Compare commits

...

8 Commits

Author SHA1 Message Date
Joseph Macaranas
7ec34dee52 [External CI] Support rocprofiler-sdk libelf changes 2025-11-05 15:27:16 -05:00
yugang-amd
674dc355e4 vLLM 10/24 release (#5626)
* vLLM 10/24 release

* updates per SME inputs

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-11-05 11:13:50 -05:00
Adel Johar
c7f3a56811 [Ex CI] Add half, rccl, and dependencies for rpp, mivisionx and rocjpeg 2025-11-05 15:59:15 +01:00
Pratik Basyal
0107fa731e ROCm Bandwidth test issue added (#5612) 2025-10-31 18:19:40 -04:00
Pratik Basyal
a87ec360e1 710 known issues update[Batch1] (#5604)
* Version update

* ROCm Bandwidth failure added

* Editorial feedback added

* Minor change

* rocprofv3 issue added

* Minor change

* ROCgdb issue added

* SME feedback incorpprated

* Leo's feedback added

* ROCm Compute Profiler known issue added

* Changelog synced
2025-10-31 14:57:13 -04:00
amd-hsivasun
7215e1e8c7 [Ex CI] Update rocwmma pipeline ID to monorepo (#5602) 2025-10-31 13:56:17 -04:00
amd-hsivasun
e4a59d8c66 [Ex CI] Enable rocWMMA Monorepo (#5597)
* [Ex CI] Enable rocWMMA Monorepo

* Updated to use component name parameter
2025-10-30 13:43:05 -04:00
Pratik Basyal
8108fe7275 7.1.0 Post GA updates (#5600)
* Post GA updates

* Mono repo link added

* AMD SMI changelog link removed
2025-10-30 13:27:25 -04:00
14 changed files with 967 additions and 112 deletions

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: rocWMMA
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -66,7 +85,11 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rocWMMA_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -81,6 +104,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
@@ -102,9 +126,12 @@ jobs:
# gfx1030 not supported in documentation
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -112,43 +139,45 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rocWMMA_test_${{ job.target }}
timeoutInMinutes: 270
dependsOn: rocWMMA_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocWMMA
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
timeoutInMinutes: 270
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -21,11 +21,25 @@ parameters:
- libtbb-dev
- libtiff-dev
- libva-amdgpu-dev
- libva2-amdgpu
- mesa-amdgpu-va-drivers
- libavcodec-dev
- libavformat-dev
- libavutil-dev
- ninja-build
- python3-pip
- protobuf-compiler
- libprotoc-dev
- name: pipModules
type: object
default:
- future==1.0.0
- pytz==2022.1
- numpy==1.23
- google==3.0.0
- protobuf==3.12.4
- onnx==1.12.0
- nnef==1.0.7
- name: rocmDependencies
type: object
default:
@@ -33,6 +47,7 @@ parameters:
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
@@ -47,6 +62,7 @@ parameters:
- llvm-project
- MIOpen
- MIVisionX
- rccl
- rocALUTION
- rocBLAS
- rocDecode
@@ -69,6 +85,7 @@ parameters:
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
@@ -83,6 +100,7 @@ parameters:
- llvm-project
- MIOpen
- MIVisionX
- rccl
- rocALUTION
- rocBLAS
- rocDecode

View File

@@ -131,6 +131,11 @@ jobs:
script: |
USER_BASE=$(python3 -m site --user-base)
echo "##vso[task.prependpath]$USER_BASE/bin"
- task: Bash@3
displayName: libelf hack
inputs:
targetType: inline
script: cp $(Agent.BuildDirectory)/s/cmake/Modules/Findlibelf.cmake $(Agent.BuildDirectory)/s/cmake/Modules/FindLibElf.cmake
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}

View File

@@ -263,7 +263,7 @@ parameters:
developBranch: develop
hasGpuTarget: true
rocWMMA:
pipelineId: 109
pipelineId: 370
developBranch: develop
hasGpuTarget: true
rpp:

View File

@@ -141,7 +141,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
#### Optimized
* `TF32` kernel optimization for the AMD Instinct MI355X GPU to enhance training and inference efficiency.
* Meta Model optimization for the AMD Instinct MI350X GPU to enable better performance across transformer-based models.
#### Resolved issues
@@ -579,6 +578,8 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* MI300A/X L2-Fabric 64B read counter may display negative values - The rocprof-compute metric 17.6.1 (Read 64B) can report negative values due to incorrect calculation when TCC_BUBBLE_sum + TCC_EA0_RDREQ_32B_sum exceeds TCC_EA0_RDREQ_sum.
* A workaround has been implemented using max(0, calculated_value) to prevent negative display values while the root cause is under investigation.
* The profile mode crashes when `--format-rocprof-output json` is selected.
* As a workaround, this option should either not be provided or should be set to `csv` instead of `json`. This issue does not affect the profiling results since both `csv` and `json` output formats lead to the same profiling data.
### **ROCm Data Center Tool** (1.2.0)
@@ -694,7 +695,7 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* Updated error handling for several rocRAND unit tests to accommodate the new `hipGetLastError` behavior that was introduced in ROCm 7.0.
As of ROCm 7.0, the internal error state is cleared on each call to `hipGetLastError` rather than on every HIP API call.
### **rocSOLVER** (3.30.0)
### **rocSOLVER** (3.31.0)
#### Added
@@ -1044,10 +1045,6 @@ for a complete overview of this release.
- `amd-smi monitor` on Linux Guest systems triggers an attribute error.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-7.0/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **Composable Kernel** (1.1.0)
#### Added
@@ -2364,7 +2361,7 @@ The previous default accumulator types could lead to situations in which unexpec
#### Added
* Hybrid computation support for existing routines: STEQR
* Hybrid computation support for existing STEQR routines.
#### Optimized

