Compare commits

..

30 Commits

Author SHA1 Message Date
Sam Wu
2edcc3a6c6 Update documentation requirements 2024-09-16 10:12:40 -08:00
Sam Wu
ae2409fa47 Update documentation requirements 2024-06-06 16:58:35 -06:00
Sam Wu
574d62b077 Fix RTD config 2024-05-02 08:54:54 -06:00
Sam Wu
ff9c523c3e Update documentation requirements 2024-05-01 16:59:20 -06:00
Sam Wu
5712fd2b98 Update documentation requirements 2024-05-01 16:53:13 -06:00
Mátyás Aradi
f0a9e81a9a Update Linux and ROCm versions in ROCm 5.4.1 (#2877)
* Update Linux and ROCm versions

* Update CI to use build.os
2024-02-08 09:07:08 -07:00
Sam Wu
829d91892b add version to html title 2023-08-04 17:17:07 -06:00
Sam Wu
1e5228b65f update pdf 2023-06-30 09:39:15 -06:00
Sam Wu
5ae4c333c5 rocm-docs-core v0.18.3 2023-06-30 09:39:02 -06:00
Máté Ferenc Nagy-Egri
15292ddebe Downgrade license notice to 5.4.1 2023-06-22 18:37:26 +02:00
Máté Ferenc Nagy-Egri
89986d332d Downgrade changelog to 5.4.1 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
de6fc1634a Downgrade install instructions to 5.4.1 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
52986c3635 Downgrade release notes to 5.4.1 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
b86717e454 Downgrade license notice to 5.4.2 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
7dbd277203 Downgrade changelog to 5.4.2 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
31ee8e712c Downgrade install instructions to 5.4.2 2023-06-22 18:37:25 +02:00
Máté Ferenc Nagy-Egri
55eda666d5 Downgrade release notes to 5.4.2 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
01e24da121 Downgrade support matrices to 5.4.3 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
f68c47d748 Downgrade changelog to 5.4.3 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
2c0a351bbd Downgrade install instructions to 5.4.3 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
b6509809d3 Downgrade OS support to 5.4.3 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
a29205cc5c Downgrade release notes to 5.4.3 2023-06-22 18:37:24 +02:00
Máté Ferenc Nagy-Egri
16c4d22099 Downgrade changelog to 5.5.0 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
ed3335c3a5 Downgrade install instructions to 5.5.0 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
30f27c4644 Downgrade OS support to 5.5.0 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
f4be54f896 Downgrade release notes to 5.5.0 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
9c04aef6a5 Fix HIP API reference links 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
c7d4e75e95 Add support for non-Pro Radeon VII 2023-06-22 18:37:23 +02:00
Máté Ferenc Nagy-Egri
aabbea88f2 Fix ROCm SMI links 2023-06-22 18:37:14 +02:00
Máté Ferenc Nagy-Egri
7747e130b9 Update rocm-docs-core to 0.16.0 2023-06-22 18:37:04 +02:00
121 changed files with 900 additions and 6805 deletions

View File

@@ -5,16 +5,52 @@ on:
branches:
- develop
- main
- 'docs/*'
- 'roc**'
pull_request:
branches:
- develop
- main
- 'docs/*'
- 'roc**'
concurrency:
group: ${{ github.ref }}-${{ github.workflow }}
cancel-in-progress: true
jobs:
call-workflow-passing-data:
name: Documentation
uses: RadeonOpenCompute/rocm-docs-core/.github/workflows/linting.yml@develop
lint-rest:
name: "RestructuredText"
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Install rst-lint
run: pip install restructuredtext-lint
- name: Lint ResT files
run: rst-lint ${{ join(github.workspace, '/docs') }}
lint-md:
name: "Markdown"
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Use markdownlint-cli2
uses: DavidAnson/markdownlint-cli2-action@v10.0.1
with:
globs: '**/*.md'
spelling:
name: "Spelling"
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Fetch config
shell: sh
run: |
curl --silent --show-error --fail --location https://raw.github.com/RadeonOpenCompute/rocm-docs-core/develop/.spellcheck.yaml -O
curl --silent --show-error --fail --location https://raw.github.com/RadeonOpenCompute/rocm-docs-core/develop/.wordlist.txt >> .wordlist.txt
- name: Run spellcheck
uses: rojopolis/spellcheck-github-actions@0.30.0
- name: On fail
if: failure()
run: |
echo "Please check for spelling mistakes or add them to '.wordlist.txt' in either the root of this project or in rocm-docs-core."

View File

@@ -1,686 +1,29 @@
AAC
# isv_deployment_win
ABI
ACE
ACEs
AccVGPR
AccVGPRs
ALU
AMD
AMDGPU
AMDGPUs
AMDMIGraphX
AMI
AOCC
AOMP
APIC
APIs
APU
ASIC
ASICs
ASan
ASm
ATI
AddressSanitizer
AlexNet
Arb
BLAS
BMC
BitCode
Blit
Bluefield
CCD
CDNA
CIFAR
CLI
CLion
CMake
CMakeLists
CMakePackage
CP
CPC
CPF
CPP
CPU
CPUs
CSC
CSE
CSV
CSn
CTests
CU
CUDA
CUs
CXX
Cavium
CentOS
ChatGPT
CoRR
Codespaces
Commitizen
CommonMark
Concretized
Conda
ConnectX
DGEMM
DKMS
DL
# gpu_aware_mpi
DMA
DNN
DNNL
DPM
DRI
DW
DWORD
Dask
DataFrame
DataLoader
DataParallel
DeepSpeed
Dependabot
DevCap
Dockerfile
Doxygen
ELMo
ENDPGM
EPYC
ESXi
FFT
FFTs
FFmpeg
FHS
FMA
FP
Filesystem
Flang
Fortran
Fuyu
GALB
GCD
GCDs
GCN
GDB
GDDR
GDR
GDS
GEMM
GEMMs
GFortran
GiB
GIM
GL
GLXT
GMI
GPG
GPR
GPT
GPU
GPU's
GPUs
GRBM
GenAI
GenZ
GitHub
Gitpod
HBM
HCA
HIPCC
HIPExtension
HIPIFY
HPC
HPCG
HPE
HPL
HSA
HWE
Haswell
Higgs
Hyperparameters
ICV
IDE
IDEs
IMDb
IOMMU
IOP
IOPM
IOV
IRQ
ISA
ISV
ISVs
ImageNet
InfiniBand
Inlines
IntelliSense
Intersphinx
Intra
Ioffe
JSON
Jupyter
KFD
KiB
KVM
Keras
Khronos
LAPACK
LCLK
LDS
LLM
LLMs
LLVM
LM
LSAN
LTS
LoRA
MEM
MERCHANTABILITY
MFMA
MiB
MIGraphX
MIOpen
MIOpenGEMM
MIVisionX
MLM
MMA
MMIO
MMIOH
MNIST
MPI
MSVC
MVAPICH
MVFFR
Makefile
Makefiles
Matplotlib
Megatron
Mellanox
Mellanox's
Meta's
MirroredStrategy
Multicore
Multithreaded
MyEnvironment
MyST
NBIO
NBIOs
NIC
NICs
NLI
NLP
NPS
NSP
NUMA
NVCC
NVIDIA
NVPTX
NaN
Nano
Navi
Noncoherently
NousResearch's
NumPy
OAM
OAMs
OCP
OEM
OFED
OMP
OMPI
OMPT
OMPX
ONNX
OSS
OSU
OpenCL
OpenCV
OpenFabrics
OpenGL
OpenMP
OpenSSL
OpenVX
PCI
PCIe
PEFT
PIL
PILImage
PRNG
PRs
PaLM
Pageable
PeerDirect
Perfetto
PipelineParallel
PnP
PowerShell
PyPi
PyTorch
Qcycles
RAII
RCCL
RDC
RDMA
RDNA
RHEL
ROC
ROCProfiler
ROCTracer
ROCclr
ROCdbgapi
ROCgdb
ROCk
ROCm
ROCmCC
ROCmSoftwarePlatform
ROCmValidationSuite
ROCr
RST
RW
Radeon
RelWithDebInfo
Req
Rickle
RoCE
Ryzen
SALU
SBIOS
SCA
SDK
SDMA
SDRAM
SENDMSG
SGPR
SGPRs
SHA
SIGQUIT
SIMD
SIMDs
SKU
SKUs
SLES
SMEM
SMI
SMT
SPI
SQs
SRAM
SRAMECC
SVD
SWE
SerDes
Shlens
Skylake
Softmax
Spack
Supermicro
Szegedy
TCA
TCC
TCI
TCIU
TCP
TCR
TF
TFLOPS
TPU
TPUs
TensorBoard
TensorFlow
TensorParallel
ToC
TorchAudio
TorchMIGraphX
TorchScript
TorchServe
TorchVision
TransferBench
TrapStatus
UAC
UC
UCC
UCX
UIF
USM
UTCL
UTIL
Uncached
Unhandled
VALU
VBIOS
VGPR
VGPRs
VM
VMEM
VMWare
VRAM
VSIX
VSkipped
Vanhoucke
Vulkan
WGP
WGPs
WX
WikiText
Wojna
Workgroups
Writebacks
XCD
XCDs
XGBoost
XGBoost's
XGMI
XT
XTX
Xeon
Xilinx
Xnack
Xteam
YAML
YML
YModel
ZeRO
ZenDNN
accuracies
activations
addr
alloc
allocator
allocators
amdgpu
api
atmi
atomics
autogenerated
avx
awk
backend
ib_core
# linear algebra
LAPACK
MMA
backends
benchmarking
bfloat
bilinear
bitsandbytes
blit
boson
bosons
buildable
bursty
bzip
cacheable
cd
centos
centric
changelog
chiplet
cmake
cmd
coalescable
codename
collater
comgr
completers
composable
concretization
config
conformant
convolutional
convolves
cpp
csn
cuBLAS
cuFFT
cuLIB
cuRAND
cuSOLVER
cuSPARSE
dataset
datasets
dataspace
datatype
datatypes
dbgapi
de
deallocation
denoise
denoised
denoises
denormalize
deserializers
detections
dev
devicelibs
devsel
dimensionality
disambiguates
distro
el
embeddings
enablement
endpgm
encodings
env
epilog
etcetera
ethernet
exascale
executables
ffmpeg
filesystem
fortran
galb
gcc
gdb
gfortran
gfx
githooks
github
gnupg
grayscale
gzip
heterogenous
hipBLAS
hipBLASLt
hipCUB
hipFFT
hipLIB
hipRAND
hipSOLVER
hipSPARSE
hipSPARSELt
hipTensor
hipamd
hipblas
hipcub
hipfft
hipfort
hipify
hipsolver
hipsparse
hpp
hsa
hsakmt
hyperparameter
ib_core
inband
incrementing
inferencing
inflight
init
initializer
inlining
installable
interprocedural
intra
invariants
invocating
ipo
kdb
latencies
libfabric
libjpeg
libs
linearized
linter
linux
llvm
localscratch
logits
lossy
macOS
matchers
microarchitecture
migraphx
miopen
miopengemm
mivisionx
mkdir
mlirmiopen
mtypes
mvffr
namespace
namespaces
numref
ocl
opencl
opencv
openmp
openssl
optimizers
os
pageable
parallelization
parameterization
passthrough
perfcounter
performant
perl
pragma
pre
prebuilt
precompiled
prefetch
prefetchable
preprocess
preprocessed
preprocessing
prequantized
prerequisites
profiler
protobuf
pseudorandom
py
quasirandom
queueing
rccl
rdc
reStructuredText
reformats
repos
representativeness
req
resampling
rescaling
reusability
roadmap
roc
rocAL
rocALUTION
rocBLAS
rocFFT
rocLIB
rocMLIR
rocPRIM
rocRAND
rocSOLVER
rocSPARSE
rocThrust
rocWMMA
rocalution
rocblas
rocclr
rocfft
rocm
rocminfo
rocprim
rocprof
rocprofiler
rocr
rocrand
rocsolver
rocsparse
rocthrust
roctracer
runtime
runtimes
sL
scalability
scalable
sendmsg
serializers
shader
sharding
sigmoid
sm
smi
softmax
spack
src
stochastically
strided
subdirectory
subexpression
subfolder
subfolders
supercomputing
tensorfloat
th
tokenization
tokenize
tokenized
tokenizer
tokenizes
toolchain
toolchains
toolset
toolsets
torchvision
tqdm
tracebacks
txt
uarch
uncached
uncorrectable
uninstallation
unsqueeze
unstacking
unswitching
untrusted
untuned
upvote
USM
UTCL
UTIL
utils
vL
variational
vdi
vectorizable
vectorization
vectorize
vectorized
vectorizer
vectorizes
vjxb
walkthrough
walkthroughs
wavefront
wavefronts
whitespaces
workgroup
workgroups
writeback
writebacks
wrreq
wzo
xargs
xz
yaml
ysvmadyb
zypper
# tuning_guides
BMC
DGEMM
HPCG
HPL
IOPM

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
AMD values and encourages the ROCm community to contribute to our code and
documentation. This repository is focused on ROCm documentation and this
contribution guide describes the recommended method for creating and modifying our
contribution guide describes the recommend method for creating and modifying our
documentation.
While interacting with ROCm Documentation, we encourage you to be polite and
@@ -13,47 +13,59 @@ itself, refer to
[discussions](https://github.com/RadeonOpenCompute/ROCm/discussions) on the
GitHub repository.
For additional information on documentation functionalities,
see the user and developer guides for rocm-docs-core
at {doc}`rocm-docs-core documentation <rocm-docs-core:index>`.
## Supported Formats
Our documentation includes both Markdown and RST files. Markdown is encouraged
over RST due to the lower barrier to participation. GitHub-flavored Markdown is preferred
for all submissions as it renders accurately on our GitHub repositories. For existing documentation,
[MyST](https://myst-parser.readthedocs.io/en/latest/intro.html) Markdown
is used to implement certain features unsupported in GitHub Markdown. This is
Our documentation includes both markdown and rst files. Markdown is encouraged
over rst due to the lower barrier to participation. GitHub flavored markdown is preferred
for all submissions as it will render accurately on our GitHub repositories. For existing documentation,
[MyST](https://myst-parser.readthedocs.io/en/latest/intro.html) markdown
is used to implement certain features unsupported in GitHub markdown. This is
not encouraged for new documentation. AMD will transition
to stricter use of GitHub-flavored Markdown with a few caveats. ROCm documentation
also uses [Sphinx Design](https://sphinx-design.readthedocs.io/en/latest/index.html)
in our Markdown and RST files. We also use Breathe syntax for Doxygen documentation
in our Markdown files. See
to stricter use of GitHub flavored markdown with a few caveats. ROCm documentation
also uses [sphinx-design](https://sphinx-design.readthedocs.io/en/latest/index.html)
in our markdown and rst files. We also will use breathe syntax for doxygen documentation
in our markdown files. Other design elements for effective HTML rendering of the documents
may be added to our markdown files. Please see
[GitHub](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github)'s
guide on writing and formatting on GitHub as a starting point.
ROCm documentation adds additional requirements to Markdown and RST based files
ROCm documentation adds additional requirements to markdown and rst based files
as follows:
- Level one headers are only used for page titles. There must be only one level
1 header per file for both Markdown and Restructured Text.
- Pass [markdownlint](https://github.com/markdownlint/markdownlint) check via
our automated GitHub action on a Pull Request (PR).
See the {doc}`rocm-docs-core linting user guide <rocm-docs-core:user_guide/linting>` for more details.
our automated github action on a Pull Request (PR).
## Filenames and folder structure
Please use snake case (all lower case letters and underscores instead of spaces)
for file names. For example, `example_file_name.md`.
Our documentation follows Pitchfork for folder structure.
All documentation is in `/docs` except for special files like
the contributing guide in the `/` folder. All images used in the documentation are
placed in the `/docs/data` folder.
Please use snake case for file names. Our documentation follows pitchfork for
folder structure. All documentation is in /docs except for special files like
the contributing guide in the / folder. All images used in the documentation are
place in the /docs/data folder.
## How to provide feedback for for ROCm documentation
There are three standard ways to provide feedback for this repository.
### Pull Request
All contributions to ROCm documentation should arrive via the
[GitHub Flow](https://docs.github.com/en/get-started/quickstart/github-flow)
targetting the develop branch of the repository. If you are unable to contribute
via the GitHub Flow, feel free to email us. TODO, confirm email address.
### GitHub Issue
Issues on existing or absent docs can be filed as [GitHub issues
](https://github.com/RadeonOpenCompute/ROCm/issues).
### Email Feedback
## Language and Style
Adopt Microsoft CPP-Docs guidelines for
[Voice and Tone](https://github.com/MicrosoftDocs/cpp-docs/blob/main/styleguide/voice-tone.md).
Adopting Microsoft CPP-Docs guidelines for [Voice and Tone
](https://github.com/MicrosoftDocs/cpp-docs/blob/main/styleguide/voice-tone.md).
ROCm documentation templates to be made public shortly. ROCm templates dictate
the recommended structure and flow of the documentation. Guidelines on how to
@@ -61,11 +73,174 @@ integrate figures, equations, and tables are all based off
[MyST](https://myst-parser.readthedocs.io/en/latest/intro.html).
Font size and selection, page layout, white space control, and other formatting
details are controlled via [rocm-docs-core](https://github.com/RadeonOpenCompute/rocm-docs-core).
Raise issues in `rocm-docs-core` for any formatting concerns and changes requested.
details are controlled via rocm-docs-core, sphinx extention. Please raise issues
in rocm-docs-core for any formatting concerns and changes requested.
## More
## Building Documentation
For more topics, such as submitting feedback and ways to build documentation,
see the [Contributing Section](https://rocm.docs.amd.com/en/latest/contributing.html)
at [rocm.docs.amd.com](https://rocm.docs.amd.com)
While contributing, one may build the documentation locally on the command-line
or rely on Continuous Integration for previewing the resulting HTML pages in a
browser.
### Command line documentation builds
Python versions known to build documentation:
- 3.8
To build the docs locally using Python Virtual Environment (`venv`), execute the
following commands from the project root:
```sh
python3 -mvenv .venv
# Windows
.venv/Scripts/python -m pip install -r docs/sphinx/requirements.txt
.venv/Scripts/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _build/html
# Linux
.venv/bin/python -m pip install -r docs/sphinx/requirements.txt
.venv/bin/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _build/html
```
Then open up `_build/html/index.html` in your favorite browser.
### Pull Requests documentation builds
When opening a PR to the `develop` branch on GitHub, the page corresponding to
the PR (`https://github.com/RadeonOpenCompute/ROCm/pull/<pr_number>`) will have
a summary at the bottom. This requires the user be logged in to GitHub.
- There, click `Show all checks` and `Details` of the Read the Docs pipeline. It
will take you to `https://readthedocs.com/projects/advanced-micro-devices-rocm/
builds/<some_build_num>/`
- The list of commands shown are the exact ones used by CI to produce a render
of the documentation.
- There, click on the small blue link `View docs` (which is not the same as the
bigger button with the same text). It will take you to the built HTML site with
a URL of the form `https://
advanced-micro-devices-demo--<pr_number>.com.readthedocs.build/projects/alpha/en
/<pr_number>/`.
### Build the docs using VS Code
One can put together a productive environment to author documentation and also
test it locally using VS Code with only a handful of extensions. Even though the
extension landscape of VS Code is ever changing, here is one example setup that
proved useful at the time of writing. In it, one can change/add content, build a
new version of the docs using a single VS Code Task (or hotkey), see all errors/
warnings emitted by Sphinx in the Problems pane and immediately see the
resulting website show up on a locally serving web server.
#### Configuring VS Code
1. Install the following extensions:
- Python (ms-python.python)
- Live Server (ritwickdey.LiveServer)
2. Add the following entries in `.vscode/settings.json`
```json
{
"liveServer.settings.root": "/.vscode/build/html",
"liveServer.settings.wait": 1000,
"python.terminal.activateEnvInCurrentTerminal": true
}
```
The settings in order are set for the following reasons:
- Sets the root of the output website for live previews. Must be changed
alongside the `tasks.json` command.
- Tells live server to wait with the update to give time for Sphinx to
regenerate site contents and not refresh before all is don. (Empirical value)
- Automatic virtual env activation is a nice touch, should you want to build
the site from the integrated terminal.
3. Add the following tasks in `.vscode/tasks.json`
```json
{
"version": "2.0.0",
"tasks": [
{
"label": "Build Docs",
"type": "process",
"windows": {
"command": "${workspaceFolder}/.venv/Scripts/python.exe"
},
"command": "${workspaceFolder}/.venv/bin/python3",
"args": [
"-m",
"sphinx",
"-j",
"auto",
"-T",
"-b",
"html",
"-d",
"${workspaceFolder}/.vscode/build/doctrees",
"-D",
"language=en",
"${workspaceFolder}/docs",
"${workspaceFolder}/.vscode/build/html"
],
"problemMatcher": [
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):(\\d+):\\s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"line": 2,
"severity": 3,
"message": 4
},
},
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):{1,2}\\s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"severity": 2,
"message": 3
}
}
],
"group": {
"kind": "build",
"isDefault": true
}
},
],
}
```
> (Implementation detail: two problem matchers were needed to be defined,
> because VS Code doesn't tolerate some problem information being potentially
> absent. While a single regex could match all types of errors, if a capture
> group remains empty (the line number doesn't show up in all warning/error
> messages) but the `pattern` references said empty capture group, VS Code
> discards the message completely.)
4. Configure Python virtual environment (venv)
- From the Command Palette, run `Python: Create Environment`
- Select `venv` environment and the `docs/sphinx/requirements.txt` file.
_(Simply pressing enter while hovering over the file from the dropdown is
insufficient, one has to select the radio button with the 'Space' key if
using the keyboard.)_
5. Build the docs
- Launch the default build Task using either:
- a hotkey _(default is 'Ctrl+Shift+B')_ or
- by issuing the `Tasks: Run Build Task` from the Command Palette.
6. Open the live preview
- Navigate to the output of the site within VS Code, right-click on
`.vscode/build/html/index.html` and select `Open with Live Server`. The
contents should update on every rebuild without having to refresh the
browser.
<!-- markdownlint-restore -->

