12:56:53 -04:00
Daniel Su
4179042cf7 [Ex CI] add multi-OS support to copyHIP (#4945) 2025-06-19 12:15:22 -04:00
dependabot[bot]
ae2de81b79 Build(deps): Bump urllib3 from 2.4.0 to 2.5.0 in /docs/sphinx (#4942)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.4.0 to 2.5.0.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.4.0...2.5.0)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-version: 2.5.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-19 09:03:29 -06:00
Daniel Su
efd6cec4a4 [Ex CI] disable downstream triggers for mathlibs not yet migrated (#4936) 2025-06-18 14:10:58 -04:00
Daniel Su
b65996587f [Ex CI] remove ALLOWED_PARTIAL_SUCCEED_BUILDS library variable (#4937) 2025-06-18 12:10:04 -04:00
yugang-amd
7b7eaf69f2 remove broken xref (#4939) 2025-06-18 10:15:53 -04:00
Daniel Su
4cfc8ddad2 [Ex CI] MIVisionX: add hipBLASLt to build deps (#4931) 2025-06-17 13:40:35 -04:00
Daniel Su
97ebbb227d [Ex CI] rocprof-sdk: add cmake, libsqlite3-dev (#4935) 2025-06-17 13:40:15 -04:00
Daniel Su
8c6a1726fe [Ex CI] remove old aqlprofile param in Pytorch (#4927) 2025-06-16 15:17:23 -04:00
Daniel Su
2656143c9e [Ex CI] fix ROCm versions (#4930) 2025-06-16 11:42:51 -04:00
Daniel Su
7910841c94 [Ex CI] rccl: use vendored gtest, use GPU_TARGETS flag (#4929) 2025-06-16 11:35:20 -04:00
Daniel Su
30fec8f74a [Ex CI] update ROCm versioning (#4928) 2025-06-16 11:31:19 -04:00
Daniel Su
1923f801e0 [Ex CI] fix hipRAND multi-OS tests, Tensile sparse dir (#4923) 2025-06-13 16:21:13 -04:00
Peter Park
d69037bfcc Fix Sphinx issue in vllm-benchmark 0.8.5-20250513 previous version (#4924)
* fix sphinx issue in vllm-benchmark 0.8.5-20250513 previous version

* update article_info in conf.py

* update rocm/vllm
2025-06-13 15:03:51 -04:00
Daniel Su
7ac6aa4084 [Ex CI] add OS support to monorepo downstream triggers (#4920) 2025-06-13 12:26:05 -04:00
Daniel Su
14f3c42320 [Ex CI] Tensile almalinux8 builds (#4915) 2025-06-12 16:43:55 -04:00
Daniel Su
67be6f6249 [Ex CI] migrate roc/hipRAND pipelines, change migrated mathlibs's default branch to rocm-rel-7.0 (#4918)
* [Ex CI] migrate roc/hipRAND pipeline IDs to monorepo

* [Ex CI] change migrated mathlibs's default branch to rocm-rel-7.0
2025-06-12 15:39:41 -04:00
powderluv
2502fc5bcf Update README.md to point to TheRock (#4907)
* Update README.md to point to TheRock

Point to TheRock build system to build ROCm

* Update README.md

---------

Co-authored-by: David Galiffi <dgaliffi@amd.com>
Co-authored-by: alexxu-amd <159800977+alexxu-amd@users.noreply.github.com>
2025-06-12 10:44:34 -04:00
Pratik Basyal
61c6749a10 Link to 6.4.1 updated from internal to public (#4913) 2025-06-10 16:59:52 -04:00
Daniel Su
8e8104c811 [Ex CI] add new rocprof-compute pip packages (#4905) 2025-06-10 16:06:51 -04:00
96 changed files with 7983 additions and 1373 deletions

View File

@@ -51,7 +51,7 @@ parameters:
# HIP with AMD backend
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: hip_clr_combined_amd_${{ job.os }}
- job: hip_clr_combined_${{ job.os }}_amd
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:
@@ -121,7 +121,7 @@ jobs:
# HIP with Nvidia backend
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: hip_clr_combined_nvidia_${{ job.os }}
- job: hip_clr_combined_${{ job.os }}_nvidia
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:

View File

@@ -43,18 +43,20 @@ parameters:
- name: rocmDependencies
type: object
default:
- rocm-cmake
- llvm-project
- ROCR-Runtime
- AMDMIGraphX
- clr
- half
- hipBLAS-common
- hipBLASLt
- llvm-project
- MIOpen
- rocBLAS
- rocDecode
- rocm-cmake
- rocminfo
- rocprofiler-register
- half
- rocBLAS
- MIOpen
- AMDMIGraphX
- ROCR-Runtime
- rpp
- rocDecode
- name: rocmTestDependencies
type: object
default:
@@ -90,8 +92,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -138,7 +138,6 @@ jobs:
runRocminfo: false
- task: Bash@3
displayName: Build kfdtest
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/libhsakmt/tests/kfdtest
@@ -158,7 +157,6 @@ jobs:
os: ${{ job.os }}
- task: Bash@3
displayName: Build rocrtst
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/rocrtst/suites/test_common

View File

@@ -55,8 +55,6 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -86,8 +86,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
- name: HIP_INC_DIR
value: $(Agent.BuildDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: Tensile
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -13,10 +32,10 @@ parameters:
- name: aptPackages
type: object
default:
- python3-pip
- cmake
- libmsgpack-dev
- libboost-filesystem-dev
- libboost-program-options-dev
- libmsgpack-dev
- name: pipModules
type: object
default:
@@ -38,75 +57,97 @@ parameters:
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt }
- { os: almalinux8, packageManager: dnf }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- job: Tensile_build
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- task: Bash@3
displayName: Create wheel file
inputs:
targetType: inline
script: python3 setup.py bdist_wheel
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:
sourceDir: $(Build.SourcesDirectory)/dist
contentsString: '*.whl'
targetDir: $(Build.ArtifactStagingDirectory)
clean: false
- task: PublishPipelineArtifact@1
displayName: 'wheel file Publish'
retryCountOnTaskFailure: 3
inputs:
targetPath: $(Build.ArtifactStagingDirectory)
- task: Bash@3
displayName: Save pipeline artifact file names
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: |
whlFile=$(find "$(Build.ArtifactStagingDirectory)" -type f -name "*.whl" | head -n 1)
if [ -n "$whlFile" ]; then
echo $(basename "$whlFile") >> pipelineArtifacts.txt
fi
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
# aptPackages: ${{ parameters.aptPackages }}
# pipModules: ${{ parameters.pipModules }}
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
os: ${{ job.os }}
- task: Bash@3
displayName: Create wheel file
inputs:
targetType: inline
script: python3 setup.py bdist_wheel
workingDirectory: $(Agent.BuildDirectory)/s
- task: Bash@3
displayName: Rename wheel file with job OS
inputs:
targetType: inline
workingDirectory: $(Agent.BuildDirectory)/s
script: |
wheelFile=$(find "$(Agent.BuildDirectory)/s/dist" -type f -name "*.whl" | head -n 1)
newWheelFile="$(basename "$wheelFile" .whl)-${{ job.os }}.whl"
mv "$wheelFile" "$(dirname "$wheelFile")/$newWheelFile"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:
sourceDir: $(Agent.BuildDirectory)/s/dist
contentsString: '*.whl'
targetDir: $(Build.ArtifactStagingDirectory)
clean: false
- task: PublishPipelineArtifact@1
displayName: 'wheel file Publish'
retryCountOnTaskFailure: 3
inputs:
targetPath: $(Build.ArtifactStagingDirectory)
- task: Bash@3
displayName: Save pipeline artifact file names
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: |
whlFile=$(find "$(Build.ArtifactStagingDirectory)" -type f -name "*.whl" | head -n 1)
if [ -n "$whlFile" ]; then
echo $(basename "$whlFile") >> pipelineArtifacts.txt
fi
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
# aptPackages: ${{ parameters.aptPackages }}
# pipModules: ${{ parameters.pipModules }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: Tensile_test_${{ job.target }}
- job: Tensile_test_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 180
dependsOn: Tensile_build
dependsOn: Tensile_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -126,20 +167,23 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: DownloadPipelineArtifact@2
displayName: 'Download Pipeline Wheel Files'
inputs:
itemPattern: '**/*.whl'
itemPattern: '**/*${{ job.os }}*.whl'
targetPath: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- task: Bash@3
displayName: pip install
@@ -164,7 +208,7 @@ jobs:
inputs:
targetType: inline
script: tox run -v -e ci -- -m pre_checkin
workingDirectory: $(Build.SourcesDirectory)
workingDirectory: $(Agent.BuildDirectory)/s
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -104,7 +104,7 @@ jobs:
parameters:
componentName: amdsmi
testDir: '$(Agent.BuildDirectory)'
testExecutable: './rocm/share/amd_smi/tests/amdsmitst'
testExecutable: 'sudo ./rocm/share/amd_smi/tests/amdsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml

View File

@@ -78,8 +78,6 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -1,36 +1,44 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: jobMatrix
type: object
default:
copyJobs:
- { os: ubuntu2204, backend: amd }
- { os: almalinux8, backend: amd }
- { os: ubuntu2204, backend: nvidia }
- { os: almalinux8, backend: nvidia }
# hip and clr are tightly-coupled
# run this same template for both repos
# any changes for clr should just trigger HIP pipeline
jobs:
- job: hip_clr_combined
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
# checkout nothing, just copy artifacts from triggering HIP job
# and then publish for this clr job or for this hipother job to maintain latest
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-download.yml
parameters:
componentName: HIP
pipelineId: $(HIP_PIPELINE_ID)
- task: Bash@3
displayName: Copy HIP artifacts
inputs:
targetType: inline
script: cp -a $(Agent.BuildDirectory)/rocm/* $(Build.BinariesDirectory)/
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ each job in parameters.jobMatrix.copyJobs }}:
- job: hip_clr_combined_${{ job.os }}_${{ job.backend }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
# checkout nothing, just copy artifacts from triggering HIP job
# and then publish for this clr job or for this hipother job to maintain latest
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-download.yml
parameters:
componentName: HIP
pipelineId: $(HIP_PIPELINE_ID)
fileFilter: ${{ job.os }}*${{ job.backend }}
- task: Bash@3
displayName: Copy HIP artifacts
inputs:
targetType: inline
script: cp -a $(Agent.BuildDirectory)/rocm/* $(Build.BinariesDirectory)/
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
inputs:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -59,16 +59,15 @@ parameters:
sparseCheckoutDir: projects/hipblaslt
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- hipBLAS_common
gfx90a:
- hipBLAS_common
- hipBLAS_common_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: hipBLAS_common_build_${{ job.os }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -32,6 +32,8 @@ parameters:
- name: aptPackages
type: object
default:
- ccache
- gfortran
- git
- libdrm-dev
- libmsgpack-dev
@@ -39,9 +41,6 @@ parameters:
- ninja-build
- python3-pip
- python3-venv
- gfortran
- libblas-dev
- ccache
- name: pipModules
type: object
default:
@@ -78,15 +77,19 @@ parameters:
type: object
default:
buildJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { pool: rocm-ci_ultra_build_pool, os: ubuntu2204, packageManager: apt, target: gfx942 }
- { pool: rocm-ci_medium_build_pool, os: ubuntu2204, packageManager: apt, target: gfx90a }
- { pool: rocm-ci_medium_build_pool, os: ubuntu2204, packageManager: apt, target: gfx1201 }
- { pool: rocm-ci_medium_build_pool, os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { pool: rocm-ci_medium_build_pool, os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { pool: rocm-ci_ultra_build_pool, os: almalinux8, packageManager: dnf, target: gfx942 }
- { pool: rocm-ci_medium_build_pool, os: almalinux8, packageManager: dnf, target: gfx90a }
- { pool: rocm-ci_medium_build_pool, os: almalinux8, packageManager: dnf, target: gfx1201 }
- { pool: rocm-ci_medium_build_pool, os: almalinux8, packageManager: dnf, target: gfx1100 }
- { pool: rocm-ci_medium_build_pool, os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- name: downstreamComponentMatrix
type: object
default:
@@ -95,17 +98,16 @@ parameters:
sparseCheckoutDir: projects/rocblas
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- hipBLASLt_build_gfx942
gfx90a:
- hipBLASLt_build_gfx90a
- hipBLASLt_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 300
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -119,7 +121,11 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
- name: DAY_STRING
value: $[format('{0:ddMMyyyy}', pipeline.startTime)]
pool: ${{ variables.ULTRA_BUILD_POOL }}
pool: ${{ job.pool }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
@@ -127,16 +133,22 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
@@ -148,22 +160,17 @@ jobs:
script: |
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
# Build and install gtest, lapack, hipBLAS-common
# $(Pipeline.Workspace)/deps is a temporary folder for the build process
# $(Pipeline.Workspace)/s/deps is part of the hipBLASLt repo
- script: mkdir $(Pipeline.Workspace)/deps
displayName: Create temp folder for external dependencies
# hipBLASLt already has a CMake script for external deps, so we can just run that
# https://github.com/ROCm/hipBLASLt/blob/develop/deps/CMakeLists.txt
- script: cmake $(Pipeline.Workspace)/s/deps
displayName: Configure hipBLASLt external dependencies
workingDirectory: $(Pipeline.Workspace)/deps
- script: make
displayName: Build hipBLASLt external dependencies
workingDirectory: $(Pipeline.Workspace)/deps
- script: sudo make install
displayName: Install hipBLASLt external dependencies
workingDirectory: $(Pipeline.Workspace)/deps
- task: Bash@3
displayName: Build and install LAPACK
inputs:
targetType: inline
script: |
mkdir -p $(Agent.BuildDirectory)/temp-deps
cd $(Agent.BuildDirectory)/temp-deps
# position-independent LAPACK is required for almalinux8 builds
cmake -DBUILD_GTEST=OFF -DBUILD_LAPACK=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON $(Agent.BuildDirectory)/s/deps
make
sudo make install
- script: |
mkdir -p $(CCACHE_DIR)
echo "##vso[task.prependpath]/usr/lib/ccache"
@@ -171,58 +178,58 @@ jobs:
- task: Cache@2
displayName: Ccache caching
inputs:
key: hipBLASLt | $(Agent.OS) | ${{ job.target }} | $(DAY_STRING) | $(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
key: hipBLASLt | ${{ job.os }} | ${{ job.target }} | $(DAY_STRING) | $(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
path: $(CCACHE_DIR)
restoreKeys: |
hipBLASLt | $(Agent.OS) | ${{ job.target }} | $(DAY_STRING)
hipBLASLt | $(Agent.OS) | ${{ job.target }}
hipBLASLt | $(Agent.OS)
hipBLASLt | ${{ job.os }} | ${{ job.target }} | $(DAY_STRING)
hipBLASLt | ${{ job.os }} | ${{ job.target }}
hipBLASLt | ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_INCLUDE_PATH=$(Agent.BuildDirectory)/rocm/llvm/include
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache
-DCMAKE_C_COMPILER_LAUNCHER=ccache
-DAMDGPU_TARGETS=${{ job.target }}
-DTensile_LOGIC=
-DTensile_CPU_THREADS=
-DTensile_LIBRARY_FORMAT=msgpack
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm"
-DBUILD_CLIENTS_TESTS=ON
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/llvm/bin:/home/user/workspace/rocm/bin
installLatestCMake: true
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/amdclang
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
extraCopyDirectories:
- deps
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/llvm/bin:/home/user/workspace/rocm/bin
installLatestCMake: true
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/amdclang
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
extraCopyDirectories:
- deps
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 300
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -238,6 +245,7 @@ jobs:
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -246,12 +254,16 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
@@ -259,6 +271,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './hipblaslt-test'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes --gtest_filter=*pre_checkin*'