View File

@@ -44,7 +44,6 @@ The following are notable new features and improvements in ROCm 7.1.0. For chang
ROCm 7.1.0 extends the operating system support for the following AMD hardware:
* AMD Instinct MI355X and MI350X GPUs add support for Debian 13.
* AMD Instinct MI325X adds support for RHEL 10.0, SLES15 SP7, Debian 13, Debian 12, Oracle Linux 10, and Oracle Linux 9.
* AMD Instinct MI100 adds support for SLES 15 SP7.
@@ -212,7 +211,6 @@ hipBLASLt introduces several performance and model compatibility improvements fo
* TF32 kernel optimization for AMD Instinct MI355X GPUs to enhance training and inference efficiency.
* FP32 kernel optimization for AMD Instinct MI350X GPUs, improving precision-based workloads.
* Meta model optimization for AMD Instinct MI350X GPUs, enabling better performance across transformer-based models.
* Llama 2 70B model support fix for AMD Instinct MI350X GPUs: Removed incorrect kernel to ensure accurate and stable execution.
* For AMD Instinct MI350X GPUs, added multiple high-performance kernels optimized for `FP16` and `BF16` data types, enhancing heuristic-based execution.
* FP8 low-precision data type operations on AMD Instinct MI350X GPUs. This update adds FP8 support for the Instinct MI350X using the hipBLASLt low-precision data type functionality.
@@ -465,7 +463,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-7.1.0/index.html">hipFFT</a></td>
<td>1.0.20&nbsp;&Rightarrow;&nbsp;<a href="#hipfft-1-0-20">1.0.21</a></td>
<td>1.0.20&nbsp;&Rightarrow;&nbsp;<a href="#hipfft-1-0-21">1.0.21</a></td>
<td><a href="https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipfft"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
@@ -481,7 +479,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-7.1.0/index.html">hipSOLVER</a></td>
<td>3.0.0&nbsp;&Rightarrow;&nbsp;<a href="#hipsolver-3-1-0">3.1.0</a></td>
<td><a href="https://github.com/ROCm/hipSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
<td><a href="https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsolver"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-7.1.0/index.html">hipSPARSE</a></td>
@@ -516,7 +514,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-7.1.0/index.html">rocSOLVER</a></td>
<td>3.30.1&nbsp;&Rightarrow;&nbsp;<a href="#rocsolver-3-31-0">3.31.0</a></td>
<td><a href="https://github.com/ROCm/rocSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
<td><a href="https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocsolver"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-7.1.0/index.html">rocSPARSE</a></td>
@@ -742,10 +740,6 @@ For a historical overview of ROCm component updates, see the {doc}`ROCm consolid
* Fixed certain output in `amd-smi monitor` when GPUs are partitioned. It fixes the issue with amd-smi monitor such as: `amd-smi monitor -Vqt`, `amd-smi monitor -g 0 -Vqt -w 1`, and `amd-smi monitor -Vqt --file /tmp/test1`. These commands will now be able to display as normal in partitioned GPU scenarios.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-7.1/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **Composable Kernel** (1.1.0)
#### Added
@@ -835,7 +829,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
#### Optimized
* `TF32` kernel optimization for the AMD Instinct MI355X GPU to enhance training and inference efficiency.
* Meta Model optimization for the AMD Instinct MI350X GPU to enable better performance across transformer-based models.
#### Resolved issues
@@ -1273,6 +1266,8 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* MI300A/X L2-Fabric 64B read counter may display negative values - The rocprof-compute metric 17.6.1 (Read 64B) can report negative values due to incorrect calculation when TCC_BUBBLE_sum + TCC_EA0_RDREQ_32B_sum exceeds TCC_EA0_RDREQ_sum.
* A workaround has been implemented using max(0, calculated_value) to prevent negative display values while the root cause is under investigation.
* The profile mode crashes when `--format-rocprof-output json` is selected.
* As a workaround, this option should either not be provided or should be set to `csv` instead of `json`. This issue does not affect the profiling results since both `csv` and `json` output formats lead to the same profiling data.
### **ROCm Data Center Tool** (1.2.0)
@@ -1388,11 +1383,11 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* Updated error handling for several rocRAND unit tests to accommodate the new `hipGetLastError` behavior that was introduced in ROCm 7.0.
As of ROCm 7.0, the internal error state is cleared on each call to `hipGetLastError` rather than on every HIP API call.
### **rocSOLVER** (3.30.0)
### **rocSOLVER** (3.31.0)
#### Added
* Hybrid computation support for existing routines: STEQR
* Hybrid computation support for existing STEQR routines.
#### Optimized
@@ -1491,6 +1486,18 @@ ls -l /opt/rocm-7.0.0/lib/libmigraphx_py_*.so
```
The issue will be resolved in a future ROCm release. See [GitHub issue #5500](https://github.com/ROCm/ROCm/issues/5500).
### rocprofv3 fails on RPM-based OS with Python 3.10 (and later)
On RPM-based operating systems (such as RHEL 8), the `rocprofv3` tool fails with Python 3.10 and later due to missing ROCPD bindings. As a workaround, use Python 3.6 if you need to use the `rocprofv3` tool with ROCm 7.1.0. This issue will be fixed in a future ROCm release. See [GitHub issue #5606](https://github.com/ROCm/ROCm/issues/5606).
### ROCgdb might fail on SR-IOV guest VMs
ROCgdb might fail when running the `step-schedlock-spurious-waves.exp` test case on SR-IOV guest virtual machines (VMs). As a workaround, avoid running an inferior in ROCgdb if a background process is already heavily utilizing the GPU. The issue is currently under investigation and will be fixed in a future ROCm release. See [GitHub issue #5607](https://github.com/ROCm/ROCm/issues/5607).
### Issue uninstalling ROCm Bandwidth Test using amdgpu-install script
Due to a missing `rocm-core` dependency from the ROCm Bandwidth Test, you can't cleanly uninstall ROCm Bandwidth Test using the `amdgpu-install` script. As a workaround, uninstall ROCm Bandwidth Test manually, using the native package managers. For more information, see [Installation via native package manager](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/install-methods/package-manager-index.html). The issue will be fixed in a future ROCm release. See [GitHub issue #5611](https://github.com/ROCm/ROCm/issues/5611).
## ROCm resolved issues
The following are previously known issues resolved in this release. For resolved issues related to

View File