View File

@@ -1,38 +1,42 @@
# AMD ROCm™ Platform
ROCm is an open-source stack, composed primarily of open-source software (OSS), designed for
graphics processing unit (GPU) computation. ROCm consists of a collection of drivers, development
tools, and APIs that enable GPU programming from low-level kernel to end-user applications.
ROCm is an open-source stack for GPU computation. ROCm is primarily Open-Source
Software (OSS) that allows developers the freedom to customize and tailor their
GPU software for their own needs while collaborating with a community of other
developers, and helping each other find solutions in an agile, flexible, rapid
and secure manner.
With ROCm, you can customize your GPU software to meet your specific needs. You can develop,
collaborate, test, and deploy your applications in a free, open-source, integrated, and secure software
ecosystem. ROCm is particularly well-suited to GPU-accelerated high-performance computing (HPC),
artificial intelligence (AI), scientific computing, and computer aided design (CAD).
ROCm is a collection of drivers, development tools and APIs enabling GPU
programming from the low-level kernel to end-user applications. ROCm is powered
by AMDs Heterogeneous-computing Interface for Portability (HIP), an OSS C++ GPU
programming environment and its corresponding runtime. HIP allows ROCm
developers to create portable applications on different platforms by deploying
code on a range of platforms, from dedicated gaming GPUs to exascale HPC
clusters. ROCm supports programming models such as OpenMP and OpenCL, and
includes all the necessary OSS compilers, debuggers and libraries. ROCm is fully
integrated into ML frameworks such as PyTorch and TensorFlow. ROCm can be
deployed in many ways, including through the use of containers such as Docker,
Spack, and your own build from source.
ROCm is powered by AMDs
[Heterogeneous-computing Interface for Portability (HIP)](https://github.com/ROCm-Developer-Tools/HIP),
an OSS C++ GPU programming environment and its corresponding runtime. HIP allows ROCm
developers to create portable applications on different platforms by deploying code on a range of
platforms, from dedicated gaming GPUs to exascale HPC clusters.
ROCms goal is to allow our users to maximize their GPU hardware investment.
ROCm is designed to help develop, test and deploy GPU accelerated HPC, AI,
scientific computing, CAD, and other applications in a free, open-source,
integrated and secure software ecosystem.
ROCm supports programming models, such as OpenMP and OpenCL, and includes all necessary OSS
compilers, debuggers, and libraries. ROCm is fully integrated into machine learning (ML) frameworks,
such as PyTorch and TensorFlow.
This repository contains the manifest file for ROCm™ releases, changelogs, and
release information. The file default.xml contains information for all
repositories and the associated commit used to build the current ROCm release.
The default.xml file uses the repo Manifest format.
The develop branch of this repository contains content for the next
ROCm release.
## ROCm Documentation
The ROCm Documentation site is [rocm.docs.amd.com](https://rocm.docs.amd.com).
Source code for the documentation is located in the docs folder of most repositories that are part of
ROCm.
This repository contains the manifest file for ROCm releases, changelogs, and release information.
The file `default.xml` contains information for all repositories and the associated commit used to build
the current ROCm release.
The `default.xml` file uses the repo Manifest Format.
The develop branch of this repository contains content for the next ROCm release.
ROCm Documentation is available online at
[rocm.docs.amd.com](https://rocm.docs.amd.com). Source code for the documenation
is located in the docs folder of most repositories that are part of ROCm.
### How to build documentation via Sphinx
@@ -44,7 +48,7 @@ pip3 install -r sphinx/requirements.txt
python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
```
## Older ROCm Releases
## Older ROCm Releases
For release information for older ROCm releases, refer to
[`CHANGELOG`](./CHANGELOG.md).
For release information for older ROCm releases, refer to
[CHANGELOG](./CHANGELOG.md).

View File

@@ -15,469 +15,69 @@ The release notes for the ROCm platform.
-------------------
## ROCm 5.7.0
## ROCm 5.4.1
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable no-duplicate-header -->
### What's New in This Release
### Release Highlights for ROCm v5.7
#### HIP Enhancements
ROCm 5.7.0 includes many new features. These include: a new library (hipTensor), and optimizations for rocRAND and MIVisionX. Address sanitizer for host and device code (GPU) is now available as a beta. Note that ROCm 5.7.0 is EOS for MI50. 5.7 versions of ROCm are the last major release in the ROCm 5 series. This release is Linux-only.
The ROCm v5.4.1 release consists of the following new HIP API:
Important: The next major ROCm release (ROCm 6.0) will not be backward compatible with the ROCm 5 series. Changes will include: splitting LLVM packages into more manageable sizes, changes to the HIP runtime API, splitting rocRAND and hipRAND into separate packages, and reorganizing our file structure.
##### New HIP API - hipLaunchHostFunc
#### AMD Instinct™ MI50 End of Support Notice
The following new HIP API is introduced in the ROCm v5.4.1 release.
AMD Instinct MI50, Radeon Pro VII, and Radeon VII products (collectively gfx906 GPUs) will enter maintenance mode starting Q3 2023.
As outlined in [5.6.0](https://rocm.docs.amd.com/en/docs-5.6.0/release.html), ROCm 5.7 will be the final release for gfx906 GPUs to be in a fully supported state.
- ROCm 6.0 release will show MI50s as "under maintenance" mode for [Linux](./about/release/linux_support) and [Windows](./about/release/windows_support)
- No new features and performance optimizations will be supported for the gfx906 GPUs beyond this major release (ROCm 5.7).
- Bug fixes / critical security patches will continue to be supported for the gfx906 GPUs till Q2 2024 (EOM (End of Maintenance) will be aligned with the closest ROCm release).
- Bug fixes during the maintenance will be made to the next ROCm point release.
- Bug fixes will not be backported to older ROCm releases for gfx906.
- Distro / Operating system updates will continue as per the ROCm release cadence for gfx906 GPUs till EOM.
#### Feature Updates
##### Non-hostcall HIP Printf
**Current behavior**
The current version of HIP printf relies on hostcalls, which, in turn, rely on PCIe atomics. However, PCle atomics are unavailable in some environments, and, as a result, HIP-printf does not work in those environments. Users may see the following error from runtime (with AMD_LOG_LEVEL 1 and above),
> **Note**
>
> This is a pre-official version (beta) release of the new APIs.
```h
hipError_t hipLaunchHostFunc(hipStream_t stream, hipHostFn_t fn, void* userData);
```
Pcie atomics not enabled, hostcall not supported
This swaps the stream capture mode of a thread.
```text
@param [in] mode - Pointer to mode value to swap with the current mode
```
**Workaround**
The ROCm 5.7 release introduces an alternative to the current hostcall-based implementation that leverages an older OpenCL-based printf scheme, which does not rely on hostcalls/PCIe atomics.
Note: This option is less robust than hostcall-based implementation and is intended to be a workaround when hostcalls do not work.
This parameter returns `#hipSuccess`, `#hipErrorInvalidValue`.
The printf variant is now controlled via a new compiler option -mprintf-kind=<value>. This is supported only for HIP programs and takes the following values,
For more information, refer to the HIP API documentation at /bundle/HIP_API_Guide/page/modules.html.
- “hostcall” This currently available implementation relies on hostcalls, which require the system to support PCIe atomics. It is the default scheme.
### Deprecations and Warnings
- “buffered” This implementation leverages the older printf scheme used by OpenCL; it relies on a memory buffer where printf arguments are stored during the kernel execution, and then the runtime handles the actual printing once the kernel finishes execution.
#### HIP Perl Scripts Deprecation
**NOTE**: With the new workaround,
The `hipcc` and `hipconfig` Perl scripts are deprecated. In a future release, compiled binaries will be available as `hipcc.bin` and `hipconfig.bin` as replacements for the Perl scripts.
- The printf buffer is fixed size and non-circular. After the buffer is filled, calls to printf will not result in additional output.
> **Note**
>
> There will be a transition period where the Perl scripts and compiled binaries are available before the scripts are removed. There will be no functional difference between the Perl scripts and their compiled binary counterpart. No user action is required. Once these are available, users can optionally switch to `hipcc.bin` and `hipconfig.bin`. The `hipcc`/`hipconfig` soft link will be assimilated to point from `hipcc`/`hipconfig` to the respective compiled binaries as the default option.
- The printf call returns either 0 (on success) or -1 (on failure, due to full buffer), unlike the hostcall scheme that returns the number of characters printed.
### IFWI Fixes
##### Beta Release of LLVM Address Sanitizer (ASAN) with the GPU
These defects were identified and documented as known issues in previous ROCm releases and are fixed in this release.
AMD Instinct™ MI200 Firmware IFWI Maintenance Update #3
The ROCm v5.7 release introduces the beta release of LLVM Address Sanitizer (ASAN) with the GPU. The LLVM Address Sanitizer provides a process that allows developers to detect runtime addressing errors in applications and libraries. The detection is achieved using a combination of compiler-added instrumentation and runtime techniques, including function interception and replacement.
Until now, the LLVM Address Sanitizer process was only available for traditional purely CPU applications. However, ROCm has extended this mechanism to additionally allow the detection of some addressing errors on the GPU in heterogeneous applications. Ideally, developers should treat heterogeneous HIP and OpenMP applications like pure CPU applications. However, this simplicity has not been achieved yet.
This IFWI release fixes the following issue in AMD Instinct™ MI210/MI250 Accelerators.
Refer to the documentation on LLVM Address Sanitizer with the GPU at [LLVM Address Sanitizer User Guide](understand/using_gpu_sanitizer.md).
After prolonged periods of operation, certain MI200 Instinct™ Accelerators may perform in a degraded way resulting in application failures.
**Note**: The beta release of LLVM Address Sanitizer for ROCm is currently tested and validated on Ubuntu 20.04.
In this package, AMD delivers a new firmware version for MI200 GPU accelerators and a firmware installation tool AMD FW FLASH 1.2.
#### Fixed Defects
| GPU | Production Part Number | SKU | IFWI Name |
|-------|------------|--------|---------------|
| MI210 | 113-D673XX | D67302 | D6730200V.110 |
| MI210 | 113-D673XX | D67301 | D6730100V.073 |
| MI250 | 113-D652XX | D65209 | D6520900.073 |
| MI250 | 113-D652XX | D65210 | D6521000.073 |
The following defects are fixed in ROCm v5.7,
Instructions on how to download and apply MI200 maintenance updates are available at:
- Test hangs observed in HMM RCCL
<https://www.amd.com/en/support/server-accelerators/amd-instinct/amd-instinct-mi-series/amd-instinct-mi210>
- NoGpuTst test of Catch2 fails with Docker
#### AMD Instinct™ MI200 SRIOV Virtualization Support
- Failures observed with non-HMM HIP directed catch2 tests with XNACK+
- Multiple test failures and test hangs observed in hip-directed catch2 tests with xnack+
#### HIP 5.7.0
##### Optimizations
##### Added
- Added `meta_group_size`/`rank` for getting the number of tiles and rank of a tile in the partition
- Added new APIs supporting Windows only, under development on Linux
- `hipMallocMipmappedArray` for allocating a mipmapped array on the device
- `hipFreeMipmappedArray` for freeing a mipmapped array on the device
- `hipGetMipmappedArrayLevel` for getting a mipmap level of a HIP mipmapped array
- `hipMipmappedArrayCreate` for creating a mipmapped array
- `hipMipmappedArrayDestroy` for destroy a mipmapped array
- `hipMipmappedArrayGetLevel` for getting a mipmapped array on a mipmapped level
##### Changed
##### Fixed
##### Known Issues
- HIP memory type enum values currently don't support equivalent value to `cudaMemoryTypeUnregistered`, due to HIP functionality backward compatibility.
- HIP API `hipPointerGetAttributes` could return invalid value in case the input memory pointer was not allocated through any HIP API on device or host.
##### Upcoming changes for HIP in ROCm 6.0 release
- Removal of gcnarch from hipDeviceProp_t structure
- Addition of new fields in hipDeviceProp_t structure
- maxTexture1D
- maxTexture2D
- maxTexture1DLayered
- maxTexture2DLayered
- sharedMemPerMultiprocessor
- deviceOverlap
- asyncEngineCount
- surfaceAlignment
- unifiedAddressing
- computePreemptionSupported
- hostRegisterSupported
- uuid
- Removal of deprecated code -hip-hcc codes from hip code tree
- Correct hipArray usage in HIP APIs such as hipMemcpyAtoH and hipMemcpyHtoA
- HIPMEMCPY_3D fields correction to avoid truncation of "size_t" to "unsigned int" inside hipMemcpy3D()
- Renaming of 'memoryType' in hipPointerAttribute_t structure to 'type'
- Correct hipGetLastError to return the last error instead of last API call's return code
- Update hipExternalSemaphoreHandleDesc to add "unsigned int reserved[16]"
- Correct handling of flag values in hipIpcOpenMemHandle for hipIpcMemLazyEnablePeerAccess
- Remove hiparray* and make it opaque with hipArray_t
### Library Changes in ROCM 5.7.0
| Library | Version |
|---------|---------|
| hipBLAS | ⇒ [1.1.0](https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.7.0) |
| hipCUB | ⇒ [2.13.1](https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.7.0) |
| hipFFT | ⇒ [1.0.12](https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.7.0) |
| hipSOLVER | ⇒ [1.8.1](https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.7.0) |
| hipSPARSE | ⇒ [2.3.8](https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.7.0) |
| MIOpen | ⇒ [2.19.0](https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.7.0) |
| rccl | ⇒ [2.17.1-1](https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.7.0) |
| rocALUTION | ⇒ [2.1.11](https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.7.0) |
| rocBLAS | ⇒ [3.1.0](https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.7.0) |
| rocFFT | ⇒ [1.0.24](https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.7.0) |
| rocm-cmake | ⇒ [0.10.0](https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.7.0) |
| rocPRIM | ⇒ [2.13.1](https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.7.0) |
| rocRAND | ⇒ [2.10.17](https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.7.0) |
| rocSOLVER | ⇒ [3.23.0](https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.7.0) |
| rocSPARSE | ⇒ [2.5.4](https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.7.0) |
| rocThrust | ⇒ [2.18.0](https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.7.0) |
| rocWMMA | ⇒ [1.2.0](https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.7.0) |
| Tensile | ⇒ [4.38.0](https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.7.0) |
#### hipBLAS 1.1.0
hipBLAS 1.1.0 for ROCm 5.7.0
##### Changed
- updated documentation requirements
##### Dependencies
- dependency rocSOLVER now depends on rocSPARSE
#### hipCUB 2.13.1
hipCUB 2.13.1 for ROCm 5.7.0
##### Changed
- CUB backend references CUB and Thrust version 2.0.1.
- Fixed `DeviceSegmentedReduce::ArgMin` and `DeviceSegmentedReduce::ArgMax` by returning the segment-relative index instead of the absolute one.
- Fixed `DeviceSegmentedReduce::ArgMin` for inputs where the segment minimum is smaller than the value returned for empty segments. An equivalent fix is applied to `DeviceSegmentedReduce::ArgMax`.
##### Known Issues
- `debug_synchronous` no longer works on CUDA platform. `CUB_DEBUG_SYNC` should be used to enable those checks.
- `DeviceReduce::Sum` does not compile on CUDA platform for mixed extended-floating-point/floating-point InputT and OutputT types.
- `DeviceHistogram::HistogramEven` fails on CUDA platform for `[LevelT, SampleIteratorT] = [int, int]`.
- `DeviceHistogram::MultiHistogramEven` fails on CUDA platform for `[LevelT, SampleIteratorT] = [int, int/unsigned short/float/double]` and `[LevelT, SampleIteratorT] = [float, double]`.
#### hipFFT 1.0.12
hipFFT 1.0.12 for ROCm 5.7.0
##### Added
- Implemented the hipfftXtMakePlanMany, hipfftXtGetSizeMany, hipfftXtExec APIs, to allow requesting half-precision transforms.
##### Changed
- Added --precision argument to benchmark/test clients. --double is still accepted but is deprecated as a method to request a double-precision transform.
#### hipSOLVER 1.8.1
hipSOLVER 1.8.1 for ROCm 5.7.0
##### Changed
- Changed hipsolver-test sparse input data search paths to be relative to the test executable
#### hipSPARSE 2.3.8
hipSPARSE 2.3.8 for ROCm 5.7.0
##### Improved
- Fix compilation failures when using cusparse 12.1.0 backend
- Fix compilation failures when using cusparse 12.0.0 backend
- Fix compilation failures when using cusparse 10.1 (non-update versions) as backend
- Minor improvements
#### MIOpen 2.19.0
MIOpen 2.19.0 for ROCm 5.7.0
##### Added
- ROCm 5.5 support for gfx1101 (Navi32)
##### Changed
- Tuning results for MLIR on ROCm 5.5
- Bumping MLIR commit to 5.5.0 release tag
##### Fixed
- Fix 3d convolution Host API bug
- [HOTFIX][MI200][FP16] Disabled ConvHipImplicitGemmBwdXdlops when FP16_ALT is required.
#### RCCL 2.17.1-1
RCCL 2.17.1-1 for ROCm 5.7.0
##### Changed
- Compatibility with NCCL 2.17.1-1
- Performance tuning for some collective operations
##### Added
- Minor improvements to MSCCL codepath
- NCCL_NCHANNELS_PER_PEER support
- Improved compilation performance
- Support for gfx94x
##### Fixed
- Potential race-condition during ncclSocketClose()
#### rocALUTION 2.1.11
rocALUTION 2.1.11 for ROCm 5.7.0
##### Added
- Added support for gfx940, gfx941 and gfx942
##### Improved
- Fixed OpenMP runtime issue with Windows toolchain
#### rocBLAS 3.1.0
rocBLAS 3.1.0 for ROCm 5.7.0
##### Added
- yaml lock step argument scanning for rocblas-bench and rocblas-test clients. See Programmers Guide for details.
- rocblas-gemm-tune is used to find the best performing GEMM kernel for each of a given set of GEMM problems.
##### Fixed
- make offset calculations for rocBLAS functions 64 bit safe. Fixes for very large leading dimensions or increments potentially causing overflow:
- Level 1: axpy, copy, rot, rotm, scal, swap, asum, dot, iamax, iamin, nrm2
- Level 2: gemv, symv, hemv, trmv, ger, syr, her, syr2, her2, trsv
- Level 3: gemm, symm, hemm, trmm, syrk, herk, syr2k, her2k, syrkx, herkx, trsm, trtri, dgmm, geam
- General: set_vector, get_vector, set_matrix, get_matrix
- Related fixes: internal scalar loads with &gt; 32bit offsets
- fix in-place functionality for all trtri sizes
##### Changed
- dot when using rocblas_pointer_mode_host is now synchronous to match legacy BLAS as it stores results in host memory
- enhanced reporting of installation issues caused by runtime libraries (Tensile)
- standardized internal rocblas C++ interface across most functions
##### Deprecated
- Removal of __STDC_WANT_IEC_60559_TYPES_EXT__ define in future release
##### Dependencies
- optional use of AOCL BLIS 4.0 on Linux for clients
- optional build tool only dependency on python psutil
#### rocFFT 1.0.24
rocFFT 1.0.24 for ROCm 5.7.0
##### Optimizations
- Improved performance of complex forward/inverse 1D FFTs (2049 &lt;= length &lt;= 131071) that use Bluestein&#39;s algorithm.
##### Added
- Implemented a solution map version converter and finish the first conversion from ver.0 to ver.1. Where version 1 removes some incorrect kernels (sbrc/sbcr using half_lds)