View File

@@ -61,12 +61,12 @@ parameters:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- { os: ubuntu2204, packageManager: apt, target: gfx1201 }
# - { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { os: almalinux8, packageManager: dnf, target: gfx942 }
- { os: almalinux8, packageManager: dnf, target: gfx90a }
- { os: almalinux8, packageManager: dnf, target: gfx1201 }
# - { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
@@ -76,7 +76,9 @@ jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -82,7 +82,9 @@ jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }} # todo: add OS
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -154,6 +156,7 @@ jobs:
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -72,24 +72,23 @@ parameters:
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- name: downstreamComponentMatrix
type: object
default:
- rocFFT:
name: rocFFT
sparseCheckoutDir: projects/rocfft
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- hipRAND_build_gfx942
gfx90a:
- hipRAND_build_gfx90a
# - name: downstreamComponentMatrix
# type: object
# default:
# - rocFFT:
# name: rocFFT
# sparseCheckoutDir: projects/rocfft
# skipUnifiedBuild: 'false'
# buildDependsOn:
# - hipRAND_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -184,6 +183,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
@@ -206,14 +206,14 @@ jobs:
environment: test
gpuTarget: ${{ job.target }}
- ${{ if parameters.triggerDownstreamJobs }}:
- ${{ each component in parameters.downstreamComponentMatrix }}:
- ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
- template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ component.sparseCheckoutDir }}
buildDependsOn: ${{ component.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}
# - ${{ if parameters.triggerDownstreamJobs }}:
# - ${{ each component in parameters.downstreamComponentMatrix }}:
# - ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
# - template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
# parameters:
# checkoutRepo: ${{ parameters.checkoutRepo }}
# sparseCheckoutDir: ${{ component.sparseCheckoutDir }}
# buildDependsOn: ${{ component.buildDependsOn }}
# downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
# triggerDownstreamJobs: true
# unifiedBuild: ${{ parameters.unifiedBuild }}

View File

@@ -70,8 +70,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: hipSPARSELt
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -64,7 +83,11 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: hipSPARSELt_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_ubuntu2204_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_ubuntu2204_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -91,12 +114,15 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# Build and install gtest and lapack
# $(Pipeline.Workspace)/deps is a temporary folder for the build process
# $(Pipeline.Workspace)/s/deps is part of the hipSPARSELt repo
@@ -131,8 +157,10 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: ${{ job.target }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -150,44 +178,49 @@ jobs:
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
installLatestCMake: true
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: hipSPARSELt_test_${{ job.target }}
dependsOn: hipSPARSELt_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: hipSPARSELt
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './hipsparselt-test'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes --gtest_filter=*pre_checkin*'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_ubuntu2204_${{ job.target }}
timeoutInMinutes: 120
dependsOn: ${{ parameters.componentName }}_build_ubuntu2204_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './hipsparselt-test'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes --gtest_filter=*pre_checkin*'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -67,7 +67,6 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
skipLlvmSymlink: true
aggregatePipeline: ${{ parameters.aggregatePipeline }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml

View File

@@ -15,7 +15,6 @@ parameters:
default:
- cmake
- git
- googletest
- libboost-program-options-dev
- libdrm-dev
- libfftw3-dev
@@ -90,6 +89,10 @@ jobs:
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
submoduleBehaviour: recursive
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
@@ -101,12 +104,11 @@ jobs:
extraBuildFlags: >-
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DHALF_INCLUDE_DIR=$(Agent.BuildDirectory)/rocm/include
-DCMAKE_BUILD_TYPE=Release
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DBUILD_TESTS=ON
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake;$(Agent.BuildDirectory)/rocm/libexec/hipify
-DAMDGPU_TARGETS=${{ job.target }}
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:

View File

@@ -86,8 +86,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -73,8 +73,7 @@ jobs:
- template: /.azuredevops/variables-global.yml
- name: HIP_ROCCLR_HOME
value: $(Build.BinariesDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -33,17 +33,15 @@ parameters:
type: object
default:
- cmake
- ninja-build
- python3-venv
- git
- libmsgpack-dev
- gfortran
- libopenblas-dev
- googletest
- libgtest-dev
- wget
- python3-pip
- libdrm-dev
- libmsgpack-dev
- libopenblas-dev
- ninja-build
- python3-pip
- python3-venv
- wget
- name: pipModules
type: object
default:
@@ -52,18 +50,17 @@ parameters:
- name: rocmDependencies
type: object
default:
- rocm-cmake
- llvm-project
- ROCR-Runtime
- clr
- rocminfo
- rocprofiler-register
- rocm_smi_lib
- rocm-core
- aomp
- aomp-extras
- clr
- hipBLAS-common
- hipBLASLt
- llvm-project
- rocm-cmake
- rocm-core
- rocm_smi_lib
- rocminfo
- rocprofiler-register
- ROCR-Runtime
- roctracer
- name: rocmTestDependencies
type: object
@@ -83,44 +80,51 @@ parameters:
type: object
default:
buildJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- { os: ubuntu2204, packageManager: apt, target: gfx1201 }
- { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { os: almalinux8, packageManager: dnf, target: gfx942 }
- { os: almalinux8, packageManager: dnf, target: gfx90a }
- { os: almalinux8, packageManager: dnf, target: gfx1201 }
- { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- name: downstreamComponentMatrix
type: object
default:
# rocSOLVER depends on both rocBLAS and rocPRIM
# for a unified build, rocBLAS will be the one to call rocSOLVER
- rocSOLVER:
name: rocSOLVER
sparseCheckoutDir: projects/rocsolver
# technically hipSPARSELt is a downstream component of hipSPARSE
# since hipSPARSE is not yet enabled, we will trigger it from rocBLAS in the interim
- hipSPARSELt:
name: hipSPARSELt
sparseCheckoutDir: projects/hipsparselt
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- rocBLAS_build_gfx942
gfx90a:
- rocBLAS_build_gfx90a
unifiedBuild:
downstreamAggregateNames: rocBLAS+rocPRIM
buildDependsOn:
gfx942:
- rocBLAS_build_gfx942
- rocPRIM_build_gfx942
gfx90a:
- rocBLAS_build_gfx90a
- rocPRIM_build_gfx90a
- rocBLAS_build
# rocSOLVER depends on both rocBLAS and rocPRIM
# for a unified build, rocBLAS will be the one to call rocSOLVER
# - rocSOLVER:
# name: rocSOLVER
# sparseCheckoutDir: projects/rocsolver
# skipUnifiedBuild: 'false'
# buildDependsOn:
# - rocBLAS_build
# unifiedBuild:
# downstreamAggregateNames: rocBLAS+rocPRIM
# buildDependsOn:
# - rocBLAS_build
# - rocPRIM_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -133,6 +137,10 @@ jobs:
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
@@ -140,6 +148,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
@@ -147,59 +156,62 @@ jobs:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aocl.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_TOOLCHAIN_FILE=toolchain-linux.cmake
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang
-DGPU_TARGETS=${{ job.target }}
-DTensile_CODE_OBJECT_VERSION=default
-DTensile_LOGIC=asm_full
-DTensile_SEPARATE_ARCHITECTURES=ON
-DTensile_LAZY_LIBRARY_LOADING=ON
-DTensile_LIBRARY_FORMAT=msgpack
-DBUILD_CLIENTS_TESTS=ON
-DBUILD_CLIENTS_BENCHMARKS=OFF
-DBUILD_CLIENTS_SAMPLES=OFF
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
installAOCL: true
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
installAOCL: true
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 120
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -213,6 +225,7 @@ jobs:
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -221,12 +234,16 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
@@ -234,6 +251,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rocblas-test'
testParameters: '--yaml rocblas_smoke.yaml --gtest_output=xml:./test_output.xml --gtest_color=yes'
@@ -251,11 +269,11 @@ jobs:
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ component.sparseCheckoutDir }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}
${{ if parameters.unifiedBuild }}:
buildDependsOn: ${{ component.unifiedBuild.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ component.unifiedBuild.downstreamAggregateNames }}
${{ else }}:
buildDependsOn: ${{ component.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}

View File

@@ -78,24 +78,23 @@ parameters:
target: gfx942
- gfx90a:
target: gfx90a
- name: downstreamComponentMatrix
type: object
default:
- hipFFT:
name: hipFFT
sparseCheckoutDir: projects/hipfft
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- rocFFT_build_gfx942
gfx90a:
- rocFFT_build_gfx90a
# - name: downstreamComponentMatrix
# type: object
# default:
# - hipFFT:
# name: hipFFT
# sparseCheckoutDir: projects/hipfft
# skipUnifiedBuild: 'false'
# buildDependsOn:
# - rocFFT_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_ubuntu2204_${{ job.target }} # todo: un-hardcode OS
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -167,6 +166,7 @@ jobs:
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -196,14 +196,14 @@ jobs:
environment: test
gpuTarget: ${{ job.target }}
- ${{ if parameters.triggerDownstreamJobs }}:
- ${{ each component in parameters.downstreamComponentMatrix }}:
- ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
- template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ component.sparseCheckoutDir }}
buildDependsOn: ${{ component.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}
# - ${{ if parameters.triggerDownstreamJobs }}:
# - ${{ each component in parameters.downstreamComponentMatrix }}:
# - ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
# - template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
# parameters:
# checkoutRepo: ${{ parameters.checkoutRepo }}
# sparseCheckoutDir: ${{ component.sparseCheckoutDir }}
# buildDependsOn: ${{ component.buildDependsOn }}
# downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
# triggerDownstreamJobs: true
# unifiedBuild: ${{ parameters.unifiedBuild }}

View File

@@ -27,6 +27,7 @@ parameters:
- numpy
- tomli
- scipy
- pybind11
- name: rocmDependencies
type: object
default:

View File

@@ -60,12 +60,12 @@ parameters:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- { os: ubuntu2204, packageManager: apt, target: gfx1201 }
# - { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { os: almalinux8, packageManager: dnf, target: gfx942 }
- { os: almalinux8, packageManager: dnf, target: gfx90a }
- { os: almalinux8, packageManager: dnf, target: gfx1201 }
# - { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942, shard: 1, shardCount: 3 }
@@ -82,36 +82,29 @@ parameters:
sparseCheckoutDir: projects/rocthrust
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- rocPRIM_build_gfx942
gfx90a:
- rocPRIM_build_gfx90a
- rocPRIM_build
- hipCUB:
name: hipCUB
sparseCheckoutDir: projects/hipcub
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- rocPRIM_build_gfx942
gfx90a:
- rocPRIM_build_gfx90a
- rocPRIM_build
# rocSOLVER depends on both rocBLAS and rocPRIM
# for a unified build, rocBLAS will be the one to call rocSOLVER
- rocSOLVER:
name: rocSOLVER
sparseCheckoutDir: projects/rocsolver
skipUnifiedBuild: 'true'
buildDependsOn:
gfx942:
- rocPRIM_build_gfx942
gfx90a:
- rocPRIM_build_gfx90a
# - rocSOLVER:
# name: rocSOLVER
# sparseCheckoutDir: projects/rocsolver
# skipUnifiedBuild: 'true'
# buildDependsOn:
# - rocPRIM_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -177,7 +170,7 @@ jobs:
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}_${{ job.shard }}
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}_shard_${{ job.shard }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
@@ -217,7 +210,7 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocprim'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }}'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }} -E device_merge_inplace'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:

View File

@@ -36,6 +36,7 @@ parameters:
- clr
- llvm-project
- rocDecode
- rocJPEG
- rocm-cmake
- rocm-core
- rocminfo
@@ -192,9 +193,9 @@ jobs:
inputs:
itemPattern: '**/*.whl'
targetPath: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
@@ -221,25 +222,17 @@ jobs:
- task: CMake@1
displayName: 'rocPyDecode Test CMake Flags'
inputs:
workingDirectory: $(Agent.BuildDirectory)/rocm/share/rocpydecode/tests
cmakeArgs: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(PYTHON_USER_SITE)/pybind11;$(PYTHON_DIST_PACKAGES)/pybind11;$(PYBIND11_PATH)
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=${{ job.target }}
..
.
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocPyDecode
testDir: $(Build.SourcesDirectory)/build
# sudo required for pip install but screws up permissions for next pipeline run
- task: Bash@3
displayName: Clean up test environment
condition: always()
inputs:
targetType: inline
script: |
pip uninstall -y rocPyDecode
pip uninstall -y hip-python
testDir: $(Agent.BuildDirectory)/rocm/share/rocpydecode/tests
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -78,16 +78,15 @@ parameters:
sparseCheckoutDir: projects/hiprand
skipUnifiedBuild: 'false'
buildDependsOn:
gfx942:
- rocRAND_build_gfx942
gfx90a:
- rocRAND_build_gfx90a
- rocRAND_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -33,13 +33,11 @@ parameters:
type: object
default:
- cmake
- ninja-build
- libsuitesparse-dev
- gfortran
- libfmt-dev
- git
- googletest
- libgtest-dev
- libfmt-dev
- libsuitesparse-dev
- ninja-build
- python3-pip
- name: rocmDependencies
type: object
@@ -72,31 +70,42 @@ parameters:
type: object
default:
buildJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- { os: ubuntu2204, packageManager: apt, target: gfx1201 }
- { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { os: almalinux8, packageManager: dnf, target: gfx942 }
- { os: almalinux8, packageManager: dnf, target: gfx90a }
- { os: almalinux8, packageManager: dnf, target: gfx1201 }
- { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -108,10 +117,15 @@ jobs:
targetType: inline
script: git clone --depth 1 --branch v3.9.1 https://github.com/Reference-LAPACK/lapack
workingDirectory: '$(Build.SourcesDirectory)'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
@@ -119,8 +133,10 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: lapack
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_Fortran_FLAGS=-fno-optimize-sibling-calls
-DBUILD_TESTING=OFF
-DCBLAS=ON
@@ -131,8 +147,9 @@ jobs:
installDir: '$(Pipeline.Workspace)/deps-install'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Pipeline.Workspace)/deps-install
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Pipeline.Workspace)/deps-install;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DAMDGPU_TARGETS=${{ job.target }}
@@ -144,23 +161,26 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraCopyDirectories:
- deps-install
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraCopyDirectories:
- deps-install
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -174,6 +194,7 @@ jobs:
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -181,12 +202,16 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
@@ -194,6 +219,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rocsolver-test'
testParameters: '--gtest_filter="*checkin*" --gtest_output=xml:./test_output.xml --gtest_color=yes'

View File

@@ -64,12 +64,12 @@ parameters:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- { os: ubuntu2204, packageManager: apt, target: gfx1201 }
# - { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1100 }
- { os: ubuntu2204, packageManager: apt, target: gfx1030 }
- { os: almalinux8, packageManager: dnf, target: gfx942 }
- { os: almalinux8, packageManager: dnf, target: gfx90a }
- { os: almalinux8, packageManager: dnf, target: gfx1201 }
# - { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1100 }
- { os: almalinux8, packageManager: dnf, target: gfx1030 }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
@@ -79,7 +79,9 @@ jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn: ${{ parameters.buildDependsOn[job.target] }}
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml

View File

@@ -105,7 +105,7 @@ jobs:
parameters:
componentName: rocm_smi_lib
testDir: '$(Agent.BuildDirectory)'
testExecutable: './rocm/share/rocm_smi/rsmitst_tests/rsmitst'
testExecutable: 'sudo ./rocm/share/rocm_smi/rsmitst_tests/rsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml

View File

@@ -67,7 +67,6 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
skipLlvmSymlink: true
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:

View File

@@ -24,24 +24,28 @@ parameters:
default:
- astunparse==1.6.2
- colorlover
- "dash>=1.12.0"
- dash-bootstrap-components
- dash-svg
- "dash>=3.0.0"
- kaleido==0.2.1
- matplotlib
- "numpy>=1.17.5"
- "pandas>=1.4.3"
- plotext
- plotille
- pymongo
- pyyaml
- tabulate
- tqdm
- dash-svg
- dash-bootstrap-components
- kaleido
- setuptools
- plotille
- tabulate
- textual
- textual_plotext
- textual-fspicker
- tqdm
- mock
- pytest
- pytest-cov
- pytest-xdist
- name: rocmDependencies
- name: rocmTestDependencies
type: object
default:
- amdsmi
@@ -114,14 +118,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
dependencySource: ${{ job.dependencySource }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -165,14 +161,6 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: Bash@3
displayName: Add en_US.UTF-8 locale
inputs:
targetType: inline
script: |
sudo locale-gen en_US.UTF-8
sudo update-locale
locale -a
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
@@ -184,9 +172,17 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
dependencyList: ${{ parameters.rocmTestDependencies }}
dependencySource: ${{ job.dependencySource }}
gpuTarget: ${{ job.target }}
- task: Bash@3
displayName: Add en_US.UTF-8 locale
inputs:
targetType: inline
script: |
sudo locale-gen en_US.UTF-8
sudo update-locale
locale -a
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:

View File

@@ -14,10 +14,12 @@ parameters:
type: object
default:
- build-essential
- cmake
- libdrm-amdgpu-dev
- libdrm-dev
- libdw-dev
- libelf-dev
- libsqlite3-dev
- libva-dev
- ninja-build
- pkg-config
@@ -74,8 +76,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:

View File

@@ -402,14 +402,11 @@ jobs:
itemPattern: '**/*.whl'
targetPath: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
dependencySource: staging
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
dependencySource: staging
skipLlvmSymlink: true
# get sources to run test scripts
- task: Bash@3
displayName: git clone upstream pytorch

View File

@@ -3,12 +3,21 @@ parameters:
- name: jobList
type: object
default:
- gfx942-staging:
target: gfx942
source: staging
- gfx90a-staging:
target: gfx90a
source: staging
- { os: ubuntu2204, target: gfx942, source: staging }
- { os: ubuntu2204, target: gfx90a, source: staging }
- { os: ubuntu2204, target: gfx1201, source: staging }
- { os: ubuntu2204, target: gfx1100, source: staging }
- { os: ubuntu2204, target: gfx1030, source: staging }
- { os: ubuntu2404, target: gfx942, source: staging }
- { os: ubuntu2404, target: gfx90a, source: staging }
- { os: ubuntu2404, target: gfx1201, source: staging }
- { os: ubuntu2404, target: gfx1100, source: staging }
- { os: ubuntu2404, target: gfx1030, source: staging }
- { os: almalinux8, target: gfx942, source: staging }
- { os: almalinux8, target: gfx90a, source: staging }
- { os: almalinux8, target: gfx1201, source: staging }
- { os: almalinux8, target: gfx1100, source: staging }
- { os: almalinux8, target: gfx1030, source: staging }
- name: rocmDependencies
type: object
default:
@@ -16,9 +25,9 @@ parameters:
- amdsmi
- aomp-extras
- aomp
- clr
- composable_kernel
- half
- HIP
- hip-tests
- hipBLAS
- hipBLAS-common
@@ -83,7 +92,7 @@ schedules:
jobs:
- ${{ each job in parameters.jobList }}:
- job: rocm_nightly_${{ job.target }}_${{ job.source }}
- job: rocm_nightly_${{ job.os }}_${{ job.target }}_${{ job.source }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -108,9 +117,8 @@ jobs:
parameters:
dependencySource: ${{ job.source }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
skipLibraryLinking: true
skipLlvmSymlink: true
- script: df -h
displayName: System disk space after ROCm
- script: du -sh $(Agent.BuildDirectory)/rocm

View File

@@ -1,147 +0,0 @@
import os
import yaml
from graphviz import Digraph
# Set DEBUG to False for normal output, True for debug output
DEBUG = False
def debug_print(message):
if DEBUG:
print(message)
import os
import yaml
def extract_dependencies(exclude_nodes=[]):
dependencies = {}
debug_print("Extracting dependencies from YAML files...")
# Define a mapping of specific filenames to component names
component_name_mapping = {
'HIP.yml': 'clr', # Remap HIP.yml to clr in graph
}
script_directory = os.path.dirname(os.path.abspath(__file__))
yaml_directory = os.path.join(script_directory, '..', 'components')
for filename in os.listdir(yaml_directory):
if filename.endswith(".yaml") or filename.endswith(".yml"):
debug_print(f"Processing file: {filename}")
try:
with open(os.path.join(yaml_directory, filename), 'r') as file:
data = yaml.safe_load(file) or {}
parameters = data.get('parameters', [])
# Check for both 'rocmDependencies' and 'rocmDependenciesAMD'
rocm_dependencies = next((param['default'] for param in parameters if param['name'] == 'rocmDependencies' or param['name'] == 'rocmDependenciesAMD'), [])
test_dependencies = next((param['default'] for param in parameters if param['name'] == 'rocmTestDependencies'), [])
unique_dependencies = list(set(rocm_dependencies + test_dependencies))
unique_dependencies = [dep for dep in unique_dependencies if dep not in exclude_nodes]
# Use the mapped component name if it exists
component_name = component_name_mapping.get(filename, os.path.splitext(filename)[0])
if component_name == 'MIOpen':
unique_dependencies.append('composable_kernel')
dependencies[component_name] = {
'dependencies': unique_dependencies
}
debug_print(f"Found unique dependencies for {component_name}: {unique_dependencies}")
except Exception as e:
print(f"Error processing {filename}: {e}")
return dependencies
def simplify_dependencies(graph):
simplified_graph = {}
for component, deps in graph.items():
if component not in simplified_graph:
simplified_graph[component] = set(deps) # Use a set for uniqueness
for dep in deps:
if dep in graph: # If the dependency has its own dependencies
for sub_dep in graph[dep]:
simplified_graph[component].discard(sub_dep) # Remove transitive dependencies
# Convert sets back to lists
for component in simplified_graph:
simplified_graph[component] = list(simplified_graph[component])
return simplified_graph
def build_dependency_graph(dependencies, exclude_nodes=None):
if exclude_nodes is None:
exclude_nodes = []
graph = {}
debug_print("Building dependency graph...")
for component, deps in dependencies.items():
if component in exclude_nodes:
continue # Skip excluded components
# Ensure uniqueness and prevent self-dependency
all_deps = [dep for dep in set(deps['dependencies']) if dep != component and dep not in exclude_nodes]
graph[component] = all_deps
debug_print(f"{component} -> {all_deps}")
# Simplify the dependencies to remove transitive dependencies
simplified_graph = simplify_dependencies(graph)
return simplified_graph
def build_full_dependency_tree(graph):
tree = {}
debug_print("Building full dependency tree...")
def dfs(component, visited):
if component in visited:
return
visited.add(component)
for dep in graph.get(component, []):
# Prevent self-dependency in the tree
if dep != component:
if dep not in tree:
tree[dep] = []
if component not in tree[dep]: # Prevent duplicates
tree[dep].append(component)
dfs(dep, visited)
for component in graph.keys():
dfs(component, set())
return tree
def visualize_graph(graph):
dot = Digraph()
for component, deps in graph.items():
for dep in deps:
dot.edge(component, dep)
script_directory = os.path.dirname(os.path.abspath(__file__))
dot.render(os.path.join(script_directory, 'dependency_graph'), format='png', cleanup=True) # Save as PNG
def main():
exclude_deps = ['rocm-examples']
dependencies = extract_dependencies(exclude_nodes=exclude_deps)
if not dependencies:
debug_print("No dependencies found.")
return
graph = build_dependency_graph(dependencies, exclude_nodes=exclude_deps)
full_tree = build_full_dependency_tree(graph)
print("Dependency tree:")
print(full_tree)
# Call this function after building the graph
visualize_graph(full_tree)
if __name__ == "__main__":
main()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 487 KiB