@@ -49,8 +49,8 @@ ROCm Version,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,
Thrust,2.6.0,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.6.0,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
Thrust,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,,,
DRIVER & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.0, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x","30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
@@ -96,7 +96,7 @@ ROCm Version,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.1.25414,7.0.51831,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`hipother <https://github.com/ROCm/hipother>`_,7.1.25424,7.0.51831,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,,,
@@ -126,12 +126,12 @@ ROCm Version,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.025413,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.025413,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025413,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`Flang <https://github.com/ROCm/flang>`_,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.25414,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.1.25414,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 7.1.0 7.0.2 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
49 `UCX <https://github.com/ROCm/ucx>`_ >=1.17.0 >=1.17.0 >=1.17.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
50
51 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
52 Thrust 2.6.0 2.8.5 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
53 CUB 2.6.0 2.8.5 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
54
55 DRIVER & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
56 :doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 30.20.0, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
96 :doc:`rocThrust <rocthrust:index>` 4.1.0 4.0.0 4.0.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
97
98 SUPPORT LIBS
99 `hipother <https://github.com/ROCm/hipother>`_ 7.1.25414 7.1.25424 7.0.51831 7.0.51830 6.4.43483 6.4.43483 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
100 `rocm-core <https://github.com/ROCm/rocm-core>`_ 7.1.0 7.0.2 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
101 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
102
126 COMPILERS .. _compilers-support-compatibility-matrix-past-60:
127 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
128 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
129 `Flang <https://github.com/ROCm/flang>`_ 20.0.025413 20.0.025425 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
130 :doc:`llvm-project <llvm-project:index>` 20.0.025413 20.0.025425 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
131 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 20.0.025413 20.0.025425 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
132
133 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
134 :doc:`AMD CLR <hip:understand/amd_clr>` 7.1.25414 7.1.25424 7.0.51831 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
135 :doc:`HIP <hip:index>` 7.1.25414 7.1.25424 7.0.51831 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
136 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
137 :doc:`ROCr Runtime <rocr-runtime:index>` 1.18.0 1.18.0 1.18.0 1.15.0 1.15.0 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -66,8 +66,8 @@ compatibility and system requirements.
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.6.0,2.6.0,2.5.0
CUB,2.6.0,2.6.0,2.5.0
Thrust,2.8.5,2.6.0,2.5.0
CUB,2.8.5,2.6.0,2.5.0
,,,
DRIVER & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.0, 30.10.2, |br| 30.10.1 [#driver_patch]_, 30.10, 6.4.x","30.10.2, 30.10.1 [#driver_patch]_, |br| 30.10, 6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
@@ -113,7 +113,7 @@ compatibility and system requirements.
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.0.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,7.1.25414,7.0.51831,6.4.43482
`hipother <https://github.com/ROCm/hipother>`_,7.1.25424,7.0.51831,6.4.43482
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.0,7.0.2,6.4.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
@@ -143,13 +143,13 @@ compatibility and system requirements.
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,20.0.025413,20.0.0.25385,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.025413,20.0.0.25385,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025413,20.0.0.25385,19.0.0.25133
`Flang <https://github.com/ROCm/flang>`_,20.0.025425,20.0.0.25385,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.025425,20.0.0.25385,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025425,20.0.0.25385,19.0.0.25133
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.25414,7.0.51831,6.4.43482
:doc:`HIP <hip:index>`,7.1.25414,7.0.51831,6.4.43482
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.25424,7.0.51831,6.4.43482
:doc:`HIP <hip:index>`,7.1.25424,7.0.51831,6.4.43482
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0
@@ -164,7 +164,7 @@ compatibility and system requirements.
.. [#ol-710-mi300x] **For ROCm 7.1.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, MI325X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#ol-700-mi300x] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#ol-mi300x] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-710-mi300x] **For ROCm 7.1.x** - Debian 13 is supported only on AMD Instinct MI355X, MI350X, MI325X, and MI300X GPUs.
.. [#db-710-mi300x] **For ROCm 7.1.x** - Debian 13 is supported only on AMD Instinct MI325X and MI300X GPUs.
.. [#db12-710] **For ROCm 7.1.x** - Debian 12 is supported only on AMD Instinct MI325X, MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#db-mi300x] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#az-mi300x] Starting ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710 GPUs.
@@ -270,7 +270,7 @@ Expand for full historical view of:
.. [#ol-710-mi300x-past-60] **For ROCm 7.1.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, MI325X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#ol-700-mi300x-past-60] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#mi300x-past-60] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-710-mi300x-past-60] **For ROCm 7.1.x** - Debian 13 is supported only on AMD Instinct MI355X, MI350X, MI325X, and MI300X GPUs.
.. [#db-710-mi300x-past-60] **For ROCm 7.1.x** - Debian 13 is supported only on AMD Instinct MI325X and MI300X GPUs.
.. [#db12-710-past-60] **For ROCm 7.1.x** - Debian 12 is supported only on AMD Instinct MI325X, MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#db-mi300x-past-60] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#single-node-past-60] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X GPUs for single-node functionality.