##### Changed
- Moved rocfft_rtc_helper executable to lib/rocFFT directory on Linux.
- Moved library kernel cache to lib/rocFFT directory.
#### rocm-cmake 0.10.0
rocm-cmake 0.10.0 for ROCm 5.7.0
##### Added
- Added ROCMTest module
- ROCMCreatePackage: Added support for ASAN packages
#### rocPRIM 2.13.1
rocPRIM 2.13.1 for ROCm 5.7.0
##### Changed
- Deprecated configuration `radix_sort_config` for device-level radix sort as it no longer matches the algorithm&#39;s parameters. New configuration `radix_sort_config_v2` is preferred instead.
- Removed erroneous implementation of device-level `inclusive_scan` and `exclusive_scan`. The prior default implementation using lookback-scan now is the only available implementation.
- The benchmark metric indicating the bytes processed for `exclusive_scan_by_key` and `inclusive_scan_by_key` has been changed to incorporate the key type. Furthermore, the benchmark log has been changed such that these algorithms are reported as `scan` and `scan_by_key` instead of `scan_exclusive` and `scan_inclusive`.
- Deprecated configurations `scan_config` and `scan_by_key_config` for device-level scans, as they no longer match the algorithm&#39;s parameters. New configurations `scan_config_v2` and `scan_by_key_config_v2` are preferred instead.
##### Fixed
- Fixed build issue caused by missing header in `thread/thread_search.hpp`.
#### rocRAND 2.10.17
rocRAND 2.10.17 for ROCm 5.7.0
##### Added
- MT19937 pseudo random number generator based on M. Matsumoto and T. Nishimura, 1998, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.
- New benchmark for the device API using Google Benchmark, `benchmark_rocrand_device_api`, replacing `benchmark_rocrand_kernel`. `benchmark_rocrand_kernel` is deprecated and will be removed in a future version. Likewise, `benchmark_curand_host_api` is added to replace `benchmark_curand_generate` and `benchmark_curand_device_api` is added to replace `benchmark_curand_kernel`.
- experimental HIP-CPU feature
- ThreeFry pseudorandom number generator based on Salmon et al., 2011, &#34;Parallel random numbers: as easy as 1, 2, 3&#34;.
##### Changed
- Python 2.7 is no longer officially supported.
#### rocSOLVER 3.23.0
rocSOLVER 3.23.0 for ROCm 5.7.0
##### Added
- LU factorization without pivoting for block tridiagonal matrices:
- GEBLTTRF_NPVT now supports interleaved\_batched format
- Linear system solver without pivoting for block tridiagonal matrices:
- GEBLTTRS_NPVT now supports interleaved\_batched format
##### Fixed
- Fixed stack overflow in sparse tests on Windows
##### Changed
- Changed rocsolver-test sparse input data search paths to be relative to the test executable
- Changed build scripts to default to compressed debug symbols in Debug builds
#### rocSPARSE 2.5.4
rocSPARSE 2.5.4 for ROCm 5.7.0
##### Added
- Added more mixed precisions for SpMV, (matrix: float, vectors: double, calculation: double) and (matrix: rocsparse_float_complex, vectors: rocsparse_double_complex, calculation: rocsparse_double_complex)
- Added support for gfx940, gfx941 and gfx942
##### Improved
- Fixed a bug in csrsm and bsrsm
##### Known Issues
In csritlu0, the algorithm rocsparse_itilu0_alg_sync_split_fusion has some accuracy issues to investigate with XNACK enabled. The fallback is rocsparse_itilu0_alg_sync_split.
#### rocThrust 2.18.0
rocThrust 2.18.0 for ROCm 5.7.0
##### Fixed
- `lower_bound`, `upper_bound`, and `binary_search` failed to compile for certain types.
- Fixed issue where `transform_iterator` would not compile with `__device__`-only operators.
##### Changed
- Updated `docs` directory structure to match the standard of [rocm-docs-core](https://github.com/RadeonOpenCompute/rocm-docs-core).
- Removed references to and workarounds for deprecated hcc
#### rocWMMA 1.2.0
rocWMMA 1.2.0 for ROCm 5.7.0
##### Changed
- Fixed a bug with synchronization
- Updated rocWMMA cmake versioning
#### Tensile 4.38.0
Tensile 4.38.0 for ROCm 5.7.0
##### Added
- Added support for FP16 Alt Round Near Zero Mode (this feature allows the generation of alternate kernels with intermediate rounding instead of truncation)
- Added user-driven solution selection feature
##### Optimizations
- Enabled LocalSplitU with MFMA for I8 data type
- Optimized K mask code in mfmaIter
- Enabled TailLoop code in NoLoadLoop to prefetch global/local read
- Enabled DirectToVgpr in TailLoop for NN, TN, and TT matrix orientations
- Optimized DirectToLds test cases to reduce the test duration
##### Changed
- Removed DGEMM NT custom kernels and related test cases
- Changed noTailLoop logic to apply noTailLoop only for NT
- Changed the range of AssertFree0ElementMultiple and Free1
- Unified aStr, bStr generation code in mfmaIter
##### Fixed
- Fixed LocalSplitU mismatch issue for SGEMM
- Fixed BufferStore=0 and Ldc != Ldd case
- Fixed mismatch issue with TailLoop + MatrixInstB &gt; 1
Maintenance update #3, combined with ROCm 5.4.1, now provides SRIOV virtualization support for all AMD Instinct™ MI200 devices.

View File

@@ -12,7 +12,7 @@ fetch="https://github.com/GPUOpen-ProfessionalCompute-Libraries/" />
fetch="https://github.com/GPUOpen-Tools/" />
<remote name="KhronosGroup"
fetch="https://github.com/KhronosGroup/" />
<default revision="refs/tags/rocm-5.7.0"
<default revision="refs/tags/rocm-5.5.1"
remote="roc-github"
sync-c="true"
sync-j="4" />
@@ -20,36 +20,38 @@ fetch="https://github.com/KhronosGroup/" />
<project name="ROCK-Kernel-Driver" />
<project name="ROCT-Thunk-Interface" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-cmake" />
<project name="rocminfo" />
<project name="rocm_bandwidth_test" />
<project name="rocprofiler" remote="rocm-devtools" />
<project name="roctracer" remote="rocm-devtools" />
<project name="ROCm-OpenCL-Runtime" />
<project path="ROCm-OpenCL-Runtime/api/opencl/khronos/icd" name="OpenCL-ICD-Loader" remote="KhronosGroup" revision="6c03f8b58fafd9dd693eaac826749a5cfad515f8" />
<project name="clang-ocl" />
<project name="rdc" />
<!--HIP Projects-->
<project name="HIP" remote="rocm-devtools" />
<project name="hipamd" remote="rocm-devtools" />
<project name="HIP-Examples" remote="rocm-devtools" />
<project name="clr" remote="rocm-devtools" />
<project name="ROCclr" remote="rocm-devtools" />
<project name="HIPIFY" remote="rocm-devtools" />
<project name="HIPCC" remote="rocm-devtools" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="llvm-project" />
<project name="ROCm-Device-Libs" />
<project name="atmi" />
<project name="ROCm-CompilerSupport" />
<project name="rocr_debug_agent" remote="rocm-devtools" />
<project name="rocm_bandwidth_test" />
<project name="half" remote="rocm-swplat" revision="37742ce15b76b44e4b271c1e66d13d2fa7bd003e" />
<project name="RCP" remote="gpuopen-tools" revision="3a49405a1500067c49d181844ec90aea606055bb" />
<!-- gdb projects -->
<project name="ROCgdb" remote="rocm-devtools" />
<project name="ROCdbgapi" remote="rocm-devtools" />
<project name="rocr_debug_agent" remote="rocm-devtools" />
<!-- ROCm Libraries -->
<project name="rdc" />
<project groups="mathlibs" name="rocBLAS" remote="rocm-swplat" />
<project groups="mathlibs" name="Tensile" remote="rocm-swplat" />
<project groups="mathlibs" name="hipTensor" remote="rocm-swplat" />
<project groups="mathlibs" name="hipBLAS" remote="rocm-swplat" />
<project groups="mathlibs" name="rocFFT" remote="rocm-swplat" />
<project groups="mathlibs" name="hipFFT" remote="rocm-swplat" />
@@ -59,16 +61,14 @@ fetch="https://github.com/KhronosGroup/" />
<project groups="mathlibs" name="hipSOLVER" remote="rocm-swplat" />
<project groups="mathlibs" name="hipSPARSE" remote="rocm-swplat" />
<project groups="mathlibs" name="rocALUTION" remote="rocm-swplat" />
<project name="MIOpenGEMM" remote="rocm-swplat" />
<project name="MIOpen" remote="rocm-swplat" />
<project groups="mathlibs" name="rccl" remote="rocm-swplat" />
<project name="MIVisionX" remote="gpuopen-libs" />
<project groups="mathlibs" name="rocThrust" remote="rocm-swplat" />
<project groups="mathlibs" name="hipCUB" remote="rocm-swplat" />
<project groups="mathlibs" name="rocPRIM" remote="rocm-swplat" />
<project groups="mathlibs" name="rocWMMA" remote="rocm-swplat" />
<project groups="mathlibs" name="rccl" remote="rocm-swplat" />
<project name="rocMLIR" remote="rocm-swplat" />
<project name="MIOpen" remote="rocm-swplat" />
<project name="composable_kernel" remote="rocm-swplat" />
<project name="MIVisionX" remote="gpuopen-libs" />
<project name="rpp" remote="gpuopen-libs" />
<project name="hipfort" remote="rocm-swplat" />
<project name="AMDMIGraphX" remote="rocm-swplat" />
<project name="ROCmValidationSuite" remote="rocm-devtools" />

View File

@@ -1,3 +1,6 @@
# 404 - Page Not Found
# 404 Page Not Found
Return [home](./index) or use the sidebar navigation to get back on track.
Page could not be found.
Return to [home](./index) or please use the links from the sidebar to find what
you are looking for.

View File

@@ -5,70 +5,70 @@ Documentation is built using open source toolchains. Contributions to our
documentation is encouraged and welcome. As a contributor, please familiarize
yourself with our documentation toolchain.
## `rocm-docs-core`
## ReadTheDocs
[rocm-docs-core](https://github.com/RadeonOpenCompute/rocm-docs-core) is an AMD-maintained
project that applies customization for our documentation. This
project is the tool most ROCm repositories use as part of the documentation
build. It is also available as a [pip package on PyPI](https://pypi.org/project/rocm-docs-core/).
[ReadTheDocs](https://docs.readthedocs.io/en/stable/) is our front end for the
our documentation. By front end, this is the tool that serves our HTML based
documentation to our end users.
See the user and developer guides for rocm-docs-core at {doc}`rocm-docs-core documentation <rocm-docs-core:index>`.
## Doxygen
[Doxygen](https://www.doxygen.nl/) is the most common inline code documentation
standard. ROCm projects are use Doxygen for public API documentation (unless the
upstream project is using a different tool).
## Sphinx
[Sphinx](https://www.sphinx-doc.org/en/master/) is a documentation generator
originally used for Python. It is now widely used in the Open Source community.
Originally, Sphinx supported reStructuredText (RST) based documentation, but
Markdown support is now available.
ROCm documentation plans to default to Markdown for new projects.
Existing projects using RST are under no obligation to convert to Markdown. New
projects that believe Markdown is not suitable should contact the documentation
originally used for python. It is now widely used in the Open Source community.
Originally, sphinx supported RST based documentation. Markdown support is now
available. ROCm documentation plans to default to markdown for new projects.
Existing projects using RST are under no obligation to convert to markdown. New
projects that believe markdown is not suitable should contact the documentation
team prior to selecting RST.
## Read the Docs
[Read the Docs](https://docs.readthedocs.io/en/stable/) is the service that builds
and hosts the HTML documentation generated using Sphinx to our end users.
## Doxygen
[Doxygen](https://www.doxygen.nl/) is a documentation generator that extracts
information from inline code.
ROCm projects typically use Doxygen for public API documentation unless the
upstream project uses a different tool.
### Breathe
[Breathe](https://www.breathe-doc.org/) is a Sphinx plugin to integrate Doxygen
content.
### MyST
[Markedly Structured Text (MyST)](https://myst-tools.org/docs/spec) is an extended
flavor of Markdown ([CommonMark](https://commonmark.org/)) influenced by reStructuredText (RST) and Sphinx.
It is integrated into ROCm documentation by the Sphinx extension [`myst-parser`](https://myst-parser.readthedocs.io/en/latest/).
A cheat sheet that showcases how to use the MyST syntax is available over at
the [Jupyter reference](https://jupyterbook.org/en/stable/reference/cheatsheet.html).
It is integrated via [`myst-parser`](https://myst-parser.readthedocs.io/en/latest/).
A cheat sheet that showcases how to use the MyST syntax is available over at [the Jupyter
reference](https://jupyterbook.org/en/stable/reference/cheatsheet.html).
### Sphinx External TOC
### Sphinx Theme
[Sphinx External Table of Contents (TOC)](https://sphinx-external-toc.readthedocs.io/en/latest/intro.html)
is a Sphinx extension used for ROCm documentation navigation. This tool generates a navigation menu on the left
based on a YAML file that specifies the table of contents.
It was selected due to its flexibility that allows scripts to operate on the
YAML file. Please transition to this file for the project's navigation. You can
see the `_toc.yml.in` file in this repository in the `docs/sphinx` folder for an
example.
### Sphinx Book Theme
[Sphinx Book Theme](https://sphinx-book-theme.readthedocs.io/en/latest/) is a Sphinx theme
that defines the base appearance for ROCm documentation.
ROCm documentation applies some customization,
such as a custom header and footer on top of the Sphinx Book Theme.
ROCm is using the
[Sphinx Book Theme](https://sphinx-book-theme.readthedocs.io/en/latest/). This
theme is used by Jupyter books. ROCm documentation applies some customization
include a header and footer on top of the Sphinx Book Theme. A future custom
ROCm theme will be part of our documentation goals.
### Sphinx Design
[Sphinx Design](https://sphinx-design.readthedocs.io/en/latest/index.html) is a Sphinx extension that adds design
functionality.
ROCm documentation uses Sphinx Design for grids, cards, and synchronized tabs.
Sphinx Design is an extension for sphinx based websites that add design
functionality. Please see the documentation
[here](https://sphinx-design.readthedocs.io/en/latest/index.html). ROCm
documentation uses sphinx design for grids, cards, and synchronized tabs.
Other features may be used in the future.
### Sphinx External TOC
ROCm uses the
[sphinx-external-toc](https://sphinx-external-toc.readthedocs.io/en/latest/intro.html)
for our navigation. This tool allows a YAML file based left navigation menu. This
tool was selected due to its flexibility that allows scripts to operate on the
YAML file. Please transition to this file for the project's navigation. You can
see the `_toc.yml.in` file in this repository in the docs/sphinx folder for an
example.
### Breathe
Sphinx uses [Breathe](https://www.breathe-doc.org/) to integrate Doxygen
content.
## `rocm-docs-core` pip package
[rocm-docs-core](https://github.com/RadeonOpenCompute/rocm-docs-core) is an AMD
maintained project that applies customization for our documentation. This
project is the tool most ROCm repositories will use as part of the documentation
build.

View File

@@ -1,125 +0,0 @@
# ROCm licensing terms
ROCm™ is released by Advanced Micro Devices, Inc. and is licensed per component separately.
The following table is a list of ROCm components with links to their respective license
terms. These components may include third party components subject to
additional licenses. Please review individual repositories for more information.
The table shows ROCm components, license name, and link to the license terms.
<!-- spellcheck-disable -->
| Component | License |
|:------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------:|
| [AMDMIGraphX](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/) | [MIT](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/LICENSE) |
| [HIPCC](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) | [MIT](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) |
| [HIPIFY](https://github.com/ROCm-Developer-Tools/HIPIFY/) | [MIT](https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/LICENSE.txt) |
| [HIP](https://github.com/ROCm-Developer-Tools/HIP/) | [MIT](https://github.com/ROCm-Developer-Tools/HIP/blob/develop/LICENSE.txt) |
| [MIOpenGEMM](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/blob/master/LICENSE.txt) |
| [MIOpen](https://github.com/ROCmSoftwarePlatform/MIOpen/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpen/blob/master/LICENSE.txt) |
| [MIVisionX](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/) | [MIT](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/LICENSE.txt) |
| [RCP](https://github.com/GPUOpen-Tools/radeon_compute_profiler/) | [MIT](https://github.com/GPUOpen-Tools/radeon_compute_profiler/blob/master/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/COPYING) |
| [ROCR-Runtime](https://github.com/RadeonOpenCompute/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/LICENSE.txt) |
| [ROCT-Thunk-Interface](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/) | [MIT](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/blob/master/LICENSE.md) |
| [ROCclr](https://github.com/ROCm-Developer-Tools/ROCclr/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/LICENSE.txt) |
| [ROCdbgapi](https://github.com/ROCm-Developer-Tools/ROCdbgapi/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCdbgapi/blob/amd-master/LICENSE.txt) |
| [ROCgdb](https://github.com/ROCm-Developer-Tools/ROCgdb/) | [GNU General Public License v2.0](https://github.com/ROCm-Developer-Tools/ROCgdb/blob/amd-master/COPYING) |
| [ROCm-CompilerSupport](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/blob/amd-stg-open/LICENSE.txt) |
| [ROCm-Device-Libs](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/LICENSE.TXT) |
| [ROCm-OpenCL-Runtime/api/opencl/khronos/icd](https://github.com/KhronosGroup/OpenCL-ICD-Loader/) | [Apache 2.0](https://github.com/KhronosGroup/OpenCL-ICD-Loader/blob/main/LICENSE) |
| [ROCm-OpenCL-Runtime](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/) | [MIT](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/blob/develop/LICENSE.txt) |
| [ROCmValidationSuite](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/LICENSE) |
| [Tensile](https://github.com/ROCmSoftwarePlatform/Tensile/) | [MIT](https://github.com/ROCmSoftwarePlatform/Tensile/blob/develop/LICENSE.md) |
| [aomp-extras](https://github.com/ROCm-Developer-Tools/aomp-extras/) | [MIT](https://github.com/ROCm-Developer-Tools/aomp-extras/blob/aomp-dev/LICENSE) |
| [aomp](https://github.com/ROCm-Developer-Tools/aomp/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/LICENSE) |
| [atmi](https://github.com/RadeonOpenCompute/atmi/) | [MIT](https://github.com/RadeonOpenCompute/atmi/blob/master/LICENSE.txt) |
| [clang-ocl](https://github.com/RadeonOpenCompute/clang-ocl/) | [MIT](https://github.com/RadeonOpenCompute/clang-ocl/blob/master/LICENSE) |
| [flang](https://github.com/ROCm-Developer-Tools/flang/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/flang/blob/master/LICENSE.txt) |
| [half](https://github.com/ROCmSoftwarePlatform/half/) | [MIT](https://github.com/ROCmSoftwarePlatform/half/blob/master/LICENSE.txt) |
| [hipBLAS](https://github.com/ROCmSoftwarePlatform/hipBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/LICENSE.md) |
| [hipCUB](https://github.com/ROCmSoftwarePlatform/hipCUB/) | [Custom](https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/LICENSE.txt) |
| [hipFFT](https://github.com/ROCmSoftwarePlatform/hipFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/LICENSE.md) |
| [hipSOLVER](https://github.com/ROCmSoftwarePlatform/hipSOLVER/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCmSoftwarePlatform/hipSPARSELt/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSPARSELt/blob/develop/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCmSoftwarePlatform/hipSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSPARSE/blob/develop/LICENSE.md) |
| [hipTensor](https://github.com/ROCmSoftwarePlatform/hipTensor) | [MIT](https://github.com/ROCmSoftwarePlatform/hipTensor/blob/develop/LICENSE) |
| [hipamd](https://github.com/ROCm-Developer-Tools/hipamd/) | [MIT](https://github.com/ROCm-Developer-Tools/hipamd/blob/develop/LICENSE.txt) |
| [hipfort](https://github.com/ROCmSoftwarePlatform/hipfort/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipfort/blob/master/LICENSE) |