View File

@@ -28,12 +28,22 @@ resources:
endpoint: ROCm
name: ROCm/hipother
ref: ${{ parameters.checkoutRef }}
pipelines:
- pipeline: hip_pipeline
source: \experimental\HIP
trigger: true
- pipeline: hipother_pipeline
source: \experimental\hipother
trigger: true
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/HIP.yml
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}
- ${{ if eq(variables['Build.Reason'], 'ResourceTrigger') }}:
- template: ${{ variables.CI_COMPONENT_PATH }}/copyHIP.yml@pipelines_repo
- ${{ if ne(variables['Build.Reason'], 'ResourceTrigger') }}:
- template: ${{ variables.CI_COMPONENT_PATH }}/HIP.yml@pipelines_repo
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -12,6 +12,9 @@ parameters:
- name: fileFilter
type: string
default: ''
- name: extractAndDeleteFiles
type: boolean
default: true
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -19,46 +22,35 @@ parameters:
default: false
steps:
- task: Bash@3
displayName: Set allowPartiallySucceededBuilds
inputs:
targetType: inline
script: |
if [[ ",$ALLOWED_PARTIAL_SUCCEED_BUILDS," == *",${{ parameters.componentName }},"* ]]; then
echo "##vso[task.setvariable variable=allowPartiallySucceededBuilds;]true"
else
echo "##vso[task.setvariable variable=allowPartiallySucceededBuilds;]false"
fi
- task: DownloadPipelineArtifact@2
displayName: Download ${{ parameters.componentName }}
inputs:
${{ if eq(parameters.aggregatePipeline, false) }}:
itemPattern: '**/*${{ parameters.componentName }}*${{ parameters.fileFilter }}*'
targetPath: '$(Pipeline.Workspace)/d'
allowPartiallySucceededBuilds: true
${{ if parameters.aggregatePipeline }}:
buildType: 'current'
${{ else }}:
buildType: 'specific'
project: ROCm-CI
definition: ${{ parameters.pipelineId }}
specificBuildWithTriggering: true
itemPattern: '**/*${{ parameters.fileFilter }}*'
# aomp is a special case, since the trigger file is under ROCm/ROCm instead of the component repo
${{ if notIn(parameters.componentName, 'aomp') }}:
buildVersionToDownload: latestFromBranch # default is 'latest'
definition: ${{ parameters.pipelineId }}
branchName: refs/heads/${{ parameters.branchName }}
allowPartiallySucceededBuilds: $(allowPartiallySucceededBuilds)
targetPath: '$(Pipeline.Workspace)/d'
${{ else }}:
buildType: 'current'
itemPattern: '**/${{ parameters.componentName }}*${{ parameters.fileFilter }}*'
allowPartiallySucceededBuilds: $(allowPartiallySucceededBuilds)
targetPath: '$(Pipeline.Workspace)/d'
- task: ExtractFiles@1
displayName: Extract ${{ parameters.componentName }}
inputs:
archiveFilePatterns: '$(Pipeline.Workspace)/d/**/*.tar.gz'
destinationFolder: '$(Agent.BuildDirectory)/rocm'
cleanDestinationFolder: false
overwriteExistingFiles: true
- task: DeleteFiles@1
displayName: Cleanup Compressed ${{ parameters.componentName }}
inputs:
SourceFolder: '$(Pipeline.Workspace)/d'
Contents: '**/*.tar.gz'
RemoveDotFiles: true
${{ if eq(parameters.componentName, 'aomp') }}:
buildVersionToDownload: latest # aomp trigger lives in ROCm/ROCm, so cannot use ROCm/aomp branch names
${{ else }}:
buildVersionToDownload: latestFromBranch
- ${{ if eq(parameters.extractAndDeleteFiles, true) }}:
- task: ExtractFiles@1
displayName: Extract ${{ parameters.componentName }}
inputs:
archiveFilePatterns: '$(Pipeline.Workspace)/d/**/*.tar.gz'
destinationFolder: '$(Agent.BuildDirectory)/rocm'
cleanDestinationFolder: false
overwriteExistingFiles: true
- task: DeleteFiles@1
displayName: Clean up Compressed ${{ parameters.componentName }}
inputs:
SourceFolder: '$(Pipeline.Workspace)/d'
Contents: '**/*.tar.gz'
RemoveDotFiles: true

View File

@@ -15,8 +15,8 @@ steps:
URL_BEGIN="https://artprodcus3.artifacts.visualstudio.com/"
URL_MIDDLE="/_apis/artifact/"
URL_END="/content?format=file&subPath=%2F"
FORMATTED_JOB_NAME=$(echo $(Agent.JobName) | sed 's/ /./g; s/[-_]//g')
ARTIFACT_STRING="pipelineartifact://ROCm-CI/projectId/$(DOWNLOAD_PROJECT_ID)/buildId/$(Build.BuildId)/artifactName/${FORMATTED_JOB_NAME}"
ARTIFACT_NAME="$(Agent.JobName)_$(System.JobAttempt)"
ARTIFACT_STRING="pipelineartifact://ROCm-CI/projectId/$(DOWNLOAD_PROJECT_ID)/buildId/$(Build.BuildId)/artifactName/${ARTIFACT_NAME}"
ENCODED_STRING=$(echo -n "${ARTIFACT_STRING}" | base64 -w 0)
PADDING_COUNT=$(echo -n "${ENCODED_STRING}" | awk -F= '{print NF-1}')
if [ "$PADDING_COUNT" -gt 0 ]; then

View File

@@ -26,7 +26,7 @@ steps:
includeRootFolder: false
archiveType: 'tar'
tarCompression: 'gz'
archiveFile: '$(Build.ArtifactStagingDirectory)/${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.tar.gz'
archiveFile: '$(Build.ArtifactStagingDirectory)/${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}_$(System.JobAttempt).tar.gz'
- task: DeleteFiles@1
displayName: 'Cleanup Staging Area'
inputs:
@@ -38,7 +38,7 @@ steps:
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: echo "${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.tar.gz" >> pipelineArtifacts.txt
script: echo "${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}_$(System.JobAttempt).tar.gz" >> pipelineArtifacts.txt
# then publish it
- ${{ if parameters.publish }}:
- task: PublishPipelineArtifact@1
@@ -46,4 +46,5 @@ steps:
displayName: '${{ parameters.artifactName }} Publish'
retryCountOnTaskFailure: 3
inputs:
artifactName: $(Agent.JobName)_$(System.JobAttempt)
targetPath: '$(Build.ArtifactStagingDirectory)'

View File

@@ -1,10 +1,15 @@
parameters:
- name: os
type: string
default: ubuntu2204
- name: repositoryUrl
type: string
default: https://download.amd.com/developer/eula/aocl/aocl-4-2
- name: packageName
type: string
default: aocl-linux-gcc-4.2.0_1_amd64.deb
type: object
default:
ubuntu2204: aocl-linux-gcc-4.2.0_1_amd64.deb
almalinux8: aocl-linux-gcc-4.2.0-1.x86_64.rpm
steps:
- task: Bash@3
@@ -12,16 +17,19 @@ steps:
inputs:
targetType: inline
workingDirectory: $(Pipeline.Workspace)
script: wget -nv ${{ parameters.repositoryUrl }}/${{ parameters.packageName }}
script: wget -nv ${{ parameters.repositoryUrl }}/${{ parameters.packageName[parameters.os] }}
- task: Bash@3
displayName: Install AOCL
inputs:
targetType: inline
workingDirectory: $(Pipeline.Workspace)
script: sudo apt install -y ./${{ parameters.packageName }}
${{ if eq(parameters.os, 'ubuntu2204') }}:
script: sudo apt install -y ./${{ parameters.packageName[parameters.os] }}
${{ elseif eq(parameters.os, 'almalinux8') }}:
script: sudo dnf install -y ./${{ parameters.packageName[parameters.os] }}
- task: Bash@3
displayName: Clean up AOCL
inputs:
targetType: inline
workingDirectory: $(Pipeline.Workspace)
script: rm -f ${{ parameters.packageName }}
script: rm -f ${{ parameters.packageName[parameters.os] }}

View File

@@ -52,9 +52,11 @@ parameters:
libexpat-dev: expat-devel
libffi-dev: libffi-devel
libfftw3-dev: fftw-devel
libfmt-dev: fmt-devel
libgmp-dev: gmp-devel
liblzma-dev: xz-devel
libmpfr-dev: mpfr-devel
libmsgpack-dev: msgpack-devel
libncurses5-dev: ncurses-devel
libnuma-dev: numactl-devel
libopenmpi-dev: openmpi-devel

View File

@@ -19,16 +19,6 @@ parameters:
- name: gpuTarget
type: string
default: ''
# set to true if you're calling this template file multiple files in same pipeline
# only leave last call false to optimize sequence
- name: skipLibraryLinking
type: boolean
default: false
# set to true if llvm-project is not downloaded in a particular call
# or if you just don't want the symlink
- name: skipLlvmSymlink
type: boolean
default: false
# set to true if dlopen calls for HIP libraries are causing failures
# because they do not follow shared library symlink convention
- name: setupHIPLibrarySymlinks
@@ -130,7 +120,7 @@ parameters:
hipRAND:
pipelineId: $(HIPRAND_PIPELINE_ID)
stagingBranch: develop
mainlineBranch: mainline
mainlineBranch: develop
hasGpuTarget: true
hipSOLVER:
pipelineId: $(HIPSOLVER_PIPELINE_ID)
@@ -305,7 +295,7 @@ parameters:
rocRAND:
pipelineId: $(ROCRAND_PIPELINE_ID)
stagingBranch: develop
mainlineBranch: mainline
mainlineBranch: develop
hasGpuTarget: true
rocr_debug_agent:
pipelineId: $(ROCR_DEBUG_AGENT_PIPELINE_ID)
@@ -367,6 +357,7 @@ steps:
componentName: ${{ split(dependency, ':')[0] }}
pipelineId: ${{ parameters.componentVarList[split(dependency, ':')[0]].pipelineId }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
extractAndDeleteFiles: false
${{ if parameters.componentVarList[split(dependency, ':')[0]].hasGpuTarget }}:
fileFilter: "${{ split(dependency, ':')[1] }}*_${{ parameters.os }}_${{ parameters.gpuTarget }}"
# dependencySource = staging
@@ -397,6 +388,7 @@ steps:
${{ if parameters.componentVarList[dependency].hasGpuTarget }}:
gpuTarget: ${{ parameters.gpuTarget }}
preTargetFilter: ${{ dependency }}
os: ${{ parameters.os }}
buildType: current
- ${{ else }}:
- template: artifact-download.yml
@@ -404,6 +396,7 @@ steps:
componentName: ${{ dependency }}
pipelineId: ${{ parameters.componentVarList[dependency].pipelineId }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
extractAndDeleteFiles: false
${{ if parameters.componentVarList[dependency].hasGpuTarget }}:
fileFilter: ${{ parameters.os }}_${{ parameters.gpuTarget }}
${{ else }}:
@@ -429,23 +422,43 @@ steps:
# default = staging
${{ else }}:
branchName: ${{ parameters.componentVarList[dependency].stagingBranch }}
# Set link to redirect llvm folder
- ${{ if eq(parameters.skipLlvmSymlink, false) }}:
- task: ExtractFiles@1
displayName: Extract ROCm artifacts
inputs:
archiveFilePatterns: $(Pipeline.Workspace)/d/**/*.tar.gz
destinationFolder: $(Agent.BuildDirectory)/rocm
cleanDestinationFolder: false
overwriteExistingFiles: true
- task: DeleteFiles@1
displayName: Clean up ROCm artifacts
inputs:
SourceFolder: $(Pipeline.Workspace)/d
Contents: '**/*.tar.gz'
RemoveDotFiles: true
- ${{ if containsValue(parameters.dependencyList, 'llvm-project') }}:
- task: Bash@3
displayName: Symlink from rocm/llvm to rocm/lib/llvm
inputs:
targetType: inline
script: |
sudo mkdir -p $(Agent.BuildDirectory)/rocm/lib
sudo ln -s $(Agent.BuildDirectory)/rocm/llvm $(Agent.BuildDirectory)/rocm/lib/llvm
sudo ln -sr $(Agent.BuildDirectory)/rocm/llvm $(Agent.BuildDirectory)/rocm/lib/llvm
echo "Created symlink from rocm/llvm to rocm/lib/llvm"
- task: Bash@3
displayName: Symlink executables from rocm/llvm/bin to rocm/bin
inputs:
targetType: inline
script: |
for file in amdclang amdclang++ amdclang-cl amdclang-cpp amdflang amdlld aompcc mygpu mycpu offload-arch; do
sudo ln -s $(Agent.BuildDirectory)/rocm/llvm/bin/$file $(Agent.BuildDirectory)/rocm/bin/$file
sudo ln -sr $(Agent.BuildDirectory)/rocm/llvm/bin/$file $(Agent.BuildDirectory)/rocm/bin/$file
echo "Created symlink from rocm/llvm/bin/$file to rocm/bin/$file"
done
- ${{ if containsValue(parameters.dependencyList, 'rocm-core') }}:
- task: Bash@3
displayName: Print rocm/.info/version
inputs:
targetType: inline
script: cat $(Agent.BuildDirectory)/rocm/.info/version
# dlopen calls within a ctest or pytest sequence runs into issues when shared library symlink convention is not followed
# the convention is as follows:
# unversioned .so is a symlink to major version .so
@@ -482,17 +495,16 @@ steps:
inputs:
targetType: inline
script: ls -la1R $(Agent.BuildDirectory)/rocm
- ${{ if eq(parameters.skipLibraryLinking, false) }}:
- task: Bash@3
displayName: 'Link ROCm shared libraries'
inputs:
targetType: inline
# OS ignores if the ROCm lib folder shows up more than once
script: |
echo $(Agent.BuildDirectory)/rocm/lib | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/llvm/lib | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/lib64 | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/llvm/lib64 | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
sudo cat /etc/ld.so.conf.d/rocm-ci.conf
sudo ldconfig -v
ldconfig -p
- task: Bash@3
displayName: 'Link ROCm shared libraries'
inputs:
targetType: inline
# OS ignores if the ROCm lib folder shows up more than once
script: |
echo $(Agent.BuildDirectory)/rocm/lib | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/llvm/lib | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/lib64 | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
echo $(Agent.BuildDirectory)/rocm/llvm/lib64 | sudo tee -a /etc/ld.so.conf.d/rocm-ci.conf
sudo cat /etc/ld.so.conf.d/rocm-ci.conf
sudo ldconfig -v
ldconfig -p