View File

@@ -0,0 +1,316 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
components:
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -1,13 +1,13 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.1_20251103/images/sha256-8d60429043d4d00958da46039a1de0d9b82df814d45da482497eef26a6076506
components:
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
vLLM: 0.11.1 (0.11.1rc2.dev141+g38f225c2a.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
commit: 38f225c2abeadc04c2cc398814c2f53ea02c3c72
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -46,6 +46,8 @@ The following variables are generally useful for Instinct MI300X/MI355X GPUs and
multi-GPU distributed workloads** (tensor parallelism, pipeline
parallelism). Single-GPU inference does not need this.
.. _vllm-optimization-aiter-switches:
AITER (AI Tensor Engine for ROCm) switches
==========================================

View File

@@ -0,0 +1,482 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-930:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers a
prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI355X, MI350X, MI325X and MI300X
GPUs. This ROCm vLLM Docker image integrates vLLM and PyTorch tailored
specifically for AMD data center GPUs and includes the following components:
.. tab-set::
.. tab-item:: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Added support for AMD Instinct MI355X and MI350X GPUs.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Llama 4 Scout and Maverick
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-930:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started. MXFP4 models
are only supported on MI355X and MI350X GPUs.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
{% if model.precision == "float4" %}
.. important::
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% if model.precision == "float4" and model.model_repo.startswith("amd") %}
This model uses FP4 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-930:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node with the
:literal:`{{model.precision}}` data type.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-930>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts={{ model.config.num_prompts | default(1024) }}
in={{ model.config.in | default(128) }}
out={{ model.config.in | default(128) }}
dtype={{ model.config.dtype | default("auto") }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs={{ model.config.max_num_seqs | default(1024) }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization {{ model.config.gpu_memory_utilization | default(0.9) }}
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/vllm-project/vllm>`__.
.. code-block:: shell
git clone https://github.com/vllm-project/vllm.git
cd vllm
2. Use the following command to build the image directly from the specified commit.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker build -f docker/Dockerfile.rocm \
--build-arg REMOTE_VLLM=1 \
--build-arg VLLM_REPO=https://github.com/ROCm/vllm \
--build-arg VLLM_BRANCH="{{ docker.dockerfile.commit }}" \
-t vllm-rocm .
.. tip::
Replace ``vllm-rocm`` with your desired image tag.
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -16,14 +16,23 @@ previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.
- Components
- Resources
* - ``rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006``
* - ``rocm/vllm:rocm7.0.0_vllm_0.11.1_20251024``
(latest)
-
* ROCm 7.0.0
* vLLM 0.11.1
* PyTorch 2.9.0
-
* :doc:`Documentation <../vllm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5>`__
* - ``rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006``
-
* ROCm 7.0.0
* vLLM 0.10.2
* PyTorch 2.9.0
-
* :doc:`Documentation <../vllm>`
* :doc:`Documentation <vllm-0.10.2-20251006>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909``

View File

@@ -6,7 +6,7 @@
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker-930:
.. _vllm-benchmark-unified-docker-1024:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
@@ -34,7 +34,7 @@ vLLM inference performance testing
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
inference performance numbers <vllm-benchmark-performance-measurements-1024>` for
AMD Instinct GPUs.
What's new
@@ -42,27 +42,13 @@ What's new
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <previous-versions/vllm-history>`.
* Added support for AMD Instinct MI355X and MI350X GPUs.
* Enabled :ref:`AITER <vllm-optimization-aiter-switches>` by default.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Fixed ``rms_norm`` segfault issue with Qwen 3 235B.
* Llama 4 Scout and Maverick
* Known performance degradation on Llama 4 models due to `an upstream vLLM issue <https://github.com/vllm-project/vllm/issues/26320>`_.
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
.. _vllm-benchmark-supported-models-1024:
Supported models
================
@@ -72,7 +58,7 @@ Supported models
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-930:
.. _vllm-benchmark-available-models-1024:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
@@ -108,7 +94,7 @@ Supported models
</div>
</div>
.. _vllm-benchmark-vllm-930:
.. _vllm-benchmark-vllm-1024:
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -136,7 +122,7 @@ Supported models
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-930:
.. _vllm-benchmark-performance-measurements-1024:
Performance measurements
========================
@@ -192,7 +178,7 @@ Benchmarking
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-930:
.. _vllm-benchmark-mad-1024:
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -204,7 +190,7 @@ Benchmarking
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-1024` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -233,7 +219,7 @@ Benchmarking
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-930>` are preconfigured to collect
<vllm-benchmark-available-models-1024>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
@@ -258,7 +244,7 @@ Benchmarking
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-1024` to switch to another available model.
.. seealso::
@@ -419,6 +405,10 @@ Advanced usage
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
.. note::
If youre using this Docker image on other AMD GPUs such as the AMD Instinct MI200 Series or Radeon, add ``export VLLM_ROCM_USE_AITER=0`` to your command, since AITER is only supported on gfx942 and gfx950 architectures.
Reproducing the Docker image
----------------------------