| [llvm-project](https://github.com/ROCm-Developer-Tools/llvm-project/) | [Apache](https://github.com/ROCm-Developer-Tools/llvm-project/blob/main/LICENSE.TXT) |
| [rccl](https://github.com/ROCmSoftwarePlatform/rccl/) | [Custom](https://github.com/ROCmSoftwarePlatform/rccl/blob/develop/LICENSE.txt) |
| [rdc](https://github.com/RadeonOpenCompute/rdc/) | [MIT](https://github.com/RadeonOpenCompute/rdc/blob/master/LICENSE) |
| [rocALUTION](https://github.com/ROCmSoftwarePlatform/rocALUTION/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/LICENSE.md) |
| [rocBLAS](https://github.com/ROCmSoftwarePlatform/rocBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/LICENSE.md) |
| [rocFFT](https://github.com/ROCmSoftwarePlatform/rocFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/LICENSE.md) |
| [rocPRIM](https://github.com/ROCmSoftwarePlatform/rocPRIM/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/LICENSE.txt) |
| [rocRAND](https://github.com/ROCmSoftwarePlatform/rocRAND/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/LICENSE.txt) |
| [rocSOLVER](https://github.com/ROCmSoftwarePlatform/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCmSoftwarePlatform/rocSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCmSoftwarePlatform/rocThrust/) | [Apache 2.0](https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/LICENSE) |
| [rocWMMA](https://github.com/ROCmSoftwarePlatform/rocWMMA/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/LICENSE.md) |
| [rocm-cmake](https://github.com/RadeonOpenCompute/rocm-cmake/) | [MIT](https://github.com/RadeonOpenCompute/rocm-cmake/blob/develop/LICENSE) |
| [rocm_bandwidth_test](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [rocm_smi_lib](https://github.com/RadeonOpenCompute/rocm_smi_lib/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/License.txt) |
| [rocminfo](https://github.com/RadeonOpenCompute/rocminfo/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocminfo/blob/master/License.txt) |
| [rocprofiler](https://github.com/ROCm-Developer-Tools/rocprofiler/) | [MIT](https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/LICENSE) |
| [rocr_debug_agent](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/blob/master/LICENSE.txt) |
| [roctracer](https://github.com/ROCm-Developer-Tools/roctracer/) | [MIT](https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/LICENSE) |
| rocm-llvm-alt | [AMD Proprietary License](https://www.amd.com/en/support/amd-software-eula)
Open sourced ROCm components are released via public GitHub
repositories, packages on https://repo.radeon.com and other distribution channels.
Proprietary products are only available on https://repo.radeon.com. Currently, only
one component of ROCm, rocm-llvm-alt is governed by a proprietary license.
Proprietary components are organized in a proprietary subdirectory in the package
repositories to distinguish from open sourced packages.
The additional terms and conditions below apply to your use of ROCm technical
documentation.
©2023 Advanced Micro Devices, Inc. All rights reserved.
The information presented in this document is for informational purposes only
and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate
for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases,
product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information.
However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any
person of such revisions or changes.
THIS INFORMATION IS PROVIDED “AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their respective
companies.
## Package licensing
```{attention}
AQL Profiler and AOCC CPU optimization are both provided in binary form, each
subject to the license agreement enclosed in the directory for the binary and is
available here: `/opt/rocm/share/doc/rocm-llvm-alt/EULA`. By using, installing,
copying or distributing AQL Profiler and/or AOCC CPU Optimizations, you agree to
the terms and conditions of this license agreement. If you do not agree to the
terms of this agreement, do not install, copy or use the AQL Profiler and/or the
AOCC CPU Optimizations.
```
For the rest of the ROCm packages, you can find the licensing information at the
following location: `/opt/rocm/share/doc/<component-name>/`
For example, you can fetch the licensing information of the `_amd_comgr_`
component (Code Object Manager) from the `amd_comgr` folder. A file named
`LICENSE.txt` contains the license details at:
`/opt/rocm-5.4.3/share/doc/amd_comgr/LICENSE.txt`

View File

@@ -14,34 +14,19 @@ shutil.copy2('../RELEASE.md','./release.md')
# Keep capitalization due to similar linking on GitHub's markdown preview.
shutil.copy2('../CHANGELOG.md','./CHANGELOG.md')
latex_engine = "xelatex"
latex_elements = {
"fontpkg": r"""
\usepackage{tgtermes}
\usepackage{tgheros}
\renewcommand\ttdefault{txtt}
"""
}
# configurations for PDF output by Read the Docs
project = "ROCm Documentation"
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved."
version = "5.7.0"
release = "5.7.0"
version = "5.4.1"
release = "5.4.1"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_os = ["linux"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{
"file":"release",
"os":["linux", "windows"],
"date":"2023-07-27"
},
{"file":"deploy/linux/index", "os":["linux"]},
{"file":"deploy/linux/install_overview", "os":["linux"]},
{"file":"deploy/linux/prerequisites", "os":["linux"]},
@@ -52,20 +37,7 @@ article_pages = [
{"file":"deploy/linux/package_manager_integration", "os":["linux"]},
{"file":"deploy/docker", "os":["linux"]},
{"file":"deploy/windows/cli/index", "os":["windows"]},
{"file":"deploy/windows/cli/install", "os":["windows"]},
{"file":"deploy/windows/cli/uninstall", "os":["windows"]},
{"file":"deploy/windows/cli/upgrade", "os":["windows"]},
{"file":"deploy/windows/gui/index", "os":["windows"]},
{"file":"deploy/windows/gui/install", "os":["windows"]},
{"file":"deploy/windows/gui/uninstall", "os":["windows"]},
{"file":"deploy/windows/gui/upgrade", "os":["windows"]},
{"file":"deploy/windows/index", "os":["windows"]},
{"file":"deploy/windows/prerequisites", "os":["windows"]},
{"file":"deploy/windows/quick_start", "os":["windows"]},
{"file":"release/gpu_os_support", "os":["linux"]},
{"file":"release/windows_support", "os":["windows"]},
{"file":"release/docker_support_matrix", "os":["linux"]},
{"file":"reference/gpu_libraries/communication", "os":["linux"]},
@@ -92,7 +64,7 @@ article_pages = [
external_toc_path = "./sphinx/_toc.yml"
docs_core = ROCmDocs("ROCm 5.7.0 Documentation Home")
docs_core = ROCmDocs("ROCm 5.4.1 Documentation Home")
docs_core.setup()
external_projects_current_project = "rocm"

View File

@@ -1,165 +0,0 @@
# Building Documentation
While contributing, one may build the documentation locally on the command-line
or rely on Continuous Integration for previewing the resulting HTML pages in a
browser.
## Pull Request documentation builds
When opening a PR to the `develop` branch on GitHub, the page corresponding to
the PR (`https://github.com/RadeonOpenCompute/ROCm/pull/<pr_number>`) will have
a summary at the bottom. This requires the user be logged in to GitHub.
- There, click `Show all checks` and `Details` of the Read the Docs pipeline. It
will take you to a URL of the form
`https://readthedocs.com/projects/advanced-micro-devices-rocm/builds/<some_build_num>/`
- The list of commands shown are the exact ones used by CI to produce a render
of the documentation.
- There, click on the small blue link `View docs` (which is not the same as the
bigger button with the same text). It will take you to the built HTML site with
a URL of the form
`https://advanced-micro-devices-demo--<pr_number>.com.readthedocs.build/projects/alpha/en/<pr_number>/`.
## Build documentation from the Command Line
Python versions known to build documentation:
- 3.8
To build the docs locally using Python Virtual Environment (`venv`), execute the
following commands from the project root:
```sh
python3 -mvenv .venv
# Windows
.venv/Scripts/python -m pip install -r docs/sphinx/requirements.txt
.venv/Scripts/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _build/html
# Linux
.venv/bin/python -m pip install -r docs/sphinx/requirements.txt
.venv/bin/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _build/html
```
Then open up `_build/html/index.html` in your favorite browser.
## Build documentation using Visual Studio (VS) Code
One can put together a productive environment to author documentation and also
test it locally using VS Code with only a handful of extensions. Even though the
extension landscape of VS Code is ever changing, here is one example setup that
proved useful at the time of writing. In it, one can change/add content, build a
new version of the docs using a single VS Code Task (or hotkey), see all errors/
warnings emitted by Sphinx in the Problems pane and immediately see the
resulting website show up on a locally-served web server.
### Configuring VS Code
1. Install the following extensions:
- Python `(ms-python.python)`
- Live Server `(ritwickdey.LiveServer)`
2. Add the following entries in `.vscode/settings.json`
```json
{
"liveServer.settings.root": "/.vscode/build/html",
"liveServer.settings.wait": 1000,
"python.terminal.activateEnvInCurrentTerminal": true
}
```
The settings above are used for the following reasons:
- `liveServer.settings.root`: Sets the root of the output website for live previews. Must be changed
alongside the `tasks.json` command.
- `liveServer.settings.wait`: Tells live server to wait with the update to give time for Sphinx to
regenerate site contents and not refresh before all is done. (Empirical value)
- `python.terminal.activateEnvInCurrentTerminal`: Automatic virtual environment activation is a nice touch,
should you want to build the site from the integrated terminal.
3. Add the following tasks in `.vscode/tasks.json`
```json
{
"version": "2.0.0",
"tasks": [
{
"label": "Build Docs",
"type": "process",
"windows": {
"command": "${workspaceFolder}/.venv/Scripts/python.exe"
},
"command": "${workspaceFolder}/.venv/bin/python3",
"args": [
"-m",
"sphinx",
"-j",
"auto",
"-T",
"-b",
"html",
"-d",
"${workspaceFolder}/.vscode/build/doctrees",
"-D",
"language=en",
"${workspaceFolder}/docs",
"${workspaceFolder}/.vscode/build/html"
],
"problemMatcher": [
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):(\\d+):\\s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"line": 2,
"severity": 3,
"message": 4
},
},
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):{1,2}\\s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"severity": 2,
"message": 3
}
}
],
"group": {
"kind": "build",
"isDefault": true
}
},
],
}
```
> (Implementation detail: two problem matchers were needed to be defined,
> because VS Code doesn't tolerate some problem information being potentially
> absent. While a single regex could match all types of errors, if a capture
> group remains empty (the line number doesn't show up in all warning/error
> messages) but the `pattern` references said empty capture group, VS Code
> discards the message completely.)
4. Configure Python virtual environment (`venv`)
- From the Command Palette, run `Python: Create Environment`
- Select `venv` environment and the `docs/sphinx/requirements.txt` file.
_(Simply pressing enter while hovering over the file from the drop down is
insufficient, one has to select the radio button with the 'Space' key if
using the keyboard.)_
5. Build the docs
- Launch the default build Task using either:
- a hotkey _(default is `Ctrl+Shift+B`)_ or
- by issuing the `Tasks: Run Build Task` from the Command Palette.
6. Open the live preview
- Navigate to the output of the site within VS Code, right-click on
`.vscode/build/html/index.html` and select `Open with Live Server`. The
contents should update on every rebuild without having to refresh the
browser.

View File

@@ -1,27 +0,0 @@
# How to provide feedback for ROCm documentation
There are four standard ways to provide feedback for this repository.
## Pull Request
All contributions to ROCm documentation should arrive via the
[GitHub Flow](https://docs.github.com/en/get-started/quickstart/github-flow)
targeting the develop branch of the repository. If you are unable to contribute
via the GitHub Flow, feel free to email us.
## GitHub Discussions
To ask questions or view answers to frequently asked questions, refer to
[GitHub Discussions](https://github.com/RadeonOpenCompute/ROCm/discussions).
On GitHub Discussions, in addition to asking and answering questions,
members can share updates, have open-ended conversations,
and follow along on via public announcements.
## GitHub Issue
Issues on existing or absent docs can be filed as
[GitHub Issues](https://github.com/RadeonOpenCompute/ROCm/issues).
## Email
Send other feedback or questions to [rocm-feedback@amd.com](rocm-feedback@amd.com)

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 183 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 407 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 465 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 207 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 461 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 461 KiB

View File

Before

Width:  |  Height:  |  Size: 3.5 KiB

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 412 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

View File

@@ -0,0 +1 @@

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 228 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 796 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 309 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 789 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 801 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 323 KiB

View File

@@ -21,7 +21,7 @@ Instructions for upgrading an existing ROCm installation.
:link: uninstall
:link-type: doc
Steps for removing ROCm packages, libraries and tools.
Steps for removing ROCm packages libraries and tools.
:::
::::

View File

@@ -3,13 +3,6 @@
Prior to beginning, please ensure you have the [prerequisites](../prerequisites)
installed.
```{warning}
ROCm currently doesn't support integrated graphics. Should your system have an
AMD IGP installed, disable it in the BIOS prior to using ROCm. If the driver can
enumerate the IGP, the ROCm runtime may crash the system, even if told to omit
it via {ref}`hip_visible_devices`.
```
## Download the Installer Script
To download and install the `amdgpu-install` script on the system, use the
@@ -25,8 +18,8 @@ following commands based on your distribution.
```shell
sudo apt update
wget https://repo.radeon.com/amdgpu-install/5.7/ubuntu/focal/amdgpu-install_5.7.50700-1_all.deb
sudo apt install ./amdgpu-install_5.7.50700-1_all.deb
wget https://repo.radeon.com/amdgpu-install/5.4.1/ubuntu/focal/amdgpu-install_5.4.50401-1_all.deb
sudo apt install ./amdgpu-install_5.4.50401-1_all.deb
```
:::
@@ -35,8 +28,8 @@ sudo apt install ./amdgpu-install_5.7.50700-1_all.deb
```shell
sudo apt update
wget https://repo.radeon.com/amdgpu-install/5.7/ubuntu/jammy/amdgpu-install_5.7.50700-1_all.deb
sudo apt install ./amdgpu-install_5.7.50700-1_all.deb
wget https://repo.radeon.com/amdgpu-install/5.4.1/ubuntu/jammy/amdgpu-install_5.4.50401-1_all.deb
sudo apt install ./amdgpu-install_5.4.50401-1_all.deb
```
:::
@@ -46,21 +39,21 @@ sudo apt install ./amdgpu-install_5.7.50700-1_all.deb
:sync: RHEL
::::{tab-set}
:::{tab-item} RHEL 8.6
:sync: RHEL-8.6
:sync: RHEL-8
```shell
sudo yum install https://repo.radeon.com/amdgpu-install/5.4.1/rhel/8.6/amdgpu-install-5.4.50401-1.el8.noarch.rpm
```
:::
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:sync: RHEL-8
```shell
sudo yum install https://repo.radeon.com/amdgpu-install/5.7/rhel/8.7/amdgpu-install-5.7.50700-1.el8.noarch.rpm
```
:::
:::{tab-item} RHEL 8.8
:sync: RHEL-8.8
:sync: RHEL-8
```shell
sudo yum install https://repo.radeon.com/amdgpu-install/5.7/rhel/8.8/amdgpu-install-5.7.50700-1.el8.noarch.rpm
sudo yum install https://repo.radeon.com/amdgpu-install/5.4.1/rhel/8.7/amdgpu-install-5.4.50401-1.el8.noarch.rpm
```
:::
@@ -69,38 +62,21 @@ sudo yum install https://repo.radeon.com/amdgpu-install/5.7/rhel/8.8/amdgpu-inst
:sync: RHEL-9
```shell
sudo yum install https://repo.radeon.com/amdgpu-install/5.7/rhel/9.1/amdgpu-install-5.7.50700-1.el9.noarch.rpm
```
:::
:::{tab-item} RHEL 9.2
:sync: RHEL-9.2
:sync: RHEL-9
```shell
sudo yum install https://repo.radeon.com/amdgpu-install/5.7/rhel/9.2/amdgpu-install-5.7.50700-1.el9.noarch.rpm
sudo yum install https://repo.radeon.com/amdgpu-install/5.4.1/rhel/9.1/amdgpu-install-5.4.50401-1.el9.noarch.rpm
```
:::
::::
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
::::{tab-set}
:::{tab-item} SLES 15.4
:sync: SLES-15.4
:::{tab-item} Service Pack 4
:sync: SLES15-SP4
```shell
sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/5.7/sle/15.4/amdgpu-install-5.7.50700-1.noarch.rpm
```
:::
:::{tab-item} SLES 15.5
:sync: SLES-15.5
```shell
sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/5.7/sle/15.5/amdgpu-install-5.7.50700-1.noarch.rpm
sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/5.4.1/sle/15.4/amdgpu-install-5.4.50401-1.noarch.rpm
```
:::
@@ -169,18 +145,6 @@ To install use cases specific to your requirements, use the installer
sudo amdgpu-install --usecase=hiplibsdk,rocm
```
- For graphical workloads using the open-source driver add `graphics`. For example:
```shell
sudo amdgpu-install --usecase=graphics,rocm
```
- For graphical workloads using the proprietary driver add `graphics`. For example:
```shell
sudo amdgpu-install --usecase=workstation,rocm
```
## Single-version ROCm Installation
By default (without the `--rocmrelease` option)
@@ -191,9 +155,9 @@ the installer script will install packages in the single-version layout.
For the multi-version ROCm installation you must use the installer script from
the latest release of ROCm that you wish to install.
**Example:** If you want to install ROCm releases 5.5.3, 5.6.1 and 5.7
**Example:** If you want to install ROCm releases 5.3.3 and 5.4.1
simultaneously, you are required to download the installer from the latest ROCm
release 5.7.
release v5.4.1.
### Add Required Repositories
@@ -212,7 +176,7 @@ Run the following commands based on your distribution to add the repositories:
:sync: ubuntu-20.04
```shell
for ver in 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4; do
echo "deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/rocm/apt/$ver focal main" | sudo tee /etc/apt/sources.list.d/rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
@@ -224,7 +188,7 @@ sudo apt update
:sync: ubuntu-22.04
```shell
for ver in 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4; do
echo "deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/rocm/apt/$ver jammy main" | sudo tee /etc/apt/sources.list.d/rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
@@ -242,7 +206,7 @@ sudo apt update
:sync: RHEL-8
```shell
for ver in 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
@@ -261,7 +225,7 @@ sudo yum clean all
:sync: RHEL-9
```shell
for ver in 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
@@ -278,14 +242,14 @@ sudo yum clean all
:::
::::
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
```shell
for ver in 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4; do
sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$ver/main
baseurl=https://repo.radeon.com/rocm/$ver/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -308,13 +272,12 @@ sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-3>
```
Following are examples of ROCm multi-version installation. The kernel-mode
driver, associated with the ROCm release 5.7, will be installed as its latest
driver, associated with the ROCm release v5.4.1, will be installed as its latest
release in the list.
```none
sudo amdgpu-install --usecase=rocm --rocmrelease=5.7
sudo amdgpu-install --usecase=rocm --rocmrelease=5.6.1
sudo amdgpu-install --usecase=rocm --rocmrelease=5.5.3
sudo amdgpu-install --usecase=rocm --rocmrelease=5.3.3
sudo amdgpu-install --usecase=rocm --rocmrelease=5.4.1
```
## Additional options