View File

@@ -23,13 +23,14 @@ steps:
inputs:
targetType: inline
script: |
sudo apt-get install -y jq
${{ iif(or(eq(parameters.os, 'ubuntu2204'), eq(parameters.os, 'ubuntu2404')), 'sudo apt-get install -y jq', '') }}
# RESOURCES_REPOSITORIES is a runtime variable (not an env var!) that contains quotations and newlines
# So we need to save it to a file to properly preserve its formatting and contents
cat <<EOF > resources.repositories
$(RESOURCES_REPOSITORIES)
EOF
echo "Value of resources.repositories:"
cat resources.repositories
IS_TAG_BUILD=$(jq 'has("release_repo")' resources.repositories)
@@ -66,8 +67,6 @@ steps:
)
' resources.repositories)
manifest_json=$(Build.ArtifactStagingDirectory)/manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.json
dependencies=()
for manifest_file in $(Pipeline.Workspace)/d/**/manifest_*.json; do
echo "Processing $manifest_file"
@@ -78,6 +77,10 @@ steps:
done
dependencies_json=$(printf '%s\n' "${dependencies[@]}" | jq -s '.')
manifest_filename="manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}"
echo "##vso[task.setvariable variable=manifest_filename]$manifest_filename"
manifest_json=$(Build.ArtifactStagingDirectory)/$manifest_filename.json
jq -n \
--argjson current "$current" \
--argjson dependencies "$dependencies_json" \
@@ -111,8 +114,14 @@ steps:
')
dependencies_rows=$(echo $dependencies_rows)
echo "##vso[task.setvariable variable=dependencies_rows;]$dependencies_rows"
cat $manifest_json
- task: Bash@3
displayName: Print manifest.json
condition: always()
continueOnError: true
inputs:
targetType: inline
script: |
cat $(Build.ArtifactStagingDirectory)/$(manifest_filename).json
- task: Bash@3
displayName: Create manifest.html
condition: always()
@@ -120,10 +129,10 @@ steps:
inputs:
targetType: inline
script: |
manifest_html=$(Build.ArtifactStagingDirectory)/manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.html
manifest_html="$(Build.ArtifactStagingDirectory)/$(manifest_filename).html"
cat <<EOF > $manifest_html
<html>
<h1>Manifest</h1>
<h1>$(manifest_filename)</h1>
<h2>Current</h2>
<table border="1">
<tr>
@@ -163,7 +172,7 @@ steps:
continueOnError: true
inputs:
tabName: Manifest
reportDir: $(Build.ArtifactStagingDirectory)/manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.html
reportDir: $(Build.ArtifactStagingDirectory)/$(manifest_filename).html
- task: Bash@3
displayName: Save manifest artifact file name
condition: always()
@@ -172,5 +181,5 @@ steps:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: |
echo "manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.html" >> pipelineArtifacts.txt
echo "manifest_${{ parameters.componentName }}_$(Build.BuildId)_$(Build.BuildNumber)_${{ parameters.os }}_${{ parameters.gpuTarget }}_${{ parameters.artifactName }}.json" >> pipelineArtifacts.txt
echo "$(manifest_filename).html" >> pipelineArtifacts.txt
echo "$(manifest_filename).json" >> pipelineArtifacts.txt

View File

@@ -17,7 +17,6 @@ steps:
script: |
AZ_API="https://dev.azure.com/ROCm-CI/ROCm-CI/_apis"
GH_API="https://api.github.com/repos/ROCm"
ARTIFACT_NAME="composablekernelbuild${{ parameters.gpuTarget }}"
EXIT_CODE=0
# Try to find an Azure build for the specific CK commit called out in MIOpen's requirements.txt
@@ -39,8 +38,15 @@ steps:
echo "Found specific CK build ID: $CK_BUILD_ID"
fi
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | \
jq --arg os "ubuntu2204" --arg gfx "${{ parameters.gpuTarget }}" '
.value
| map(select(.name | test($os) and test($gfx)))
| max_by(.name | capture("drop_(?<dropNumber>\\d+)").dropNumber | tonumber)
| .resource.downloadUrl
' | \
tr -d '"')
# If using the specific CK commit and it doesn't have any valid artifacts, use latest successful CK build instead
if { [[ -z "$ARTIFACT_URL" ]] || [[ "$ARTIFACT_URL" == "null" ]]; } && [[ $EXIT_CODE -eq 0 ]]; then
@@ -48,8 +54,15 @@ steps:
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
echo "Found latest CK build ID: $CK_BUILD_ID"
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | \
jq --arg os "ubuntu2204" --arg gfx "${{ parameters.gpuTarget }}" '
.value
| map(select(.name | test($os) and test($gfx)))
| max_by(.name | capture("drop_(?<dropNumber>\\d+)").dropNumber | tonumber)
| .resource.downloadUrl
' | \
tr -d '"')
EXIT_CODE=2
fi
@@ -57,8 +70,8 @@ steps:
wget --tries=5 --waitretry=10 --retry-connrefused -nv $ARTIFACT_URL -O $(System.ArtifactsDirectory)/ck.zip
unzip $(System.ArtifactsDirectory)/ck.zip -d $(System.ArtifactsDirectory)
mkdir -p $(Agent.BuildDirectory)/rocm
tar -zxvf $(System.ArtifactsDirectory)/$ARTIFACT_NAME/*.tar.gz -C $(Agent.BuildDirectory)/rocm
rm -r $(System.ArtifactsDirectory)/ck.zip $(System.ArtifactsDirectory)/$ARTIFACT_NAME
tar -zxvf $(System.ArtifactsDirectory)/composable_kernel*/*.tar.gz -C $(Agent.BuildDirectory)/rocm
rm -r $(System.ArtifactsDirectory)/ck.zip $(System.ArtifactsDirectory)/composable_kernel*
if [[ $EXIT_CODE -ne 0 ]]; then
BUILD_COMMIT=$(curl -s $AZ_API/build/builds/$CK_BUILD_ID | jq '.sourceVersion' | tr -d '"')

View File

@@ -1,19 +1,19 @@
parameters:
- name: os
type: string
default: 'ubuntu2204'
- name: componentName
type: string
default: ''
- name: os
type: string
default: ubuntu2204
- name: testDir
type: string
default: 'build'
default: build
- name: testExecutable
type: string
default: 'ctest'
default: ctest
- name: testParameters
type: string
default: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml'
default: --output-on-failure --force-new-ctest-process --output-junit test_output.xml
- name: extraTestParameters
type: string
default: ''
@@ -22,7 +22,7 @@ parameters:
default: test_output.xml
- name: testOutputFormat
type: string
default: 'JUnit'
default: JUnit
values:
- JUnit
- NUnit
@@ -32,31 +32,28 @@ parameters:
- name: testPublishResults
type: boolean
default: true
- name: allowPartiallySucceededBuilds
- name: allowComponentTestFailure
type: object
default:
- amdsmi
- aomp
- HIPIFY
- MIVisionX
- rocm_smi_lib
- rocprofiler-sdk
- roctracer
# the following do not use this template but allow test failures, included for completeness
- aomp
- ROCgdb
steps:
# run test, continue on failure to publish results
# and to publish build artifacts
- task: Bash@3
displayName: '${{ parameters.componentName }} Test'
continueOnError: ${{ containsValue(parameters.allowPartiallySucceededBuilds, parameters.componentName) }}
continueOnError: ${{ containsValue(parameters.allowComponentTestFailure, parameters.componentName) }}
inputs:
targetType: inline
${{ if ne(parameters.os, 'almalinux8') }}:
script: ${{ parameters.testExecutable }} ${{ parameters.testParameters }} ${{ parameters.extraTestParameters }}
${{ else }}:
script: |
source /opt/rh/gcc-toolset-14/enable
${{ parameters.testExecutable }} ${{ parameters.testParameters }} ${{ parameters.extraTestParameters }}
script: |
${{ iif(eq(parameters.os, 'almalinux8'), 'source /opt/rh/gcc-toolset-14/enable', '') }}
${{ parameters.testExecutable }} ${{ parameters.testParameters }} ${{ parameters.extraTestParameters }}
workingDirectory: ${{ parameters.testDir }}
- ${{ if parameters.testPublishResults }}:
- task: PublishTestResults@2

View File

@@ -32,13 +32,13 @@ variables:
- name: GFX90A_TEST_POOL
value: gfx90a_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.4.0
value: 6.4.1
- name: REPO_RADEON_VERSION
value: 6.4
value: 6.4.1
- name: NEXT_RELEASE_VERSION
value: 6.5.0
value: 7.0.0
- name: LATEST_RELEASE_TAG
value: rocm-6.4.0
value: rocm-6.4.1
- name: DOCKER_SKIP_GFX
value: gfx90a
- name: AMDMIGRAPHX_PIPELINE_ID
@@ -66,11 +66,11 @@ variables:
- name: HIP_TESTS_PIPELINE_ID
value: 233
- name: HIPBLAS_COMMON_PIPELINE_ID
value: 223
value: 300
- name: HIPBLAS_PIPELINE_ID
value: 87
- name: HIPBLASLT_PIPELINE_ID
value: 112
value: 301
- name: HIPCUB_PIPELINE_ID
value: 277
- name: HIPFFT_PIPELINE_ID
@@ -80,7 +80,7 @@ variables:
- name: HIPIFY_PIPELINE_ID
value: 92
- name: HIPRAND_PIPELINE_ID
value: 90
value: 275
- name: HIPSOLVER_PIPELINE_ID
value: 84
- name: HIPSPARSE_PIPELINE_ID
@@ -104,7 +104,7 @@ variables:
- name: ROCALUTION_PIPELINE_ID
value: 89
- name: ROCBLAS_PIPELINE_ID
value: 85
value: 302
- name: ROCDBGAPI_PIPELINE_ID
value: 135
- name: ROCDECODE_PIPELINE_ID
@@ -150,7 +150,7 @@ variables:
- name: ROCR_RUNTIME_PIPELINE_ID
value: 10
- name: ROCRAND_PIPELINE_ID
value: 95
value: 274
- name: ROCSOLVER_PIPELINE_ID
value: 81
- name: ROCSPARSE_PIPELINE_ID

View File

@@ -6,7 +6,7 @@ different versions of the ROCm software stack and its components.
## ROCm 6.4.1
See the [ROCm 6.4.1 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
See the [ROCm 6.4.1 release notes](https://rocm.docs.amd.com/en/docs-6.4.1/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.4.2)

137
README.md
View File

@@ -27,142 +27,9 @@ source software compilers, debuggers, and libraries. ROCm is fully integrated in
> The instructions below describe the prior process for building from source
> which will be replaced once TheRock is mature enough.
## Getting the ROCm Source Code
## Getting and Building ROCm from Source
AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called [default.xml](./default.xml). You can use this manifest file to download the source code for ROCm software.
### Installing the repo tool
The repo tool from Google allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo tool:
```bash
mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo
```
**Note:** The ```~/bin/``` folder is used as an example. You can specify a different folder to install the repo tool into if you desire.
### Installing git-lfs
Some ROCm projects use the Git Large File Storage (LFS) format that may require you to install git-lfs. Refer to [Git Large File Storage](https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md) for more information. For example, to install git-lfs for Ubuntu, use the following command:
```bash
sudo apt-get install git-lfs
```
### Downloading the ROCm source code
The following example shows how to use the repo tool to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo tool, you must use that chosen directory in the code as shown below:
```bash
mkdir -p ~/ROCm/
cd ~/ROCm/
export ROCM_VERSION=6.4.1
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
```
**Note:** Using this sample code will cause the repo tool to download the open source code associated with the specified ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download as explained at [Connecting to GitHub with SSH](https://docs.github.com/en/authentication/connecting-to-github-with-ssh).
## Building the ROCm source code
Each ROCm component repository contains directions for building that component, such as the rocSPARSE documentation [Installation and Building for Linux](https://rocm.docs.amd.com/projects/rocSPARSE/en/latest/install/Linux_Install_Guide.html). Refer to the specific component documentation for instructions on building the repository.
Each release of the ROCm software supports specific hardware and software configurations. Refer to [System requirements (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html) for the current supported hardware and OS.
## Build ROCm from source
The Build will use as many processors as it can find to build in parallel. Some of the compiles can consume as much as 10GB of RAM, so make sure you have plenty of Swap Space !
By default the ROCm build will compile for all supported GPU architectures and will take approximately 500 CPU hours.
The Build time will reduce significantly if we limit the GPU Architecture/s against which we need to build by using the environment variable GPU_ARCHS as mentioned below.
```bash
# --------------------------------------
# Step1: clone source code
# --------------------------------------
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
cd ~/WORKSPACE/
export ROCM_VERSION=6.4.1
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
# --------------------------------------
# Step 2: Prepare build environment
# --------------------------------------
# Option 1: Start a docker container
# Pulling required base docker images:
# Ubuntu22.04 built from ROCm/tools/rocm-build/docker/ubuntu22/Dockerfile
docker pull rocm/rocm-build-ubuntu-22.04:6.4
# Ubuntu24.04 built from ROCm/tools/rocm-build/docker/ubuntu24/Dockerfile
docker pull rocm/rocm-build-ubuntu-24.04:6.4
# Start docker container and mount the source code folder:
docker run -ti \
-e ROCM_VERSION=${ROCM_VERSION} \
-e CCACHE_DIR=$HOME/.ccache \
-e CCACHE_ENABLED=true \
-e DOCK_WORK_FOLD=/src \
-w /src \
-v $PWD:/src \
-v /etc/passwd:/etc/passwd \
-v /etc/shadow:/etc/shadow \
-v ${HOME}/.ccache:${HOME}/.ccache \
-u $(id -u):$(id -g) \
<replace_with_required_ubuntu_base_docker_image> bash
# Option 2: Install required packages into the host machine
# For ubuntu22.04 system
cd ROCm/tools/rocm-build/docker/ubuntu22
cp * /tmp && cd /tmp
bash install-prerequisites.sh
# For ubuntu24.04 system
cd ROCm/tools/rocm-build/docker/ubuntu24
cp * /tmp && cd /tmp
bash install-prerequisites.sh
# --------------------------------------
# Step 3: Run build command line
# --------------------------------------
# Select GPU targets before building:
# When GPU_ARCHS is not set, default GPU targets supported by ROCm6.1 will be used.
# To build against a subset of GFX architectures you can use the below env variable.
# Support MI300 (gfx940, gfx941, gfx942).
export GPU_ARCHS="gfx942" # Example
export GPU_ARCHS="gfx940;gfx941;gfx942" # Example
# Pick and run build commands in the docker container:
# Build rocm-dev packages
make -f ROCm/tools/rocm-build/ROCm.mk -j ${NPROC:-$(nproc)} rocm-dev
# Build all ROCm packages
make -f ROCm/tools/rocm-build/ROCm.mk -j ${NPROC:-$(nproc)} all
# list all ROCm components to find required components
make -f ROCm/tools/rocm-build/ROCm.mk list_components
# Build a single ROCm packages
make -f ROCm/tools/rocm-build/ROCm.mk T_rocblas
# Find built packages in ubuntu22.04:
out/ubuntu-22.04/22.04/deb/
# Find built packages in ubuntu24.04:
out/ubuntu-24.04/24.04/deb/
# Find built logs in ubuntu22.04:
out/ubuntu-22.04/22.04/logs/
# Find built logs in ubuntu24.04:
out/ubuntu-24.04/24.04/logs/
# All logs pertaining to failed components, end with .errrors extension.
out/ubuntu-22.04/22.04/logs/rocblas.errors # Example
# All logs pertaining to building components, end with .inprogress extension.
out/ubuntu-22.04/22.04/logs/rocblas.inprogress # Example
# All logs pertaining to passed components, use the component names.
out/ubuntu-22.04/22.04/logs/rocblas # Example
```
Note: [Overview for ROCm.mk](tools/rocm-build/README.md)
Please use [TheRock](https://github.com/ROCm/TheRock) build system to build ROCm from source.
## ROCm documentation

View File

@@ -654,4 +654,4 @@ There are a number of upcoming changes planned for HIP runtime API in an upcomin
that are not backward compatible with prior releases. Most of these changes increase
alignment between HIP and CUDA APIs or behavior. Some of the upcoming changes are to
clean up header files, remove namespace collision, and have a clear separation between
`hipRTC` and HIP runtime.
`hipRTC` and HIP runtime. For more information, see [HIP 7.0 Is Coming: What You Need to Know to Stay Ahead](https://rocm.blogs.amd.com/ecosystems-and-partners/transition-to-hip-7.0-blog/README.html).