View File

@@ -1,12 +1,5 @@
# Installation (Linux)
```{warning}
ROCm currently doesn't support integrated graphics. Should your system have an
AMD IGP installed, disable it in the BIOS prior to using ROCm. If the driver can
enumerate the IGP, the ROCm runtime may crash the system, even if told to omit
it via {ref}`hip_visible_devices`.
```
## Understanding the Release-specific AMDGPU and ROCm Repositories on Linux Distributions
The release-specific repositories consist of packages from a specific release of
@@ -59,11 +52,8 @@ To add the AMDGPU repository, follow these steps:
:sync: ubuntu-20.04
```shell
# version
ver=5.7
# amdgpu repository for focal
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$ver/ubuntu focal main" \
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu focal main' \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update
```
@@ -73,15 +63,10 @@ sudo apt update
:sync: ubuntu-22.04
```shell
# version
ver=5.7
# amdgpu repository for jammy
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$ver/ubuntu jammy main" \
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu jammy main' \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update
# Prefer packages from the rocm repository over system packages
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
```
:::
@@ -106,7 +91,7 @@ To add the ROCm repository, use the following steps:
```shell
# ROCm repositories for focal
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4.1; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$ver focal main" \
| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
@@ -121,7 +106,7 @@ sudo apt update
```shell
# ROCm repositories for jammy
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4.1; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$ver jammy main" \
| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
@@ -151,7 +136,7 @@ For a comprehensive list of meta-packages, refer to
- Sample Multi-version installation
```shell
sudo apt install rocm-hip-sdk5.7 rocm-hip-sdk5.6.1 rocm-hip-sdk5.5.3
sudo apt install rocm-hip-sdk5.4.1 rocm-hip-sdk5.3.3
```
:::::
@@ -167,18 +152,15 @@ section.
```
::::{tab-set}
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:::{tab-item} RHEL 8.6
:sync: RHEL-8.6
:sync: RHEL-8
```shell
# version
ver=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/8.7/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.6/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -189,18 +171,15 @@ sudo yum clean all
:::
:::{tab-item} RHEL 8.8
:sync: RHEL-8.8
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:sync: RHEL-8
```shell
# version
ver=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/8.8/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.7/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -216,35 +195,10 @@ sudo yum clean all
:sync: RHEL-9
```shell
# version
ver=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/9.1/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all
```
:::
:::{tab-item} RHEL 9.2
:sync: RHEL-9.2
:sync: RHEL-9
```shell
# version
ver=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/9.2/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/9.1/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -274,7 +228,7 @@ To add the ROCm repository, use the following steps, based on your distribution:
:sync: RHEL-8
```shell
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4.1; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
@@ -293,7 +247,7 @@ sudo yum clean all
:sync: RHEL-9
```shell
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4.1; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
@@ -328,12 +282,12 @@ For a comprehensive list of meta-packages, refer to
- Sample Multi-version installation
```shell
sudo yum install rocm-hip-sdk5.7 rocm-hip-sdk5.6.1
sudo yum install rocm-hip-sdk5.4.1 rocm-hip-sdk5.3.3
```
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
::::{rubric} 1. Add the AMDGPU Repository and Install the Kernel-mode Driver
::::
@@ -343,19 +297,11 @@ If you have a version of the kernel-mode driver installed, you may skip this
section.
```
::::{tab-set}
:::{tab-item} SLES 15.4
:sync: SLES-15.4
```shell
# version
ver=5.7
sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/sle/15.4/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -363,28 +309,6 @@ EOF
sudo zypper ref
```
:::
:::{tab-item} SLES 15.5
:sync: SLES-15.5
```shell
# version
ver=5.7
sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/sle/15.5/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref
```
:::
::::
Install the kernel mode driver and reboot the system using the following
commands:
@@ -399,7 +323,7 @@ sudo reboot
To add the ROCm repository, use the following steps:
```shell
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7; do
for ver in 5.3.3 5.4.1; do
sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
@@ -431,7 +355,7 @@ For a comprehensive list of meta-packages, refer to
- Sample Multi-version installation
```shell
sudo zypper --gpg-auto-import-keys install rocm-hip-sdk5.7 rocm-hip-sdk5.6.1
sudo zypper --gpg-auto-import-keys install rocm-hip-sdk5.4.1 rocm-hip-sdk5.3.3
```
:::::
@@ -468,8 +392,7 @@ but are generally useful. Verification of the install is advised.
2. Add binary paths to the `PATH` environment variable.
```shell
export PATH=$PATH:/opt/rocm-5.7/bin:/opt/rocm-5.7/opencl/bin
export PATH=$PATH:/opt/rocm-5.4.1/bin:/opt/rocm-5.4.1/opencl/bin
```
```{attention}

View File

@@ -12,6 +12,8 @@ following AMD ROCm programming models:
A meta-package is a grouping of related packages and dependencies used to
support a specific use case.
**Example:** Running HIP applications
All meta-packages exist in both versioned and non-versioned forms.
- Non-versioned packages For a single-version installation of the ROCm stack

View File

@@ -114,8 +114,8 @@ sudo yum autoremove amdgpu-dkms
```
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
::::{rubric} Uninstalling Specific Meta-packages
::::

View File

@@ -25,12 +25,8 @@ repository to the new release.
:sync: ubuntu-20.04
```shell
# version
version=5.7
# amdgpu repository for focal
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$version/ubuntu focal main" \
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu focal main' \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update
```
@@ -40,12 +36,8 @@ sudo apt update
:sync: ubuntu-22.04
```shell
# version
version=5.7
# amdgpu repository for jammy
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$version/ubuntu jammy main" \
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu jammy main' \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update
```
@@ -57,19 +49,15 @@ sudo apt update
:sync: RHEL
::::{tab-set}
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:::{tab-item} RHEL 8.6
:sync: RHEL-8.6
:sync: RHEL-8
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel/8.7/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.6/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -79,19 +67,15 @@ sudo yum clean all
```
:::
:::{tab-item} RHEL 8.8
:sync: RHEL-8.8
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:sync: RHEL-8
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel/8.8/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.7/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -106,36 +90,10 @@ sudo yum clean all
:sync: RHEL-9
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel/9.1/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all
```
:::
:::{tab-item} RHEL 9.2
:sync: RHEL-9.2
:sync: RHEL-9
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel/9.2/main/x86_64/
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/9.1/main/x86_64/
enabled=1
priority=50
gpgcheck=1
@@ -147,22 +105,14 @@ sudo yum clean all
:::
::::
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
::::{tab-set}
:::{tab-item} SLES 15.4
:sync: SLES-15.4
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
```shell
# version
version=5.7
sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/sle/15.4/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -170,28 +120,6 @@ EOF
sudo zypper ref
```
:::
:::{tab-item} SLES 15.5
:sync: SLES-15.5
```shell
# version
version=5.7
sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/sle/15.5/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref
```
:::
::::
:::::
::::::
@@ -219,8 +147,8 @@ sudo reboot
```
:::
:::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
```shell
sudo zypper --gpg-auto-import-keys install amdgpu-dkms
@@ -244,11 +172,7 @@ repository to the new release.
:sync: ubuntu-20.04
```shell
# version
version=5.7
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$version focal main" \
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.4.1 focal main" \
| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
@@ -260,11 +184,7 @@ sudo apt update
:sync: ubuntu-22.04
```shell
# version
version=5.7
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$version jammy main" \
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.4.1 jammy main" \
| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
@@ -282,14 +202,10 @@ sudo apt update
:sync: RHEL-8
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$version/main
[ROCm-5.4.1]
name=ROCm5.4.1
baseurl=https://repo.radeon.com/rocm/rhel8/5.4.1/main
enabled=1
priority=50
gpgcheck=1
@@ -303,14 +219,10 @@ sudo yum clean all
:sync: RHEL-9
```shell
# version
version=5.7
sudo tee /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel9/$version/main
[ROCm-5.4.1]
name=ROCm5.4.1
baseurl=https://repo.radeon.com/rocm/rhel9/5.4.1/main
enabled=1
priority=50
gpgcheck=1
@@ -322,18 +234,15 @@ sudo yum clean all
:::
::::
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES15
```shell
# version
version=5.7
sudo tee /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
[ROCm-5.4.1]
name=ROCm5.4.1
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$version/main
baseurl=https://repo.radeon.com/rocm/zyp/5.4.1/main
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -366,8 +275,8 @@ sudo yum update rocm-hip-sdk
```
:::
:::{tab-item} Suse Linux Enterprise Server
:sync: SLES
:::{tab-item} Suse Linux Enterprise Server 15
:sync: SLES15
```shell
sudo zypper --gpg-auto-import-keys update rocm-hip-sdk

View File

@@ -91,7 +91,6 @@ sudo rpm -ivh epel-release-latest-8.noarch.rpm
:::
:::{tab-item} RHEL 9
:sync: RHEL-9
```shell
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm
@@ -111,33 +110,14 @@ sudo crb enable
```
:::::
:::::{tab-item} SUSE Linux Enterprise Server
:sync: SLES
:::::{tab-item} SUSE Linux Enterprise Server 15
Add the perl languages repository.
```{note}
Mar 25, 2024: We currently need to install the Perl module from SLES 15 SP5 as a workaround. The module was removed for SLES 15 SP4.
```
::::{tab-set}
:::{tab-item} SLES 15.4
:sync: SLES-15.4
```shell
zypper addrepo https://download.opensuse.org/repositories/devel:/languages:/perl/15.5/devel:languages:perl.repo
zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15_SP4/devel:languages:perl.repo
```
:::
:::{tab-item} SLES 15.5
:sync: SLES-15.5
```shell
zypper addrepo https://download.opensuse.org/repositories/devel:/languages:/perl/15.5/devel:languages:perl.repo
```
:::
::::
:::::
::::::

View File

@@ -29,11 +29,11 @@ wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \
```shell
# Kernel driver repository for focal
sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.7/ubuntu focal main
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu focal main
EOF
# ROCm repository for focal
sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.7 focal main
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.4.1 focal main
EOF
```
@@ -44,14 +44,13 @@ EOF
```shell
# Kernel driver repository for jammy
sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.7/ubuntu jammy main
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.4.1/ubuntu jammy main
EOF
# ROCm repository for jammy
sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.7 jammy main
EOF
# Prefer packages from the rocm repository over system packages
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/5.4.1 jammy main
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
EOF
```
:::
@@ -73,15 +72,15 @@ sudo apt update
::::
::::{tab-set}
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
:::{tab-item} RHEL 8.6
:sync: RHEL-8.6
```shell
# Add the amdgpu module repository for RHEL 8.7
# Add the amdgpu module repository for RHEL 8.6
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/rhel/8.7/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.6/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -90,7 +89,7 @@ EOF
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/5.7/main
baseurl=https://repo.radeon.com/rocm/rhel8/5.4.1/main
enabled=1
priority=50
gpgcheck=1
@@ -100,15 +99,15 @@ EOF
:::
:::{tab-item} RHEL 8.8
:sync: RHEL-8.8
:::{tab-item} RHEL 8.7
:sync: RHEL-8.7
```shell
# Add the amdgpu module repository for RHEL 8.8
# Add the amdgpu module repository for RHEL 8.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/rhel/8.8/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/8.7/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -117,7 +116,7 @@ EOF
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/5.7/main
baseurl=https://repo.radeon.com/rocm/rhel8/5.4.1/main
enabled=1
priority=50
gpgcheck=1
@@ -135,7 +134,7 @@ EOF
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/rhel/9.1/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/rhel/9.1/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
@@ -144,34 +143,7 @@ EOF
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel9/5.7/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
```
:::
:::{tab-item} RHEL 9.2
:sync: RHEL-9.2
```shell
# Add the amdgpu module repository for RHEL 9.2
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/rhel/9.2/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
# Add the rocm repository for RHEL 9
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel9/5.7/main
baseurl=https://repo.radeon.com/rocm/rhel9/5.4.1/main
enabled=1
priority=50
gpgcheck=1
@@ -198,8 +170,8 @@ sudo yum clean all
::::
::::{tab-set}
:::{tab-item} SLES 15.4
:sync: SLES-15.4
:::{tab-item} SLES 15 SP4
:sync: SLES15-SP4
```shell
@@ -207,34 +179,7 @@ sudo yum clean all
sudo tee /etc/zypp/repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
# Add the rocm repository for SLES
sudo tee /etc/zypp/repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/zypper
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
```
:::
:::{tab-item} SLES 15.5
:sync: SLES-15.5
```shell
# Add the amdgpu module repository for SLES 15.5
sudo tee /etc/zypp/repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7/sle/15.5/main/x86_64
baseurl=https://repo.radeon.com/amdgpu/5.4.1/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

View File

@@ -1,31 +0,0 @@
# Command Line Installation
::::{grid} 2 3 3 3
:gutter: 1
:::{grid-item-card} Install
:link: install
:link-type: doc
How to install ROCm?
:::
:::{grid-item-card} Upgrade
:link: upgrade
:link-type: doc
Instructions for upgrading an existing ROCm installation.
:::
:::{grid-item-card} Uninstall
:link: uninstall
:link-type: doc
Steps for removing ROCm packages and libraries.
:::
::::
## See Also
- {doc}`/release/gpu_os_support`

View File

@@ -1,56 +0,0 @@
# Installation Using the Command Line Interface
The steps to install the HIP SDK for Windows are described in this document.
## System Requirements
The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a
system without AMD GPUs to use the build toolchains. To run HIP applications, a
compatible GPU is required. Please see the supported GPU guide for more details.
## HIP SDK Installation
The command line installer is the same executable which is used by the graphical
front-end. Download the installer from the
[HIP-SDK download page](https://www.amd.com/en/developer/rocm-hub/hip-sdk.html).
The options supported by the command line interface are summarized in
{numref}`hip-sdk-cli-options`.
```{table} HIP SDK Command Line Options
:name: hip-sdk-cli-options
| **Install Option** | **Description** |
|:------------------:|:---------------:|
| `-install` | Command used to install packages, both driver and applications. No output to the screen. |
| `-install -boot` | Silent install with auto reboot. |
| `-install -log <absolute path>` | Write install result code to the specified log file. The specified log file must be on a local machine. Double quotes are needed if there are spaces in the log file path. |
| `-uninstall` | Command to uninstall all packages installed by this installer on the system. There is no option to specify which packages to uninstall. |
| `-uninstall -boot` | Silent uninstall with auto reboot. |
| `/?` or /help | Shows a brief description of all switch commands. |
```
```{note}
Unlike the graphical installer, the command line interface doesn't support
selectively installing parts of the SDK bundle. It's all or nothing.
```
### Launching the Installer From the Command Line
The installer is still a graphical application with a `WinMain` entry point, even
when called on the command line. This means that the application lifetime is
tied to a window, even on headless systems where that window may not be visible.
To launch the installer from PowerShell that will block until the installer
exits, one may use the following pattern:
```pwsh
Start-Process $InstallerExecutable -ArgumentList $InstallerArgs -NoNewWindow -Wait
```
```{important}
Running the installer requires Administrator Privileges.
```
For example, installing all components and
```pwsh
Start-Process ~\Downloads\Setup.exe -ArgumentList '-install','-log',"${env:USERPROFILE}\installer_log.txt" -NoNewWindow -Wait
```

View File

@@ -1,48 +0,0 @@
# Uninstallation Using the Command Line Interface
The steps to uninstall the HIP SDK for Windows are described in this document.
## HIP SDK Uninstallation
The command line installer is the same executable which is used by the graphical
front-end. The options supported by the command line interface are summarized in
{numref}`hip-sdk-cli-options`.
```{table} HIP SDK Command Line Options
:name: hip-sdk-cli-options
| **Install Option** | **Description** |
|:------------------:|:---------------:|
| `-install` | Command used to install packages, both driver and applications. No output to the screen. |
| `-install -boot` | Silent install with auto reboot. |
| `-install -log <absolute path>` | Write install result code to the specified log file. The specified log file must be on a local machine. Double quotes are needed if there are spaces in the log file path. |
| `-uninstall` | Command to uninstall all packages installed by this installer on the system. There is no option to specify which packages to uninstall. |
| `-uninstall -boot` | Silent uninstall with auto reboot. |
| `/?` or /help | Shows a brief description of all switch commands. |
```
```{note}
Unlike the graphical installer, the command line interface doesn't support
selectively installing parts of the SDK bundle. It's all or nothing.
```
### Launching the Installer From the Command Line
The installer is still a graphical application with a `WinMain` entry point, even
when called on the command line. This means that the application lifetime is
tied to a window, even on headless systems where that window may not be visible.
To launch the installer from PowerShell that will block until the installer
exits, one may use the following pattern:
```pwsh
Start-Process $InstallerExecutable -ArgumentList $InstallerArgs -NoNewWindow -Wait
```
```{important}
Running the installer requires Administrator Privileges.
```
For example, uninstalling all components and
```pwsh
Start-Process ~\Downloads\Setup.exe -ArgumentList '-uninstall' -NoNewWindow -Wait
```

View File

@@ -1,14 +0,0 @@
# Upgrading Using the Graphical Interface
The steps to uninstall the HIP SDK for Windows are described in this document.
## HIP SDK Upgrade
To upgrade an existing installation of the HIP SDK without preserving the
previous version, first uninstall it, then install the new version following the
instructions in {doc}`/deploy/windows/cli/uninstall` and
{doc}`/deploy/windows/cli/install` using the old and new installers
respectively.
To upgrade by installing both versions side-by-side, just run the installer of
the newer version.

View File

@@ -1,31 +0,0 @@
# Graphical Installation
::::{grid} 2 3 3 3
:gutter: 1
:::{grid-item-card} Install
:link: install
:link-type: doc
How to install ROCm?
:::
:::{grid-item-card} Upgrade
:link: upgrade
:link-type: doc
Instructions for upgrading an existing ROCm installation.
:::
:::{grid-item-card} Uninstall
:link: uninstall
:link-type: doc
Steps for removing ROCm packages and libraries.
:::
::::
## See Also
- {doc}`/release/gpu_os_support`

View File

@@ -1,163 +0,0 @@
# Installation Using the Graphical Interface
The steps to install the HIP SDK for Windows are described in this document.
## System Requirements
The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a
system without AMD GPUs to use the build toolchains. To run HIP applications, a
compatible GPU is required. Please see the supported GPU guide for more details.
## HIP SDK Installation
### Download the installer
Download the installer from the
[HIP-SDK download page](https://www.amd.com/en/developer/rocm-hub/hip-sdk.html).
### Launching the installer
To launch the AMD HIP SDK Installer, click the **Setup** icon shown in
{numref}`setup-icon`.
```{figure} /data/deploy/windows/000-setup-icon.png
:name: setup-icon
:alt: Icon with AMD arrow logo and User Access Control Shield overlayed.
Setup Icon
```
The installer requires Administrator Privileges, so you may be greeted with a
User Access Control (UAC) pop-up. Click Yes.
```{figure} /data/deploy/windows/001-uac-dark.png
:name: uac-dark
:class: only-dark
:alt: User Access Control pop-up
User Access Control pop-up
```
```{figure} /data/deploy/windows/001-uac-light.png
:name: uac-light
:class: only-light
:alt: User Access Control pop-up
User Access Control pop-up
```
The installer executable will temporarily extract installer packages to `C:\AMD`
which it will remove after installation completes. This extraction is signified
by the "Initializing install" window in {numref}`init-install`.
```{figure} /data/deploy/windows/002-initializing.png
:name: init-install
:alt: Window with AMD arrow logo, futuristic background and progress counter.
Installer initialization window
```
The installer will then detect your system configuration as per
{numref}`detecting-system-components` to decide, which installable components
are applicable to your system.
```{figure} /data/deploy/windows/003-detecting-system-config.png
:name: detecting-system-components
:alt: Window with AMD arrow logo, futuristic background and activity indicator.
Installer initialization window.
```
### Customizing the install
When the installer launches, it displays a window that lets the user customize
the installation. By default, all components are selected for installation.
Refer to {numref}`installer-window` for an instance when the Select All option
is turned on.
```{figure} /data/deploy/windows/004-installer-window.png
:name: installer-window
:alt: Window with AMD arrow logo, futuristic background and activity indicator.
Installer initialization window.
```
#### HIP SDK Installer
The HIP SDK installation options are listed in {numref}`hip-sdk-options`.
```{table} HIP SDK Components for Installation
:name: hip-sdk-options
| **HIP Components** | **Install Type** | **Additional Options** |
|:------------------:|:----------------:|:----------------------:|
| HIP SDK Core | 5.5.0 | Install location |
| HIP Libraries | Full, Partial, None | Runtime, Development (Libs and headers) |
| HIP Runtime Compiler | Full, Partial, None | Runtime, Development (Headers) |
| HIP Ray Tracing | Full, Partial, None | Runtime, Development (Headers) |
| Visual Studio Plugin | Full, Partial, None | Visual Studio 2017, 2019, 2022 Plugin |
```
```{note}
The Select/DeSelect All option only applies to the installation of HIP SDK
components. To install the bundled AMD Display Driver, manually select the
install type.
```
```{tip}
Should you only wish to install a few select components,
DeSelecting All and then picking the individual components may be more
convenient.
```
#### AMD Display Driver
The HIP SDK installer bundles an AMD Radeon Software PRO 23.10 installer. The
supported install options are summarized by
{numref}`display-driver-install-options`:
```{table} AMD Display Driver Install Options
:name: display-driver-install-options
| **Install Option** | **Description** |
|:------------------:|:---------------:|
| Install Location | Location on disk to store driver files. |
| Install Type | The breadth of components to be installed. Refer to {numref}`display-driver-install-types` for details. |
| Factory Reset (Optional) | A Factory Reset will remove all prior versions of AMD HIP SDK and drivers. You will not be able to roll back to previously installed drivers. |
```
```{table} AMD Display Driver Install Types
:name: display-driver-install-types
| **Install Type** | **Description** |
|:----------------:|:---------------:|
| Full Install | Provides all AMD Software features and controls for gaming, recording, streaming, and tweaking the performance on your graphics hardware. |
| Minimal Install | Provides only the basic controls for AMD Software features and does not include advanced features such as performance tweaking or recording and capturing content. |
| Driver Only | Provides no user interface for AMD Software features. |
```
```{note}
You must perform a system restart for a complete installation of the
Display Driver.
```
### Installing Components
Please wait for the installation to complete during as shown in
{numref}`install-progress`.
```{figure} /data/deploy/windows/012-install-progress.png
:name: install-progress
:alt: Window with AMD arrow logo, futuristic background and progress meter.
Installation Progress
```
### Installation Complete
Once the installation is complete, the installer window may prompt you for a
system restart. Click **Restart** at the lower right corner, shown in
{numref}`install-complete`
```{figure} /data/deploy/windows/013-install-complete.png
:name: install-complete
:alt: Window with AMD arrow logo, futuristic background and completion notice.
Installation Complete
```
```{error}
Should the installer terminate due to unexpcted circumstances, or the user
forcibly terminates the installer, the temporary directory created under
`C:\AMD` may be safely removed. Installed components will not depend on this
folder (unless the user specifies `C:\AMD` as an install folder explicitly).
```

View File

@@ -1,27 +0,0 @@
# Uninstallation Using the Graphical Interface
The steps to uninstall the HIP SDK for Windows are described in this document.
## Uninstallation
All components, except visual studio plug-in should be uninstalled through
control panel -> Add/Remove Program. For visual studio extension uninstallation,
please refer to
<https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md>.
Uninstallation of the HIP SDK components can be done through the Windows
Settings app. Navigate to "Apps > Installed apps", click the "..." on the far
right next to the component to uninstall, and click "Uninstall".
```{figure} /data/deploy/windows/014-uninstall-dark.png
:name: uninstall-dark
:class: only-dark
:alt: Installed apps section of the Setting app showing installed HIP SDK components.
Removing the SDK via the Setting app
```
```{figure} /data/deploy/windows/014-uninstall-light.png
:name: uninstall-light
:class: only-light
:alt: Installed apps section of the Setting app showing installed HIP SDK components.
Removing the SDK via the Setting app
```

View File

@@ -1,4 +0,0 @@
# Upgrading Using the Graphical Interface
The steps to upgrade an existing HIP SDK installation for Windows are described
in this document.

View File

@@ -1,65 +0,0 @@
# Install ROCm (HIP SDK) on Windows
Start with {doc}`/deploy/windows/quick_start` or follow the detailed
instructions below.
## Prepare to Install
::::{grid} 1 1 2 2
:gutter: 1
:::{grid-item-card} Prerequisites
:link: prerequisites
:link-type: doc
The prerequisites page lists the required steps to verify that the system
supports ROCm.
:::
::::
## Choose your install method
::::{grid} 1 1 2 2
:gutter: 1
:::{grid-item-card} Graphical Installation
:link: gui/index
:link-type: doc
Use the graphical front-end of the installer.
:::
:::{grid-item-card} Command Line Installation
:link: cli/index
:link-type: doc
Use the command line front-end of the installer.
:::
::::
## Post Installation
::::{grid} 1 1 2 2
:gutter: 1
:::{grid-item-card} ROCm-Examples
:link: https://github.com/amd/rocm-examples
:link-type: url
Learn how to use ROCm with descriptive examples for novice to intermediate users.
:::
:::{grid-item-card} Windows App Deployment Guidelines
:link: ../../understand/windows-app-deployment-guidelines
:link-type: doc
Discusses strategies on how to bundle HIP libraries with an end user application.
:::
::::
## See Also
- {doc}`/release/gpu_os_support`

View File

@@ -1,74 +0,0 @@
# Installation Prerequisites (Windows)
You must perform the following steps before installing ROCm and check if the
system meets all the requirements to proceed with the installation.
## Confirm the System Is Supported
The ROCm installation is supported only on specific host architectures, Windows
Editions and update versions.
### Check the Windows Editions and Update Version on Your System
This section discusses obtaining information about the host architecture,
Windows Edition and update version.
#### Command Line Check
Verify the Windows Edition using the following steps:
1. To obtain the Linux distribution information, type the following command on
your system from a PowerShell Command Line Interface (CLI):
```pwsh
Get-ComputerInfo | Format-Table CsSystemType,OSName,OSDisplayVersion
```
2. Confirm that the obtained information matches with those listed in
{ref}`supported_skus`.
**Example:** Running the command above on a Windows system may result in the
following output:
```output
CsSystemType OsName OSDisplayVersion
------------ ------ ----------------
x64-based PC Microsoft Windows 11 Pro 22H2
```
#### Graphical Check
1. Open the Setting app.
```{figure} /data/deploy/windows/000-settings-dark.png
:name: settings-dark
:class: only-dark
:alt: Gear icon of the Windows Settings app
Windows Settings app icon
```
```{figure} /data/deploy/windows/000-settings-light.png
:name: settings-light
:class: only-light
:alt: Gear icon of the Windows Settings app
Windows Settings app icon
```
2. Navigate to **System > About**.
```{figure} /data/deploy/windows/001-about-dark.png
:name: about-dark
:class: only-dark
:alt: Settings app panel showing Device and OS information
Settings > About page
```
```{figure} /data/deploy/windows/001-about-light.png
:name: about-light
:class: only-light
:alt: Settings app panel showing Device and OS information
Settings > About page
```
3. Confirm that the obtained information matches with those listed in
{ref}`supported_skus`.

View File

@@ -1,187 +0,0 @@
# Quick Start (Windows)
The steps to install the HIP SDK for Windows are described in this document.
## System Requirements
The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a
system without AMD GPUs to use the build toolchains. To run HIP applications, a
compatible GPU is required. Please see the supported GPU guide for more details.
## HIP SDK Installation
### Download the installer
Download the installer from the
[HIP-SDK download page](https://www.amd.com/en/developer/rocm-hub/hip-sdk.html).
### Launching the installer
To launch the AMD HIP SDK Installer, click the **Setup** icon shown in
{numref}`setup-icon`.
```{figure} /data/deploy/windows/000-setup-icon.png
:name: setup-icon
:alt: Icon with AMD arrow logo and User Access Control Shield overlayed.
Setup Icon
```
The installer requires Administrator Privileges, so you may be greeted with a
User Access Control (UAC) pop-up. Click Yes.
```{figure} /data/deploy/windows/001-uac-dark.png
:name: uac-dark
:class: only-dark
:alt: User Access Control pop-up
User Access Control pop-up
```
```{figure} /data/deploy/windows/001-uac-light.png
:name: uac-light
:class: only-light
:alt: User Access Control pop-up
User Access Control pop-up
```
The installer executable will temporarily extract installer packages to `C:\AMD`
which it will remove after installation completes. This extraction is signified
by the "Initializing install" window in {numref}`init-install`.
```{figure} /data/deploy/windows/002-initializing.png
:name: init-install
:alt: Window with AMD arrow logo, futuristic background and progress counter.
Installer initialization window
```
The installer will then detect your system configuration as per
{numref}`detecting-system-components` to decide, which installable components
are applicable to your system.
```{figure} /data/deploy/windows/003-detecting-system-config.png
:name: detecting-system-components
:alt: Window with AMD arrow logo, futuristic background and activity indicator.
Installer initialization window.
```
### Customizing the install
When the installer launches, it displays a window that lets the user customize
the installation. By default, all components are selected for installation.
Refer to {numref}`installer-window` for an instance when the Select All option
is turned on.
```{figure} /data/deploy/windows/004-installer-window.png
:name: installer-window
:alt: Window with AMD arrow logo, futuristic background and activity indicator.
Installer initialization window.
```
#### HIP SDK Installer
The HIP SDK installation options are listed in {numref}`hip-sdk-options`.
```{table} HIP SDK Components for Installation
:name: hip-sdk-options
| **HIP Components** | **Install Type** | **Additional Options** |
|:------------------:|:----------------:|:----------------------:|
| HIP SDK Core | 5.5.0 | Install location |
| HIP Libraries | Full, Partial, None | Runtime, Development (Libs and headers) |
| HIP Runtime Compiler | Full, Partial, None | Runtime, Development (Headers) |
| HIP Ray Tracing | Full, Partial, None | Runtime, Development (Headers) |
| Visual Studio Plugin | Full, Partial, None | Visual Studio 2017, 2019, 2022 Plugin |
```
```{note}
The Select/DeSelect All option only applies to the installation of HIP SDK
components. To install the bundled AMD Display Driver, manually select the
install type.
```
```{tip}
Should you only wish to install a few select components,
DeSelecting All and then picking the individual components may be more
convenient.
```
#### AMD Display Driver
The HIP SDK installer bundles an AMD Radeon Software PRO 23.10 installer. The
supported install options are summarized by
{numref}`display-driver-install-options`:
```{table} AMD Display Driver Install Options
:name: display-driver-install-options
| **Install Option** | **Description** |
|:------------------:|:---------------:|
| Install Location | Location on disk to store driver files. |
| Install Type | The breadth of components to be installed. Refer to {numref}`display-driver-install-types` for details. |
| Factory Reset (Optional) | A Factory Reset will remove all prior versions of AMD HIP SDK and drivers. You will not be able to roll back to previously installed drivers. |
```
```{table} AMD Display Driver Install Types
:name: display-driver-install-types
| **Install Type** | **Description** |
|:----------------:|:---------------:|
| Full Install | Provides all AMD Software features and controls for gaming, recording, streaming, and tweaking the performance on your graphics hardware. |
| Minimal Install | Provides only the basic controls for AMD Software features and does not include advanced features such as performance tweaking or recording and capturing content. |
| Driver Only | Provides no user interface for AMD Software features. |
```
```{note}
You must perform a system restart for a complete installation of the
Display Driver.
```
### Installing Components
Please wait for the installation to complete during as shown in
{numref}`install-progress`.
```{figure} /data/deploy/windows/012-install-progress.png
:name: install-progress
:alt: Window with AMD arrow logo, futuristic background and progress meter.
Installation Progress
```
### Installation Complete
Once the installation is complete, the installer window may prompt you for a
system restart. Click **Restart** at the lower right corner, shown in
{numref}`install-complete`
```{figure} /data/deploy/windows/013-install-complete.png
:name: install-complete
:alt: Window with AMD arrow logo, futuristic background and completion notice.
Installation Complete
```
```{error}
Should the installer terminate due to unexpcted circumstances, or the user
forcibly terminates the installer, the temporary directory created under
`C:\AMD` may be safely removed. Installed components will not depend on this
folder (unless the user specifies `C:\AMD` as an install folder explicitly).
```
## Uninstallation
All components, except visual studio plug-in should be uninstalled through
control panel -> Add/Remove Program. For visual studio extension uninstallation,
please refer to
<https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md>.
Uninstallation of the HIP SDK components can be done through the Windows
Settings app. Navigate to "Apps > Installed apps", click the "..." on the far
right next to the component to uninstall, and click "Uninstall".
```{figure} /data/deploy/windows/014-uninstall-dark.png
:name: uninstall-dark
:class: only-dark
:alt: Installed apps section of the Setting app showing installed HIP SDK components.
Removing the SDK via the Setting app
```
```{figure} /data/deploy/windows/014-uninstall-light.png
:name: uninstall-light
:class: only-light
:alt: Installed apps section of the Setting app showing installed HIP SDK components.
Removing the SDK via the Setting app
```

View File

@@ -24,7 +24,7 @@ MIGraphX is a graph compiler focused on accelerating the Machine Learning infere
After doing all these transformations, MIGraphX emits code for the AMD GPU by calling to MIOpen or rocBLAS or creating HIP kernels for a particular operator. MIGraphX can also target CPUs using DNNL or ZenDNN libraries.
MIGraphX provides easy-to-use APIs in C++ and Python to import machine models in ONNX or TensorFlow. Users can compile, save, load, and run these models using the MIGraphX C++ and Python APIs. Internally, MIGraphX parses ONNX or TensorFlow models into internal graph representation where each operator in the model gets mapped to an operator within MIGraphX. Each of these operators defines various attributes such as:
MIGraphX provides easy-to-use APIs in C++ and Python to import machine models in ONNX or TensorFlow. Users can compile, save, load, and run these models using MIGraphX's C++ and Python APIs. Internally, MIGraphX parses ONNX or TensorFlow models into internal graph representation where each operator in the model gets mapped to an operator within MIGraphX. Each of these operators defines various attributes such as:
- Number of arguments
@@ -187,7 +187,7 @@ Follow these steps:
}
```
2. To compile this program, you can use CMake and you only need to link the `migraphx::c` library to use the MIGraphX C++ API. The following is the `CMakeLists.txt` file that can build the earlier example:
2. To compile this program, you can use CMake and you only need to link the `migraphx::c` library to use MIGraphX's C++ API. The following is the `CMakeLists.txt` file that can build the earlier example:
```cmake
cmake_minimum_required(VERSION 3.5)
@@ -327,7 +327,7 @@ To run generated `.mxr` files through `migraphx-driver`, use the following:
./path/to/migraphx-driver run --migraphx resnet50.mxr --enable-offload-copy
```
Alternatively, you can use the MIGraphX C++ or Python API to generate `.mxr` file. Refer to {numref}`image018` for an example.
Alternatively, you can use MIGraphX's C++ or Python API to generate `.mxr` file. Refer to {numref}`image018` for an example.
```{figure} ../../data/understand/deep_learning/image.018.png
:name: image018

View File

@@ -22,7 +22,7 @@ MPI project is an open source implementation of the Message Passing Interface
and industry partners.
Several MPI implementations can be made ROCm-aware by compiling them with
[Unified Communication Framework](https://www.openucx.org/) (UCX) support. One
[Unified Communication Framework](http://www.openucx.org/) (UCX) support. One
notable exception is MVAPICH2: It directly supports AMD GPUs without using UCX,
and you can download it [here](http://mvapich.cse.ohio-state.edu/downloads/).
Use the latest version of the MVAPICH2-GDR package.
@@ -32,7 +32,7 @@ whose goal is to provide a common set of communication interfaces that targets a
broad set of network programming models and interfaces. UCX is ROCm-aware, and
ROCm technologies are used directly to implement various network operation
primitives. For more details on the UCX design, refer to it's
[documentation](https://www.openucx.org/documentation).
[documentation](http://www.openucx.org/documentation).
## Building UCX
@@ -66,8 +66,11 @@ cd ucx
./autogen.sh
mkdir build
cd build
../configure -prefix=$UCX_DIR \
--with-rocm=/opt/rocm
../contrib/configure-release -prefix=$UCX_DIR \
--with-rocm=/opt/rocm \
--without-cuda -enable-optimizations -disable-logging \
--disable-debug -disable-assertions \
--disable-params-check -without-java
make -j $(nproc)
make -j $(nproc) install
```
@@ -90,7 +93,9 @@ cd ompi
mkdir build
cd build
../configure --prefix=$OMPI_DIR --with-ucx=$UCX_DIR \
--with-rocm=/opt/rocm
--with-rocm=/opt/rocm \
--enable-mca-no-build=btl-uct --enable-mpi1-compatibility \
CC=clang CXX=clang++ FC=flang
make -j $(nproc)
make -j $(nproc) install
```
@@ -160,12 +165,7 @@ Inter-GPU bandwidth with various payload sizes.
Collective Operations on GPU buffers are best handled through the
Unified Collective Communication Library (UCC) component in Open MPI.
For this, the UCC library has to be configured and compiled with ROCm
support.
Please note the compatibility [table](../release/3rd_party_support_matrix.md#communication-libraries)
for UCC versions with the various ROCm versions.
An example for configuring UCC and Open MPI with ROCm support
support. An example for configuring UCC and Open MPI with ROCm support
is shown below:
```shell