View File

@@ -155,7 +155,7 @@ compatibility and system requirements.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
@@ -235,6 +235,6 @@ Expand for full historical view of:
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#kfd_support-past-60] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.

View File

@@ -8,7 +8,7 @@ MI300 and MI200 series performance counters and metrics
This document lists and describes the hardware performance counters and derived metrics available
for the AMD Instinct™ MI300 and MI200 GPU. You can also access this information using the
:doc:`ROCProfiler tool <rocprofiler:rocprofv1>`.
:doc:`ROCprofiler-SDK <rocprofiler-sdk:how-to/using-rocprofv3>`.
MI300 and MI200 series performance counters
===============================================================

View File

@@ -71,8 +71,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/pytorch-inference-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/vllm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.5-20250513", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
@@ -128,6 +129,7 @@ html_theme_options = {"link_main_doc": False}
redirects = {"reference/openmp/openmp": "../../about/compatibility/openmp.html"}
numfig = False
suppress_warnings = ["autosectionlabel.*"]
html_context = {
"project_path" : {project_path},

View File

@@ -0,0 +1,159 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.7.3_20250325
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640
rocm_version: 6.3.1
vllm_version: 0.7.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,152 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,167 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250521
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11
rocm_version: 6.3.1
vllm_version: 0.8.5 (0.8.6.dev315+g91a560098.rocm631)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -0,0 +1,162 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.0.1_20250605
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.0.1_20250605/images/sha256-f48beeb3d72663a93c77211eb45273d564451447c097e060befa713d565fa36c
rocm_version: 6.4.1
vllm_version: 0.9.0.1 (0.9.0.2.dev108+g71faa1880.rocm641)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -31,3 +31,11 @@ pytorch_inference_benchmark:
model_repo: genmo/mochi-1-preview
url: https://huggingface.co/genmo/mochi-1-preview
precision: float16
- group: Wan2.1
tag: wan
models:
- model: Wan2.1
mad_tag: pyt_wan2.1_inference
model_repo: Wan-AI/Wan2.1-T2V-14B
url: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
precision: bfloat16

View File

@@ -1,10 +1,11 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250521
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11
rocm_version: 6.3.1
vllm_version: 0.8.5 (0.8.6.dev315+g91a560098.rocm631)
# TODO: update me
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.1_20250702
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250702/images/sha256-45068a2079cb8df554ed777141bf0c67d6627c470a897256e60c9f262677faab
rocm_version: 6.4.1
vllm_version: 0.9.1 (0.9.2.dev206+gb335519f2.rocm641)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
@@ -26,11 +27,6 @@ vllm_benchmark:
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf

View File

@@ -0,0 +1,120 @@
unified_docker:
latest:
pull_tag: rocm/pytorch-training:v25.6
docker_hub_url: https://hub.docker.com/r/rocm/pytorch-training/tags
rocm_version: 6.4.1
pytorch_version: 2.8.0a0+git7d205b2
python_version: 3.10.17
transformer_engine_version: 1.14.0+2f85f5f2
flash_attention_version: 3.0.0.post1
hipblaslt_version: 0.15.0-8c6919d
triton_version: 3.3.0
model_groups:
- group: Pre-training
tag: pre-training
models:
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain]
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]
- group: Fine-tuning
tag: fine-tuning
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora, HF_finetune_lora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora, HF_finetune_lora]

View File

@@ -7,21 +7,21 @@ AMD Instinct MI300X performance guides
**************************************
The following performance guides provide essential guidance on the necessary
steps to properly :doc:`configure your system for AMD Instinct™ MI300X
accelerators <../system-optimization/mi300x>`. They include detailed
instructions on system settings and application :doc:`workload tuning
<../rocm-for-ai/inference-optimization/workload>` to help you
leverage the maximum capabilities of these accelerators and achieve superior
performance.
steps to properly `configure your system for AMD Instinct™ MI300X accelerators
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
They include detailed instructions on system settings and application
:doc:`workload tuning </how-to/rocm-for-ai/inference-optimization/workload>` to
help you leverage the maximum capabilities of these accelerators and achieve
superior performance.
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__
covers essential system settings and system management practices to configure
your AMD Instinct MI300X system for performance.
* :doc:`../rocm-for-ai/inference-optimization/workload` covers steps to
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload` covers steps to
optimize the performance of AMD Instinct MI300X series accelerators for HPC
and deep learning operations.
* :doc:`../rocm-for-ai/inference/vllm-benchmark` introduces a preconfigured
* :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm` introduces a preconfigured
environment for LLM inference, designed to help you test performance with
popular models on AMD Instinct MI300X series accelerators.

View File

@@ -24,5 +24,3 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`Fine-tuning and inference <fine-tuning-and-inference>` using a
:doc:`single-accelerator <single-gpu-fine-tuning-and-inference>` or
:doc:`multi-accelerator <multi-gpu-fine-tuning-and-inference>` system.

View File

@@ -6,7 +6,7 @@
Use ROCm for AI
**************************
ROCm is an open-source software platform that enables high-performance computing and machine learning applications. It features the ability to accelerate training, fine-tuning, and inference for AI application development. With ROCm, you can access the full power of AMD GPUs, which can significantly improve the performance and efficiency of AI workloads.
ROCm is an open-source software platform that enables high-performance computing and machine learning applications. It features the ability to accelerate training, fine-tuning, and inference for AI application development. With ROCm, you can access the full power of AMD GPUs, which can significantly improve the performance and efficiency of AI workloads.
You can use ROCm to perform distributed training, which enables you to train models across multiple GPUs or nodes simultaneously. Additionally, ROCm supports mixed-precision training, which can help reduce the memory and compute requirements of training workloads. For fine-tuning, ROCm provides access to various algorithms and optimization techniques. In terms of inference, ROCm provides several techniques that can help you optimize your models for deployment, such as quantization, GEMM tuning, and optimization with composable kernel.

View File

@@ -151,8 +151,8 @@ desired effect. Continuous iteration helps refine the performance gains and
address any new bottlenecks that may emerge.
ROCm provides a prebuilt optimized Docker image that has everything required to implement
the tips in this section. It includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see :doc:`../inference/vllm-benchmark`.
the LLM inference tips in this section. It includes ROCm, PyTorch, and vLLM.
For more information, see :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-profiling-tools:
@@ -343,9 +343,10 @@ The following performance tips are not *specific* to vLLM -- they are general
but relevant in this context. You can tune the following vLLM parameters to
achieve optimal request latency and throughput performance.
* As described in :ref:`mi300x-env-vars`, the environment
variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM performance. Set it to
``export HIP_FORCE_DEV_KERNARG=1``.
* As described in `Environment variables (MI300X)
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#environment-variables>`_,
the environment variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM
performance. Set it to ``export HIP_FORCE_DEV_KERNARG=1``.
* Set the :ref:`RCCL environment variable <mi300x-rccl>` ``NCCL_MIN_NCHANNELS``
to ``112`` to increase the number of channels on MI300X to potentially improve
@@ -410,9 +411,9 @@ for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on the MI300X accelerator. The Docker image includes
ROCm, vLLM, PyTorch, and tuning files in the CSV format. For more information,
see :doc:`../inference/vllm-benchmark`.
of LLM inference with vLLM on MI300X series accelerators. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-vllm-throughput-measurement:
@@ -1477,8 +1478,9 @@ following command: ``cat /proc/sys/kernel/numa_balancing`` and
checking whether the output is ``0``.
If the output is ``1``, you can disable NUMA auto-balancing by running the
following command: ``sudo sysctl kernel.numa_balancing=0``. For more
details, see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
following command: ``sudo sysctl kernel.numa_balancing=0``. For more details,
see `AMD Instinct MI300X system optimization
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#disable-numa-auto-balancing>`_.
.. _mi300x-rccl-disable-acs:

View File

@@ -0,0 +1,346 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
* `ROCm 6.2.0 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.4.3 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.4.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and
serving. It deploys the PagedAttention algorithm, which reduces memory
consumption and increases throughput by leveraging dynamic key and value
allocation in GPU memory. vLLM also incorporates many LLM acceleration
and quantization algorithms. In addition, AMD implements high-performance
custom kernels and modules in vLLM to enhance performance further. See
:ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for more
information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``
Although the following eight models are pre-configured to collect latency and
throughput performance data, users can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Available models
----------------
.. hlist::
:columns: 3
* ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_mistral-7b``
* ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_jais-13b``
* ``pyt_vllm_jais-30b``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name unified_docker_vllm rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Multiprocessing distributed executor
--------------------------------------
To optimize vLLM performance, add the multiprocessing API server argument ``--distributed-executor-backend mp``.
Command
^^^^^^^^^^^^^^^^^^^^^^^^^
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options
^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Latency benchmark example
^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` data type.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
Find the latency report at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
Throughput benchmark example
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,416 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Available models
----------------
.. hlist::
:columns: 3
* ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_mistral-7b``
* ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_jais-13b``
* ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* ``pyt_vllm_llama-3.1-70b_fp8``
* ``pyt_vllm_llama-3.1-405b_fp8``
* ``pyt_vllm_mixtral-8x7b_fp8``
* ``pyt_vllm_mixtral-8x22b_fp8``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Command
-------
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options
-------
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,461 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
***********************************************************
LLM inference performance validation on AMD Instinct MI300X
***********************************************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
.. _vllm-benchmark-mad-models:
Available models
----------------
.. list-table::
:header-rows: 1
:widths: 2, 3
* - Model name
- Tag
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Command
-------
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options and available models
----------------------------
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,329 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.7.3_20250325-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Available models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/25070a1841df0dca585b7ddcb967c42aaec4b7c5/docs/dev-docker>`__.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block:: shell
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,345 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.3_20250415-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/7a9f58aae0e7215a5f3dccde60e35072c41656c2/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -1,3 +1,5 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
@@ -7,9 +9,15 @@
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250513-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
@@ -101,18 +109,18 @@ vLLM inference performance testing
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. note::
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
see the developer's guide at `<https://github.com/ROCm/vllm/tree/16d2b92ebcf90fe55cf73fa0b9329a6c9d3dede8/docs/dev-docker>`__.
System validation
=================
@@ -125,11 +133,13 @@ vLLM inference performance testing
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
@@ -141,7 +151,9 @@ vLLM inference performance testing
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
@@ -163,15 +175,19 @@ vLLM inference performance testing
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
@@ -206,18 +222,24 @@ vLLM inference performance testing
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
@@ -257,9 +279,12 @@ vLLM inference performance testing
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
@@ -267,7 +292,9 @@ vLLM inference performance testing
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
@@ -275,7 +302,9 @@ vLLM inference performance testing
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
@@ -304,16 +333,22 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../../inference-optimization/workload`.
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <../../hugging-face-models>`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../../inference-optimization/index>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../../fine-tuning/index>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,355 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250521-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,353 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.9.0.1_20250605-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/7bb0618b1fe725b7d4fad9e525aa44da12c94a8b/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,82 @@
:orphan:
**************************************************
vLLM inference performance testing version history
**************************************************
This table lists previous versions of the ROCm vLLM inference Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/vllm/tags>`_.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.4.1
- 0.9.1
- 2.7.0
-
* :doc:`Documentation <../vllm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250702/images/sha256-45068a2079cb8df554ed777141bf0c67d6627c470a897256e60c9f262677faab>`_
* - 6.4.1
- 0.9.0.1
- 2.7.0
-
* :doc:`Documentation <vllm-0.9.0.1-20250605>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.0.1_20250605/images/sha256-f48beeb3d72663a93c77211eb45273d564451447c097e060befa713d565fa36c>`_
* - 6.3.1
- 0.8.5 (0.8.6.dev)
- 2.7.0
-
* :doc:`Documentation <vllm-0.8.5-20250521>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11>`__
* - 6.3.1
- 0.8.5
- 2.7.0
-
* :doc:`Documentation <vllm-0.8.5-20250513>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4>`__
* - 6.3.1
- 0.8.3
- 2.7.0
-
* :doc:`Documentation <vllm-0.8.3-20250415>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845>`__
* - 6.3.1
- 0.7.3
- 2.7.0
-
* :doc:`Documentation <vllm-0.7.3-20250325>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`__
* - 6.3.1
- 0.6.6
- 2.7.0
-
* :doc:`Documentation <vllm-0.6.6>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`__
* - 6.2.1
- 0.6.4
- 2.5.0
-
* :doc:`Documentation <vllm-0.6.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`__
* - 6.2.0
- 0.4.3
- 2.4.0
-
* :doc:`Documentation <vllm-0.4.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`__

View File

@@ -32,10 +32,10 @@ PyTorch inference performance testing
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-4 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
@@ -103,7 +103,7 @@ PyTorch inference performance testing
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference pyt_mochi_video_inference
.. container:: model-doc pyt_clip_inference pyt_mochi_video_inference pyt_wan2.1_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.