View File

@@ -60,7 +60,7 @@ Follow these steps:
PyTorch supports the ROCm platform by providing tested wheels packages. To
access this feature, refer to
[https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)
and choose the "ROCm" compute platform. {numref}`Installation-Matrix-from-Pytorch` is a matrix from <https://pytorch.org/> that illustrates the installation compatibility between ROCm and the PyTorch build.
and choose the "ROCm" compute platform. {numref}`Installation-Matrix-from-Pytorch` is a matrix from <http://pytorch.org/> that illustrates the installation compatibility between ROCm and the PyTorch build.
```{figure} ../../data/how_to/magma_install/image.006.png
:name: Installation-Matrix-from-Pytorch
@@ -83,7 +83,7 @@ To install PyTorch using the wheels package, follow these installation steps:
installation directions in the section
[Installation](../../deploy/linux/install.md). ROCm 5.2 is installed in
this example, as supported by the installation matrix from
<https://pytorch.org/>.
<http://pytorch.org/>.
or
@@ -299,7 +299,7 @@ USE_ROCM=1 MAX_JOBS=4 python3 setup.py install --user
### Test the PyTorch Installation
You can use PyTorch unit tests to validate a PyTorch installation. If using a
prebuilt PyTorch Docker image from AMD ROCm Docker Hub or installing an official
prebuilt PyTorch Docker image from AMD ROCm DockerHub or installing an official
wheels package, these tests are already run on those configurations.
Alternatively, you can manually run the unit tests to validate the PyTorch
installation fully.
@@ -405,22 +405,6 @@ Follow these steps:
python3 main.py
```
## Using MIOpen kdb files with ROCm PyTorch wheels
PyTorch uses MIOpen for machine learning primitives. These primitives are compiled into kernels at runtime. Runtime compilation causes a small warm-up phase when starting PyTorch. MIOpen kdb files contain precompiled kernels that can speed up the warm-up phase of an application. More information is available in the {doc}`MIOpeninstallation page <miopen:install>`.
MIOpen kdb files can be used with ROCm PyTorch wheels. However, the kdb files need to be placed in a specific location with respect to the PyTorch installation path. A helper script simplifies this task for the user. The script takes in the ROCm version and user's GPU architecture as inputs, and works for Ubuntu and CentOS.
Helper script: [install_kdb_files_for_pytorch_wheels.sh](https://raw.githubusercontent.com/wiki/ROCmSoftwarePlatform/pytorch/files/install_kdb_files_for_pytorch_wheels.sh)
Usage:
After installing ROCm PyTorch wheels:
1. [Optional] `export GFX_ARCH=gfx90a`
2. [Optional] `export ROCM_VERSION=5.5`
3. `./install_kdb_files_for_pytorch_wheels.sh`
## References
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," CoRR, p. abs/1512.00567, 2015

View File

@@ -64,4 +64,5 @@ Debug messages when developing/debugging base ROCm driver. You could enable the
## PCIe-Debug
Refer to ROCm PCIe Debug, <a href="https://rocmdocs.amd.com/en/latest/Other_Solutions/PCIe-Debug.html#pcie-debug" target="_blank">https://rocmdocs.amd.com/en/latest/Other_Solutions/PCIe-Debug.html#pcie-debug</a>.
For information on how to debug and profile HIP applications, see {doc}`hip:how_to_guides/debugging`

View File

@@ -9,19 +9,6 @@ training and inference in neural networks. It is one of the most popular and
in-demand frameworks and is very active in open source contribution and
development.
:::{warning}
ROCm 5.6 and 5.7 deviates from the standard practice of supporting the last three
TensorFlow versions. This is due to incompatibilities between earlier TensorFlow
versions and changes introduced in the ROCm 5.6 compiler. Refer to the following
version support matrix:
| ROCm | TensorFlow |
|:-----:|:----------:|
| 5.6.x | 2.12 |
| 5.7.0 | 2.12, 2.13 |
| Post-5.7.0 | Last three versions at ROCm release. |
:::
### Installing TensorFlow
The following sections contain options for installing TensorFlow.
@@ -46,8 +33,8 @@ Follow these steps:
2. Once you have pulled the image, run it by using the command below:
```bash
docker run -it --network=host --device=/dev/kfd --device=/dev/dri \
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE \
docker run -it --network=host --device=/dev/kfd --device=/dev/dri
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE
--security-opt seccomp=unconfined rocm/tensorflow:latest
```

View File

@@ -275,7 +275,7 @@ sudo yum install cpupowerutils
:::
:::{tab-item} SUSE Linux Enterprise Server
:::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES
```shell
@@ -453,7 +453,7 @@ sudo yum install rocm-bandwidth-test
:::
:::{tab-item} SUSE Linux Enterprise Server
:::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES
```shell

View File

@@ -258,7 +258,7 @@ sudo yum install cpupowerutils
:::
:::{tab-item} SUSE Linux Enterprise Server
:::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES
```shell
@@ -436,7 +436,7 @@ sudo yum install rocm-bandwidth-test
:::
:::{tab-item} SUSE Linux Enterprise Server
:::{tab-item} SUSE Linux Enterprise Server 15
:sync: SLES
```shell

View File

@@ -5,10 +5,11 @@
::::{grid-item}
:::{dropdown} [What is ROCm?](rocm)
ROCm is an open-source stack, composed primarily of open-source software (OSS), designed for
graphics processing unit (GPU) computation. ROCm consists of a collection of drivers, development
tools, and APIs that enable GPU programming from low-level kernel to end-user applications.
[more...](rocm)
ROCm is an open-source stack for GPU computation. ROCm is primarily
Open-Source Software (OSS) that allows developers the freedom to customize and
tailor their GPU software for their own needs while collaborating with a
community of other developers, and helping each other find solutions in an
agile, flexible, rapid and secure manner. [more...](rocm)
::::

View File

@@ -1,6 +0,0 @@
# License
> Note: This license applies to the [ROCm repository](https://github.com/RadeonOpenCompute/ROCm) that contains documentation primarily. For other licensing information, see the [Licensing Terms page](./release/licensing).
```{include} ../LICENSE
```

View File

@@ -7,8 +7,6 @@
AMD's library for high performance machine learning primitives.
- {doc}`Documentation <miopen:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/MIOpen)
- [Changelog](https://github.com/ROCmSoftwarePlatform/MIOpen/blob/develop/CHANGELOG.md)
:::
@@ -16,8 +14,6 @@ AMD's library for high performance machine learning primitives.
Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators
- {doc}`Documentation <composable_kernel:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/composable_kernel)
- [Changelog](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/CHANGELOG.md)
:::
@@ -25,8 +21,6 @@ Composable Kernel: Performance Portable Programming Model for Machine Learning T
AMD MIGraphX is AMD's graph inference engine that accelerates machine learning model inference.
- {doc}`Documentation <amdmigraphx:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX)
- [Changelog](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/CHANGELOG.md)
:::

View File

@@ -8,9 +8,8 @@
:::{grid-item-card} [HIP](./hip)
HIP is both AMD's GPU programming language extension and the GPU runtime.
- {doc}`HIP <hip:index>`
- [HIP Examples](https://github.com/amd/rocm-examples/tree/develop/HIP-Basic)
- {doc}`HIPIFY <hipify:index>`
- {doc}`hip:doxygen/html/index`
- [Examples](https://github.com/amd/rocm-examples/tree/develop/HIP-Basic)
:::
@@ -29,7 +28,6 @@ ROCm template libraries for C++ primitives and algorithms are as follows:
- {doc}`rocPRIM <rocprim:index>`
- {doc}`rocThrust <rocthrust:index>`
- {doc}`hipCUB <hipcub:index>`
- {doc}`hipTensor <hiptensor:index>`
:::
@@ -66,7 +64,6 @@ Computer vision related projects.
:::{grid-item-card} [Compilers and Tools](compilers)
- [ROCmCC](/reference/rocmcc/rocmcc)
- {doc}`ROCdbgapi <rocdbgapi:index>`
- {doc}`ROCgdb <rocgdb:index>`
- {doc}`ROCProfiler <rocprofiler:rocprof>`
- {doc}`ROCTracer <roctracer:index>`
@@ -75,9 +72,9 @@ Computer vision related projects.
:::{grid-item-card} [Management Tools](management_tools)
- {doc}`AMD SMI <amdsmi:index>`
- {doc}`ROCm SMI <rocm_smi_lib:index>`
- {doc}`ROCm Data Center Tool <rdc:index>`
- AMD SMI
- [ROCm SMI](https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/)
- {doc}`ROCm Datacenter Tool <rdc:index>`
:::

View File

@@ -3,46 +3,42 @@
:::::{grid} 1 1 2 2
:gutter: 1
:::{grid-item-card} {doc}`ROCdbgapi <rocdbgapi:index>`
The AMD Debugger API is a library that provides all the support necessary for a
debugger and other tools to perform low level control of the execution and
inspection of execution state of AMD's commercially available GPU architectures.
- {doc}`Documentation <rocdbgapi:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/ROCdbgapi/)
:::
:::{grid-item-card} [ROCmCC](./rocmcc/rocmcc)
:::{grid-item-card} ROCmCC
:link: /reference/rocmcc/rocmcc
:link-type: doc
ROCmCC is a Clang/LLVM-based compiler. It is optimized for high-performance
computing on AMD GPUs and CPUs and supports various heterogeneous programming
models such as HIP, OpenMP, and OpenCL.
- [Documentation](./rocmcc/rocmcc)
:::
:::{grid-item-card} {doc}`ROCgdb <rocgdb:index>`
:::{grid-item-card} ROCgdb
:link: rocgdb:index
:link-type: doc
This is ROCgdb, the ROCm source-level debugger for Linux, based on GDB, the GNU source-level debugger.
- {doc}`Documentation <rocgdb:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/ROCgdb/)
:::
:::{grid-item-card} {doc}`ROCProfiler <rocprofiler:rocprof>`
:::{grid-item-card} ROCProfiler
:link: rocprofiler:rocprof
:link-type: doc
ROC profiler library. Profiling with performance counters and derived metrics. Library supports GFX8/GFX9. Hardware specific low-level performance analysis interface for profiling of GPU compute applications. The profiling includes hardware performance counters with complex performance metrics.
- {doc}`Documentation <rocprofiler:rocprof>`
- [GitHub](https://github.com/ROCm-Developer-Tools/rocprofiler/)
:::
:::{grid-item-card} ROCTracer
:link: roctracer:index
:link-type: doc
Callback/Activity Library for Performance tracing AMD GPU's
:::
:::{grid-item-card} {doc}`ROCTracer <roctracer:index>`
Callback/Activity Library for Performance tracing AMD GPUs
- {doc}`Documentation <roctracer:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/roctracer)
:::{grid-item-card} ROCdbgapi
:link: rocdbgapi:index
:link-type: doc
The AMD Debugger API is a library that provides all the support necessary for a
debugger and other tools to perform low level control of the execution and
inspection of execution state of AMD's commercially available GPU architectures.
:::

View File

@@ -7,8 +7,6 @@
MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX also delivers a highly optimized open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions.
- {doc}`Documentation <mivisionx:README>`
- [GitHub](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/)
- [Changelog](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/CHANGELOG.md)
:::