View File

@@ -99,21 +99,20 @@ vLLM inference performance testing
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
page provides reference throughput and latency measurements for inferencing popular AI models.
.. note::
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
see the developer's guide at `<https://github.com/ROCm/vllm/tree/5486e7bc8523be0324ccd68f221959445b56cc2a/docs/dev-docker>`__.
System validation
=================
@@ -326,74 +325,22 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <../hugging-face-models>`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../inference-optimization/index>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
This table lists previous versions of the ROCm vLLM inference Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.3.1
- 0.8.5
- 2.7.0
-
* :doc:`Documentation <previous-versions/vllm-0.8.5-20250513>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4>`_
* - 6.3.1
- 0.8.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.4.0/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845>`_
* - 6.3.1
- 0.7.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`_
* - 6.3.1
- 0.6.6
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_
See :doc:`previous-versions/vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -14,14 +14,14 @@ Throughout the following topics, this section provides a comprehensive guide to
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Installing ROCm and machine learning frameworks <install>`
- :doc:`Installing ROCm and machine learning frameworks <../install>`
- :doc:`Running models from Hugging Face <hugging-face-models>`
- :doc:`LLM inference frameworks <llm-inference-frameworks>`
- :doc:`vLLM inference performance testing <vllm-benchmark>`
- :doc:`vLLM inference performance testing <benchmark-docker/vllm>`
- :doc:`PyTorch inference performance testing <pytorch-inference-benchmark>`
- :doc:`PyTorch inference performance testing <benchmark-docker/pytorch-inference>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -141,7 +141,7 @@ Installing vLLM
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, and PyTorch.
For more information, see :doc:`vllm-benchmark`.
For more information, see :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _fine-tuning-llms-tgi:

View File

@@ -28,7 +28,7 @@ ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/install-methods/amdgpu-installer-index>`
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`

View File

@@ -374,22 +374,5 @@ own cluster setup.
Previous versions
=================
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- JAX version
- Resources
* - 25.4
- 6.3.0
- 0.4.31
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_
See :doc:`previous-versions/jax-maxtext-history` to find documentation for previous releases
of the ``ROCm/jax-training`` Docker image.

View File

@@ -119,12 +119,12 @@ To evaluate performance, the
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this training benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
@@ -160,12 +160,14 @@ Download the Docker image
.. tab-set::
.. tab-item:: Ubuntu 24.04 + Python 3.12
:sync: py312
.. code-block:: shell
docker pull rocm/megatron-lm:v25.5_py312
.. tab-item:: Ubuntu 22.04 + Python 3.10
:sync: py310
.. code-block:: shell
@@ -173,9 +175,22 @@ Download the Docker image
2. Launch the Docker container.
.. code-block:: shell
.. tab-set::
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.5
.. tab-item:: Ubuntu 24.04 + Python 3.12
:sync: py312
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 128G --name megatron_training_env rocm/megatron-lm:v25.5_py312
.. tab-item:: Ubuntu 22.04 + Python 3.10
:sync: py310
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 128G --name megatron_training_env rocm/megatron-lm:v25.5_py310
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
@@ -749,36 +764,5 @@ The benchmark tests support the following sets of variables.
Previous versions
=================
This table lists previous versions of the ROCm Megatron-LM Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- PyTorch version
- Resources
* - 25.4
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/megatron-lm.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.4/images/sha256-941aa5387918ea91c376c13083aa1e6c9cab40bb1875abbbb73bbb65d8736b3f>`_
* - 25.3
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/training/benchmark-docker/megatron-lm.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.3/images/sha256-1e6ed9bdc3f4ca397300d5a9907e084ab5e8ad1519815ee1f868faf2af1e04e2>`_
* - 24.12-dev
- 6.1.0
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_
See :doc:`previous-versions/megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,34 @@
:orphan:
********************************************************
JAX MaxText training performance testing version history
********************************************************
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
You can find tagged
previous releases of the ``ROCm/jax-training`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/jax-training/tags>`_.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- JAX version
- Resources
* - 25.5
- 6.3.4
- 0.4.35
-
* :doc:`Documentation <../jax-maxtext>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.5/images/sha256-4e0516358a227cae8f552fb866ec07e2edcf244756f02e7b40212abfbab5217b>`_
* - 25.4
- 6.3.0
- 0.4.31
-
* :doc:`Documentation <jax-maxtext-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_

View File

@@ -0,0 +1,358 @@
:orphan:
.. meta::
:description: How to train a model using JAX MaxText for ROCm.
:keywords: ROCm, AI, LLM, train, jax, torch, Llama, flux, tutorial, docker
**************************************
Training a model with MaxText for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm JAX MaxText
training performance documentation. See :doc:`../jax-maxtext` for the latest version.
MaxText is a high-performance, open-source framework built on the Google JAX
machine learning library to train LLMs at scale. The MaxText framework for
ROCm is an optimized fork of the upstream
`<https://github.com/AI-Hypercomputer/maxtext>`__ enabling efficient AI workloads
on AMD MI300X series accelerators.
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.4``) image
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X accelerators,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| JAX | 0.4.31 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+f81a3eb |
+--------------------------+--------------------------------+
| hipBLASLt | git78ec8622 |
+--------------------------+--------------------------------+
Supported features and models
=============================
MaxText provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- Flash Attention (FA) 3
- GEMM tuning
- Multi-node support
.. _amd-maxtext-model-support:
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3 8B
* Llama 3 70B
* Llama 2 7B
* Llama 2 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
Unsupported features
--------------------
Currently, MaxText's default packed input format is not supported. Using this format
with the current Docker image results in incorrect attention calculations
across different input sequences. Support for packed input format is planned for a future release.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
as follows. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
.. _amd-maxtext-multi-node-setup:
Multi-node setup
----------------
For multi-node environments, ensure you have all the necessary packages for
your network device, such as, RDMA. If you're not using a multi-node setup
with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
1. Install the following packages to build and install the RDMA driver.
.. code-block:: shell
sudo apt install iproute2 -y
sudo apt install -y linux-headers-"$(uname-r)" libelf-dev
sudo apt install -y gcc make libtool autoconf librdmacm-dev rdmacm-utils infiniband-diags ibverbs-utils perftest ethtool libibverbs-dev rdma-core strace libibmad5 libibnetdisc5 ibverbs-providers libibumad-dev libibumad3 libibverbs1 libnl-3-dev libnl-route-3-dev
Refer to your NIC manufacturer's documentation for further steps on
compiling and installing the RoCE driver. For example, for Broadcom,
see `Compiling Broadcom NIC software from source <https://docs.broadcom.com/doc/957608-AN2XX#G3.484341>`_
in `Ethernet networking guide for AMD Instinct MI300X GPU clusters <https://docs.broadcom.com/doc/957608-AN2XX>`_.
2. Set the following environment variables.
a. Master address
Change `localhost` to the master node's resolvable hostname or IP address:
.. code-block:: bash
export MASTER_ADDR="${MASTER_ADDR:-localhost}"
b. Number of nodes
Set the number of nodes you want to train on (for example, ``2``, ``4``, or ``8``):
.. code-block:: bash
export NNODES="${NNODES:-1}"
c. Node ranks
Set the rank of each node (``0`` for master, ``1`` for the first worker node, and so on)
Node ranks should be unique across all nodes in the cluster.
.. code-block:: bash
export NODE_RANK="${NODE_RANK:-0}"
d. Network interface
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface with an IP address in the same subnet as
your other nodes. Then, update the following variable in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
This variable specifies which network interface to use for inter-node communication.
Setting this variable to the incorrect interface can result in communication failures
or significantly reduced performance.
e. RDMA interface
Ensure the :ref:`required packages <amd-maxtext-multi-node-setup>` are installed on all nodes.
Then, set the RDMA interfaces to use for communication.
.. code-block:: bash
# If using Broadcom NIC
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# If using Mellanox NIC
export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
.. _amd-maxtext-download-docker:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/jax-training:maxtext-v25.4
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.4
.. _amd-maxtext-get-started:
Getting started
===============
The following examples demonstrate how to get started with single node
and multi-node training using the benchmarking scripts provided at
`<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__.
.. important::
The provided scripts launch a Docker container and execute a benchmark. Ensure you run these commands outside of any existing Docker container.
Before running any benchmarks, ensure the ``$HF_HOME`` environment variable is
set correctly and points to your Hugging Face cache directory. Refer to the
README at `<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__
for more detailed instructions.
Single node training benchmarking examples
------------------------------------------
* Example 1: Single node training with Llama 2 7B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_7b.sh
Run the single node training benchmark:
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_7b.sh
* Example 2: Single node training with Llama 2 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_70b.sh
* Example 3: Single node training with Llama 3 8B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_8b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_8b.sh
* Example 4: Single node training with Llama 3 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_70b.sh
* Example 5: Single node training with DeepSeek V2 16B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/deepseek_v2_16b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./deepseek_v2_16b.sh
.. note::
The reported TFLOP/s by MaxText for DeepSeek is not accurate. Use
the tokens/s as a performance indicator.
Multi-node training benchmarking examples
-----------------------------------------
The following examples use SLURM for running on multiple nodes -- the commands might need to be adjusted for your
own cluster setup.
* Example 1: Multi-node training with Llama 2 7B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_7b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama2_7b_multinode.sh
* Example 2: Multi-node training with Llama 2 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_70b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama2_70b_multinode.sh
* Example 3: Multi-node training with Llama 3 8B model
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_8b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama3_8b_multinode.sh
* Example 4: Multi-node training with Llama 3 70B model
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_70b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama3_70b_multinode.sh
Previous versions
=================
See :doc:`jax-maxtext-history` to find documentation for previous releases
of the ``ROCm/jax-training`` Docker image.

View File

@@ -0,0 +1,47 @@
:orphan:
********************************************************
Megatron-LM training performance testing version history
********************************************************
This table lists previous versions of the ROCm Megatron-LM training Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/megatron-lm`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/megatron-lm/tags>`_.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- PyTorch version
- Resources
* - v25.5
- 6.3.4
- 2.8.0a0+gite2f9759
-
* :doc:`Documentation <../megatron-lm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.5_py312/images/sha256-4506f18ba188d24189c6b1f95130b425f52c528a543bb3f420351824edceadc2>`_
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* :doc:`Documentation <megatron-lm-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.4/images/sha256-941aa5387918ea91c376c13083aa1e6c9cab40bb1875abbbb73bbb65d8736b3f>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433
-
* :doc:`Documentation <megatron-lm-v25.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.3/images/sha256-1e6ed9bdc3f4ca397300d5a9907e084ab5e8ad1519815ee1f868faf2af1e04e2>`_
* - v24.12-dev
- 6.1.0
- 2.4.0
-
* :doc:`Documentation <megatron-lm-v24.12-dev>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,516 @@
:orphan:
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See `Hardware verification with ROCm <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#hardware-verification-with-rocm>`_ for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: /data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: /data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: /data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,536 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,618 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X series accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3 8B
* Llama 3 70B
* Llama 2 7B
* Llama 2 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
.. _amd-megatron-lm-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this training benchmarking environment <../megatron-lm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The prebuilt ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.4
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.4
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of the ROCm Megatron-LM development branch `<https://github.com/ROCm/Megatron-LM/tree/rocm_dev>`__
(commit `fd6f01 <https://github.com/ROCm/Megatron-LM/tree/fd6f0d11d7f9480ace32f22eb7e4dab5314fa350>`_).
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface that has an IP address in the same subnet as
your other nodes. Then, update the following variables in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH="/data/bookcorpus_text_sentence" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
To download the dataset, set the ``DATASET`` variable to the dataset you'd like to use. Two datasets are supported: ``DATASET=wiki`` and ``DATASET=bookcorpus``.
Use the following command to download the dataset.
.. code-block:: shell
DATASET=wiki bash examples/llama/prepare_dataset.sh # For wiki-en dataset
DATASET=bookcorpus bash examples/llama/prepare_dataset.sh # For bookcorpus dataset
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
You can assign the path of an existing tokenizer to the ``TOKENIZER_MODEL`` as shown in the following examples.
If the tokenizer is not found, it'll be downloaded to the default tokenizer model path: ``${DATA_DIR}/tokenizer_llama3``
or ``${DATA_DIR}/tokenizer_llama2``.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``
or the default ``HuggingFaceTokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model path in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. note::
If you don't already have the Llama 3.1 tokenizer locally, set your
personal Hugging Face access token ``HF_TOKEN`` to download the
tokenizer. If you encounter the following error, set ``HF_TOKEN`` to
your access-authorized Hugging Face token.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker container, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
.. code-block:: shell
# Specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use one of the
following commands.
- For Llama 3.1 8B FP8:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 3.1 8B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=0 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 2 7B FP8:
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
- For Llama 2 7B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=0 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
To run training with FSDP2 enabled, add the ``FSDP=1`` argument. For example:
- For Llama 3 70B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=3 BS=24 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=8192 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 2 70B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=3 BS=56 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=4096 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
.. note::
It's suggested to use ``TP=1`` when FSDP is enabled for higher throughput. FSDP2 is not supported with pipeline parallelism,
expert parallelism, MCore's distributed optimizer, gradient accumulation fusion, and ``FP16`` precision.
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none SEQ_LEN=4096 PAD_LEN=4096 TRAIN_ITERS=50 bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for B16 or ``1`` for FP8 -- ``0`` by default.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``FSDP``
``1`` to enable PyTorch FSDP2. If FSDP is enabled, ``--use-distributed-optimizer``,
``--overlap-param-gather``, and ``--sequence-parallel`` are automaticallyu disabled.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data you provide.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``). ``TP`` is disabled when ``FSDP`` is turned on.
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TRAIN_ITERS``
The total number of iterations.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data you provide.
``MBS``
Micro batch size.
``GBS``
Global batch size.
``SEQ_LEN``
Input sequence length.
``AC``
Activation checkpointing (``none``, ``sel``, or ``full``) -- ``sel`` by default.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,47 @@
:orphan:
****************************************************
PyTorch training performance testing version history
****************************************************
This table lists previous versions of the ROCm Megatron-LM training Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/pytorch-training`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/pytorch-training/tags>`_.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- PyTorch version
- Resources
* - v25.6
- 6.3.4
- 2.8.0a0+git7d205b2
-
* :doc:`Documentation <../pytorch-training>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.6/images/sha256-a4cea3c493a4a03d199a3e81960ac071d79a4a7a391aa9866add3b30a7842661>`_
* - v25.5
- 6.3.4
- 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.5>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.3/images/sha256-0ffdde1b590fd2787b1c7adf5686875b100980b0f314090901387c44253e709b>`_

View File

@@ -0,0 +1,353 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch
training performance documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -0,0 +1,397 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch
training performance documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.4``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 2 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.4
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.4
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Getting started
===============
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI325X and MI300X
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. note::
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -0,0 +1,439 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
performance benchmark documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+25a33da |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git53b53bf |
+--------------------------+--------------------------------+
| Triton | 3.2.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 2 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Benchmarking
============
Once the setup is complete, choose between two options to start benchmarking:
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
The available models for MAD-integrated benchmarking are:
* ``pyt_train_llama-3.3-70b``
* ``pyt_train_llama-3.1-8b``
* ``pyt_train_llama-3.1-70b``
* ``pyt_train_flux``
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
.. tab-item:: Standalone benchmarking
.. rubric:: Download the Docker image and required packages
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.5
Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
.. rubric:: Pretraining
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. note::
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
.. rubric:: Fine-tuning
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. rubric:: Benchmarking examples
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B

View File

@@ -9,28 +9,27 @@ Training a model with PyTorch for ROCm
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
The `PyTorch for ROCm training Docker <https://hub.docker.com/r/rocm/pytorch-training/tags>`_
(``rocm/pytorch-training:v25.6``) image provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following software components to accelerate
training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
| PyTorch | 2.8.0a0+git7d205b2 |
+--------------------------+--------------------------------+
| Python | 3.10 |
| Python | 3.10.17 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+25a33da |
| Transformer Engine | 1.14.0+2f85f5f2 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
| Flash Attention | 3.0.0.post1 |
+--------------------------+--------------------------------+
| hipBLASLt | git53b53bf |
| hipBLASLt | 0.15.0-8c6919d |
+--------------------------+--------------------------------+
| Triton | 3.2.0 |
| Triton | 3.3.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
@@ -40,422 +39,396 @@ Supported models
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
* Llama 3.1 8B
{% set unified_docker = data.unified_docker.latest %}
{% set model_groups = data.model_groups %}
* Llama 3.1 70B
.. raw:: html
* Llama 2 70B
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Workload</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
* FLUX.1-dev
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
.. note::
Only these models are supported in the following steps.
Some models require an external license agreement through a third party (for example, Meta).
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
page provides reference throughput and latency measurements for training
popular AI models.
System validation
=================
.. note::
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
System validation
=================
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
Benchmarking
============
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Once the setup is complete, choose between two options to start benchmarking:
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
.. tab-set::
Benchmarking
============
.. tab-item:: MAD-integrated benchmarking
Once the setup is complete, choose between two options to start benchmarking:
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. tab-set::
.. code-block:: shell
.. tab-item:: MAD-integrated benchmarking
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. code-block:: shell
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
{% for model_group in model_groups %}
{% for model in model_group.models %}
The available models for MAD-integrated benchmarking are:
.. container:: model-doc {{ model.mad_tag }}
* ``pyt_train_llama-3.3-70b``
For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one GPU with the {{ model.precision }} data type on the host machine.
* ``pyt_train_llama-3.1-8b``
.. code-block:: shell
* ``pyt_train_llama-3.1-70b``
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{ model.mad_tag }} --keep-model-dir --live-output --timeout 28800
* ``pyt_train_flux``
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
{% endfor %}
{% endfor %}
.. tab-item:: Standalone benchmarking
.. tab-item:: Standalone benchmarking
.. rubric:: Download the Docker image and required packages
.. rubric:: Download the Docker image and required packages
Use the following command to pull the Docker image from Docker Hub.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull rocm/pytorch-training:v25.5
docker pull {{ unified_docker.pull_tag }}
Run the Docker container.
Run the Docker container.
.. code-block:: shell
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env {{ unified_docker.pull_tag }}
Use these commands if you exit the ``training_env`` container and need to return to it.
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
docker start training_env
docker exec -it training_env bash
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. rubric:: Prepare training datasets and dependencies
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
export HF_TOKEN=$your_personal_hugging_face_access_token
Run the setup script to install libraries and datasets needed for benchmarking.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
.. code-block:: shell
./pytorch_benchmark_setup.sh
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. container:: model-doc pyt_train_llama-3.1-8b
.. list-table::
:header-rows: 1
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 8B:
* - Library
- Benchmark model
- Reference
.. list-table::
:header-rows: 1
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - Library
- Reference
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
.. container:: model-doc pyt_train_llama-3.1-70b
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 70B:
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
.. list-table::
:header-rows: 1
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - Library
- Reference
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``torchdata``
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``tiktoken``
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``blobfile``
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``tabulate``
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``wandb``
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
.. container:: model-doc pyt_train_flux
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
``pytorch_benchmark_setup.sh`` installs the following libraries for FLUX:
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
.. list-table::
:header-rows: 1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - Library
- Reference
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
Along with the following datasets:
* - ``csvkit``
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``deepspeed``
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``diffusers``
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* - ``GitPython``
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
.. rubric:: Pretraining
* - ``opencv-python-headless``
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* - ``peft``
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
.. code-block:: shell
* - ``protobuf``
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
* - ``pytest``
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
.. list-table::
:header-rows: 1
* - ``python-dotenv``
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - Name
- Options
- Description
* - ``seaborn``
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* - ``transformers``
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
{% for model_group in model_groups %}
{% for model in model_group.models %}
{% if model_group.tag == "pre-training" and model.mad_tag in ["pyt_train_llama-3.1-8b", "pyt_train_llama-3.1-70b", "pyt_train_flux"] %}
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
.. container:: model-doc {{ model.mad_tag }}
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
.. rubric:: Pretraining
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
To start the pre-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
.. code-block:: shell
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
./pytorch_benchmark_report.sh -t pretrain -m {{ model.model_repo }} -p $datatype -s $sequence_length
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. list-table::
:header-rows: 1
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
* - Name
- Options
- Description
.. note::
{% if model.mad_tag == "pyt_train_llama-3.1-8b" %}
* - ``$datatype``
- ``BF16`` or ``FP8``
- Only Llama 3.1 8B supports FP8 precision.
{% else %}
* - ``$datatype``
- ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
{% endif %}
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. rubric:: Fine-tuning
{% if model.mad_tag == "pyt_train_flux" %}
.. container:: model-doc {{ model.mad_tag }}
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. note::
.. code-block:: shell
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
{% endif %}
{% endif %}
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
{% if model_group.tag == "fine-tuning" %}
.. container:: model-doc {{ model.mad_tag }}
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
.. rubric:: Fine-tuning
.. code-block:: shell
To start the fine-tuning benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. code-block:: shell
.. rubric:: Benchmarking examples
./pytorch_benchmark_report.sh -t $training_mode -m {{ model.model_repo }} -p BF16 -s $sequence_length
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
.. list-table::
:header-rows: 1
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
* - Name
- Options
- Description
.. code-block:: shell
* - ``$training_mode``
- ``finetune_fw``
- Full weight fine-tuning (BF16 supported)
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* -
- ``finetune_lora``
- LoRA fine-tuning (BF16 supported)
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
* -
- ``finetune_qlora``
- QLoRA fine-tuning (BF16 supported)
.. code-block:: shell
* -
- ``HF_finetune_lora``
- LoRA fine-tuning with Hugging Face PEFT
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* - ``$datatype``
- ``BF16``
- All models support BF16.
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
* - ``$sequence_length``
- Between 2048 and 16384.
- Sequence length for the language model.
.. code-block:: shell
.. note::
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
{{ model.model }} currently supports the following fine-tuning methods:
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
{% for method in model.training_modes %}
* ``{{ method }}``
{% endfor %}
{% if model.training_modes|length < 4 %}
.. code-block:: shell
The upstream `torchtune <https://github.com/pytorch/torchtune>`_ repository
does not currently provide YAML configuration files for other combinations of
model to fine-tuning method
However, you can still configure your own YAML files to enable support for
fine-tuning methods not listed here by following existing patterns in the
``/workspace/torchtune/recipes/configs`` directory.
{% endif %}
{% endif %}
{% endfor %}
{% endfor %}
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
.. rubric:: Benchmarking examples
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
Previous versions
=================
This table lists previous versions of the ROCm PyTorch training Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- PyTorch version
- Resources
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.3/images/sha256-0ffdde1b590fd2787b1c7adf5686875b100980b0f314090901387c44253e709b>`_
See :doc:`previous-versions/pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -76,14 +76,6 @@ Ubuntu versions.
single node workstations, multi and many-core nodes, clusters of nodes via
QMP, and classic vector computers.
* -
- `Grid <https://github.com/amd/InfinityHub-CI/tree/main/grid/>`_
- Grid is a library for lattice QCD calculations that employs a high-level data parallel
approach while using a number of techniques to target multiple types of parallelism.
The library currently supports MPI, OpenMP and short vector parallelism. The SIMD
instructions sets covered include SSE, AVX, AVX2, FMA4, IMCI and AVX512. Recent
releases expanded this support to include GPU offloading.
* -
- `MILC <https://github.com/amd/InfinityHub-CI/tree/main/milc/>`_
- The MILC Code is a set of research codes developed by MIMD Lattice Computation
@@ -237,12 +229,18 @@ Ubuntu versions.
of these applications.
* - Tools and libraries
- `ROCm with GPU-aware MPI container <https://github.com/amd/InfinityHub-CI/tree/main/base-gpu-mpi-rocm-docker>`_
- `AMD ROCm with OpenMPI container <https://github.com/amd/InfinityHub-CI/tree/main/base-gpu-mpi-rocm-docker>`_
- Base container for GPU-aware MPI with ROCm for HPC applications. This
project provides a boilerplate for building and running a Docker
container with ROCm supporting GPU-aware MPI implementations using
OpenMPI or UCX.
* -
- `AMD ROCm with MPICH container <https://github.com/amd/InfinityHub-CI/tree/main/base-mpich-rocm-docker>`_
- Base container for GPU-aware MPI with ROCm for HPC applications. This
project provides a boilerplate for building and running a Docker
container with ROCm supporting GPU-aware MPI implementations using MPICH.
* -
- `Kokkos <https://github.com/amd/InfinityHub-CI/tree/main/kokkos>`_
- Kokkos is a programming model in C++ for writing performance portable

View File

@@ -38,5 +38,5 @@ The variable parsing stops when a syntax error occurs. The erroneous set and the
These environment variables only affect ROCm software, not graphics applications.
Not all CU configurations are valid on all devices. For example, on devices where two CUs can be combined into a WGP (for kernels running in WGP mode), its not valid to disable only a single CU in a WGP. For more information about what to expect when disabling CUs, see the `Exploring AMD GPU Scheduling Details by Experimenting With “Worst Practices” <https://www.cs.unc.edu/~otternes/papers/rtsj2022.pdf>`_ paper.
Not all CU configurations are valid on all devices. For example, on devices where two CUs can be combined into a WGP (for kernels running in WGP mode), its not valid to disable only a single CU in a WGP.

View File

@@ -12,8 +12,7 @@ accelerators. They include detailed instructions on system settings and
application tuning suggestions to help you fully leverage the capabilities of
these accelerators, thereby achieving optimal performance.
* :doc:`../../rocm-for-ai/inference/vllm-benchmark`
* :doc:`../../rocm-for-ai/inference-optimization/workload`
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload`
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_

View File

@@ -215,9 +215,9 @@ sphinx==8.1.3
# sphinx-copybutton
# sphinx-design
# sphinx-external-toc
# sphinx-last-updated-by-git
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.4
@@ -228,11 +228,13 @@ sphinx-design==0.6.1
# via rocm-docs-core
sphinx-external-toc==1.0.1
# via rocm-docs-core
sphinx-last-updated-by-git==0.3.8
# via sphinx-sitemap
sphinx-notfound-page==1.1.0
# via rocm-docs-core
sphinx-reredirects==0.1.6
# via -r requirements.in
sphinx-sitemap==2.6.0
sphinx-sitemap==2.7.2
# via -r requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
@@ -282,7 +284,7 @@ typing-extensions==4.14.0
# pygithub
# referencing
# sqlalchemy
urllib3==2.4.0
urllib3==2.5.0
# via
# pygithub
# requests

View File

@@ -98,7 +98,7 @@ System Management
.. csv-table::
:header: "Component", "Description"
":doc:`AMD SMI <amdsmi:index>`", "C library for Linux that provides a user space interface for applications to monitor and control AMD devices"
":doc:`AMD SMI <amdsmi:index>`", "System management interface to control AMD GPU settings, monitor performance, and retrieve device and process information"
":doc:`ROCm Data Center Tool <rdc:index>`", "Simplifies administration and addresses key infrastructure challenges in AMD GPUs in cluster and data-center environments"
":doc:`rocminfo <rocminfo:index>`", "Reports system information"
":doc:`ROCm SMI <rocm_smi_lib:index>`", "C library for Linux that provides a user space interface for applications to monitor and control GPU applications"