View File

@@ -11,7 +11,6 @@ transforms, reductions, scans, etc. It also serves as a common back-end for
similar libraries found inside ROCm.
- {doc}`Documentation <rocprim:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocPRIM/)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/amd/rocm-examples/tree/develop/Libraries/rocPRIM)
@@ -23,7 +22,6 @@ interface. Their CPU back-ends are identical, while the GPU back-end calls into
rocPRIM.
- {doc}`Documentation <rocthrust:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocThrust)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/amd/rocm-examples/tree/develop/Libraries/rocThrust)
@@ -34,20 +32,9 @@ hipCUB is a template library of algorithm primitives with a CUB-compatible
interface. It's back-end is rocPRIM.
- {doc}`Documentation <hipcub:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipCUB)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/amd/rocm-examples/tree/develop/Libraries/hipCUB)
:::
:::{grid-item-card} {doc}`hipTensor <hiptensor:index>`
hipTensor is AMD's C++ library for accelerating tensor primitives
based on the composable kernel library,
through general purpose kernel languages, like HIP C++.
- {doc}`Documentation <hiptensor:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipTensor)
:::
:::::

View File

@@ -10,7 +10,6 @@ The collective operations are implemented using ring and tree algorithms and hav
throughput and latency.
- {doc}`Documentation <rccl:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rccl)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/ROCmSoftwarePlatform/rccl/tree/develop/tools)

View File

@@ -9,7 +9,6 @@ ROCm libraries for FFT are as follows:
rocFFT is an AMD GPU optimized library for FFT.
- {doc}`Documentation <rocfft:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocFFT)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md)
:::
@@ -20,7 +19,6 @@ using rocFFT. hipFFT allows for a common interface for other non AMD GPU
FFT libraries.
- {doc}`Documentation <hipfft:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipFFT)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/CHANGELOG.md)
:::

View File

@@ -9,7 +9,6 @@ ROCm libraries for linear algebra are as follows:
`rocBLAS` is an AMD GPU optimized library for BLAS (Basic Linear Algebra Subprograms).
- {doc}`Documentation <rocblas:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocBLAS)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/amd/rocm-examples/tree/develop/Libraries/rocBLAS)
@@ -21,7 +20,6 @@ via `rocBLAS` and `rocSOLVER`. `hipBLAS` allows for a common interface for other
BLAS libraries.
- {doc}`Documentation <hipblas:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipBLAS)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/CHANGELOG.md)
:::
@@ -33,7 +31,6 @@ flexible API and extends functionalities beyond traditional BLAS library.
optimized generator as a back-end kernel provider.
- {doc}`Documentation <hipblaslt:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipBLASLt)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipBLASLt/blob/develop/CHANGELOG.md)
:::
@@ -44,7 +41,6 @@ fine-grained parallelism on top of AMD's ROCm runtime and toolchains, targeting
modern CPU and GPU platforms.
- {doc}`Documentation <rocalution:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocALUTION)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/CHANGELOG.md)
:::
@@ -54,7 +50,6 @@ modern CPU and GPU platforms.
(MMA) problems into fragments and distributes these over GPU wavefronts.
- {doc}`Documentation <rocwmma:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocWMMA)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/CHANGELOG.md)
:::
@@ -63,7 +58,6 @@ modern CPU and GPU platforms.
`rocSOLVER` provides a subset of LAPACK (Linear Algebra Package) functionality on the ROCm platform.
- {doc}`Documentation <rocsolver:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocSOLVER)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md)
:::
@@ -73,7 +67,6 @@ modern CPU and GPU platforms.
as backends whilst exporting a unified interface.
- {doc}`Documentation <hipsolver:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipSOLVER)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md)
:::
@@ -82,7 +75,6 @@ as backends whilst exporting a unified interface.
`rocSPARSE` is a library to provide BLAS for sparse computations.
- {doc}`Documentation <rocsparse:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocSPARSE)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md)
:::
@@ -92,18 +84,8 @@ as backends whilst exporting a unified interface.
supporting both `rocSPARSE` and `cuSPARSE` as backends.
- {doc}`Documentation <hipsparse:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipSPARSE)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md)
:::
:::{grid-item-card} {doc}`hipSPARSELt <hipsparselt:index>`
`hipSPARSE` is a marshalling library to provide sparse BLAS functionality,
supporting both `rocSPARSELt` and `cuSPARSELt` as backends.
- {doc}`Documentation <hipsparselt:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipSPARSELt)
:::
:::::

View File

@@ -1,6 +1,6 @@
# Math Libraries
AMD provides various math domain and support libraries as part of ROCm.
AMD provides various math domain and support libraries as part of the ROCm.
## rocLIB vs. hipLIB
@@ -26,7 +26,6 @@ at compile-time of the hipLIB in question. For dynamic dispatch between vendor i
- {doc}`hipSOLVER <hipsolver:index>`
- {doc}`rocSPARSE <rocsparse:index>`
- {doc}`hipSPARSE <hipsparse:index>`
- {doc}`hipSPARSELt <hipsparselt:index>`
:::

View File

@@ -7,7 +7,6 @@
rocRAND is an AMD GPU optimized library for pseudo-random number generators (PRNG).
- {doc}`Documentation <rocrand:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/rocRAND/)
- [Changelog](https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/CHANGELOG.md)
- [Examples](https://github.com/amd/rocm-examples/tree/develop/Libraries/rocRAND)
@@ -19,7 +18,6 @@ generation (PRNG) optimized for AMD GPUs using rocRAND. hipRAND allows for a
common interface for other non AMD GPU PRNG libraries.
- {doc}`Documentation <hiprand:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/hipRAND/)
- [Changelog](https://github.com/ROCmSoftwarePlatform/hipRAND/blob/develop/CHANGELOG.md)
:::

View File

@@ -12,8 +12,7 @@ page introduces the HIP runtime and other HIP libraries and tools.
The HIP Runtime is used to enable GPU acceleration for all HIP language based
products.
- {doc}`Documentation <hip:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/HIP)
- {doc}`hip:doxygen/html/index`
- [Examples](https://github.com/amd/rocm-examples/tree/develop/HIP-Basic)
:::
@@ -29,9 +28,7 @@ products.
HIPIFY assists with porting applications from based on CUDA to the HIP Runtime.
Supported CUDA APIs are documented here as well.
- {doc}`Documentation <hipify:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/HIPIFY/)
- [Changelog](https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/CHANGELOG.md)
- {doc}`Reference Manual <hipify:index>`
:::

View File

@@ -3,29 +3,28 @@
:::::{grid} 1 1 3 3
:gutter: 1
:::{grid-item-card} {doc}`AMD SMI <amdsmi:index>`
:::{grid-item-card} AMD SMI
The AMD System Management Interface Library, or AMD SMI library, is a C library for Linux that provides a user space interface for applications to monitor and control AMD devices.
- {doc}`Documentation <amdsmi:index>`
- [GitHub](https://github.com/RadeonOpenCompute/amdsmi)
- [Examples](https://github.com/amd/go_amd_smi#example)
:::
:::{grid-item-card} {doc}`ROCm SMI LIB <rocm_smi_lib:index>`
:::{grid-item-card} [ROCm SMI](https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/)
This tool acts as a command line interface for manipulating and monitoring the AMD GPU kernel, and is intended to replace and deprecate the existing `rocm_smi.py` CLI tool. It uses `ctypes` to call the `rocm_smi_lib` API.
- {doc}`Documentation <rocm_smi_lib:index>`
- [Documentation](https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/)
- [GitHub](https://github.com/RadeonOpenCompute/rocm_smi_lib)
- [Examples](https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/master/python_smi_tools)
:::
:::{grid-item-card} {doc}`ROCm Data Center Tool <rdc:index>`
:::{grid-item-card} {doc}`ROCm Datacenter Tool <rdc:index>`
The ROCm™ Data Center Tool simplifies the administration and addresses key infrastructure challenges in AMD GPUs in cluster and data center environments.
- {doc}`Documentation <rdc:index>`
- [GitHub](https://github.com/RadeonOpenCompute/rdc)
- [Changelog](https://github.com/RadeonOpenCompute/rdc/blob/master/CHANGELOG.md)
- [Examples](https://github.com/RadeonOpenCompute/rdc/tree/master/example)
:::

View File

@@ -11,11 +11,6 @@ OpenMP toolchain, example usage of device offloading, and usage of `rocprof`
with OpenMP applications. The GPUs supported are the same as those supported by
this ROCm release. See the list of supported GPUs in {doc}`/release/gpu_os_support`.
The ROCm OpenMP compiler is implemented using LLVM compiler technology.
{numref}`openmp-toolchain` illustrates the internal steps taken to translate a users application into an executable that can offload computation to the AMDGPU. The compilation is a two-pass process. Pass 1 compiles the application to generate the CPU code and Pass 2 links the CPU code to the AMDGPU device code.
![OpenMP Toolchain](../../data/reference/openmp/openmp_toolchain.svg "OpenMP toolchain" =800x600)
### Installation
The OpenMP toolchain is automatically installed as part of the standard ROCm
@@ -58,10 +53,11 @@ that are required for target offload from an OpenMP program:
```
:::{note}
The compiler also accepts the alternative offloading notation:
The Makefile in the example above uses a more classical and verbose set of flags
which can also be used:
```bash
-fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=<gpu-arch>
-fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa
```
:::
@@ -112,7 +108,8 @@ code compiled with AOMP:
options --list-basic and --list-derived. `rocprof` accepts either a text or
an XML file as an input.
For more details on `rocprof`, refer to the {doc}`ROCProfilerV1 User Manual <rocprofiler:rocprofv1>`.
For more details on `rocprof`, refer to the ROCm Profiling Tools document on
{doc}`rocprofiler:rocprof`.
### Using Tracing Options
@@ -138,21 +135,20 @@ Google Chrome at chrome://tracing/ or [Perfetto](https://perfetto.dev/).
Navigate to Chrome or Perfetto and load the JSON file to see the timeline of the
HSA calls.
For more details on tracing, refer to the {doc}`ROCProfilerV1 User Manual <rocprofiler:rocprofv1>`.
For more details on tracing, refer to the ROCm Profiling Tools document on
{doc}`rocprofiler:rocprof`.
### Environment Variables
:::{table}
:widths: auto
| Environment Variable | Purpose |
| --------------------------- | ---------------------------- |
| `OMP_NUM_TEAMS` | To set the number of teams for kernel launch, which is otherwise chosen by the implementation by default. You can set this number (subject to implementation limits) for performance tuning. |
| `LIBOMPTARGET_KERNEL_TRACE` | To print useful statistics for device operations. Setting it to 1 and running the program emits the name of every kernel launched, the number of teams and threads used, and the corresponding register usage. Setting it to 2 additionally emits timing information for kernel launches and data transfer operations between the host and the device. |
| `LIBOMPTARGET_INFO` | To print informational messages from the device runtime as the program executes. Setting it to a value of 1 or higher, prints fine-grain information and setting it to -1 prints complete information. |
| `LIBOMPTARGET_DEBUG` | To get detailed debugging information about data transfer operations and kernel launch when using a debug version of the device library. Set this environment variable to 1 to get the detailed information from the library. |
| `GPU_MAX_HW_QUEUES` | To set the number of HSA queues in the OpenMP runtime. The HSA queues are created on demand up to the maximum value as supplied here. The queue creation starts with a single initialized queue to avoid unnecessary allocation of resources. The provided value is capped if it exceeds the recommended, device-specific value. |
| `LIBOMPTARGET_AMDGPU_MAX_ASYNC_COPY_BYTES` | To set the threshold size up to which data transfers are initiated asynchronously. The default threshold size is 1*1024*1024 bytes (1MB). |
| `OMPX_FORCE_SYNC_REGIONS` | To force the runtime to execute all operations synchronously, i.e., wait for an operation to complete immediately. This affects data transfers and kernel execution. While it is mainly designed for debugging, it may have a minor positive effect on performance in certain situations. |
| Environment Variable | Description |
| --------------------------- | ----------- |
| `OMP_NUM_TEAMS` | The implementation chooses the number of teams for kernel launch. The user can change this number for performance tuning using this environment variable, subject to implementation limits. |
| `LIBOMPTARGET_KERNEL_TRACE` | This environment variable is used to print useful statistics for device operations. Setting it to 1 and running the program emits the name of every kernel launched, the number of teams and threads used, and the corresponding register usage. Setting it to 2 additionally emits timing information for kernel launches and data transfer operations between the host and the device. |
| `LIBOMPTARGET_INFO` | This environment variable is used to print informational messages from the device runtime as the program executes. Users can request fine-grain information by setting it to the value of 1 or higher and can set the value of -1 for complete information. |
| `LIBOMPTARGET_DEBUG` | If a debug version of the device library is present, setting this environment variable to 1 and using that library emits further detailed debugging information about data transfer operations and kernel launch. |
| `GPU_MAX_HW_QUEUES` | This environment variable is used to set the number of HSA queues in the OpenMP runtime. |
:::
## OpenMP: Features
@@ -162,21 +158,6 @@ implemented in the past releases.
(openmp_usm)=
### Asynchronous Behavior in OpenMP Target Regions
- Controlling Asynchronous Behavior
The OpenMP offloading runtime executes in an asynchronous fashion by default, allowing multiple data transfers to start concurrently. However, if the data to be transferred becomes larger than the default threshold of 1MB, the runtime falls back to a synchronous data transfer. The buffers that have been locked already are always executed asynchronously.
You can overrule this default behavior by setting `LIBOMPTARGET_AMDGPU_MAX_ASYNC_COPY_BYTES` and `OMPX_FORCE_SYNC_REGIONS`. See the [Environment Variables](#environment-variables) table for details.
- Multithreaded Offloading on the Same Device
The `libomptarget` plugin for GPU offloading allows creation of separate configurable HSA queues per chiplet, which enables two or more threads to concurrently offload to the same device.
- Parallel Memory Copy Invocations
Implicit asynchronous execution of single target region enables parallel memory copy invocations.
### Unified Shared Memory
Unified Shared Memory (USM) provides a pointer-based approach to memory
@@ -197,34 +178,39 @@ with Xnack capability.
When enabled, Xnack capability allows GPU threads to access CPU (system) memory,
allocated with OS-allocators, such as `malloc`, `new`, and `mmap`. Xnack must be
enabled both at compile- and run-time. To enable Xnack support at compile-time,
use:
the programmer should use
```bash
--offload-arch=gfx908:xnack+
```
Or use another functionally equivalent option Xnack-any:
Or, equivalently
```bash
--offload-arch=gfx908
```
To enable Xnack functionality at runtime on a per-application basis,
use environment variable:
:::{note}
The second case is called Xnack-any and it is functionally equivalent to the
first case.
:::
At runtime, programmers enable Xnack functionality on a per-application basis
using an environment variable:
```bash
HSA_XNACK=1
```
When Xnack support is not needed:
- Build the applications to maximize resource utilization using:
When Xnack support is not needed, then applications can be built to maximize
resource utilization using:
```bash
--offload-arch=gfx908:xnack-
```
- At runtime, set the `HSA_XNACK` environment variable to 0.
At runtime, the `HSA_XNACK` environment variable can be set to 0, as Xnack
functionality is not needed.
#### Unified Shared Memory Pragma
@@ -278,7 +264,7 @@ The difference between the memory pages pointed to by these two variables is
that the pages pointed by “a” are in fine-grain memory, while the pages pointed
to by “b” are in coarse-grain memory during and after the execution of the
target region. This is accomplished in the OpenMP runtime library with calls to
the ROCr runtime to set the pages pointed by “b” as coarse grain.
the ROCR runtime to set the pages pointed by “b” as coarse grain.
### OMPT Target Support
@@ -329,10 +315,8 @@ double a = 0.0;
a = a + 1.0;
```
:::{note}
`AMD_unsafe_fp_atomics` is an alias for `AMD_fast_fp_atomics`, and
NOTE `AMD_unsafe_fp_atomics` is an alias for `AMD_fast_fp_atomics`, and
`AMD_safe_fp_atomics` is implemented with a compare-and-swap loop.
:::
To disable the generation of fast floating-point atomic instructions at the file
level, build using the option `-msafe-fp-atomics` or use a hint clause on a
@@ -447,46 +431,43 @@ for(int i=0; i<N; i++){
See the complete sample code for global buffer overflow
[here](https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/examples/tools/asan/global_buffer_overflow/openmp/vecadd-GBO.cpp).
### Clang Compiler Option for Kernel Optimization
### No-loop Kernel Generation
You can use the clang compiler option `-fopenmp-target-fast` for kernel optimization if certain constraints implied by its component options are satisfied. `-fopenmp-target-fast` enables the following options:
The No-loop kernel generation feature optimizes the compiler performance by
generating a specialized kernel for certain OpenMP Target Constructs such as
target teams distribute parallel for. The specialized kernel generation assumes
that every thread executes a single iteration of the user loop, which implies
that the runtime launches a total number of GPU threads equal to or greater than
the iteration space size of the target region loop. This allows the compiler to
generate code for the loop body without an enclosing loop, resulting in reduced
control-flow complexity and potentially better performance.
- `-fopenmp-target-ignore-env-vars`: It enables code generation of specialized kernels including No-loop and Cross-team reductions.
To enable the generation of the specialized kernel, follow these guidelines:
- `-fopenmp-assume-no-thread-state`: It enables the compiler to assume that no thread in a parallel region modifies an Internal Control Variable (`ICV`), thus potentially reducing the device runtime code execution.
- Do not specify teams, threads, and schedule-related environment variables. The
`num_teams` or a `thread_limit` clause in an OpenMP target construct acts as
an override and prevents the generation of the specialized kernel. As the user
is unable to specify the number of teams and threads used within target
regions in the absence of the above-mentioned environment variables, the
runtime will select the best values for the launch configuration based on
runtime knowledge of the program.
- `-fopenmp-assume-no-nested-parallelism`: It enables the compiler to assume that no thread in a parallel region encounters a parallel region, thus potentially reducing the device runtime code execution.
- Assert the absence of the above-mentioned environment variables by adding the
command-line option `-fopenmp-target-ignore-env-vars`. This option also allows
programmers to enable the No-loop functionality at lower optimization levels.
- `-O3` if no `-O*` is specified by the user.
- Also, the No-loop functionality is automatically enabled when `-O3` or
`-Ofast` is used for compilation. To disable this feature, use
`-fno-openmp-target-ignore-env-vars`.
### Specialized Kernels
Note The compiler might not generate the No-loop kernel in certain scenarios
where the performance improvement is not substantial.
Clang will attempt to generate specialized kernels based on compiler options and OpenMP constructs. The following specialized kernels are supported:
### Cross-Team Optimized Reductions
- No-Loop
- Big-Jump-Loop
- Cross-Team (Xteam) Reductions
To enable the generation of specialized kernels, follow these guidelines:
- Do not specify teams, threads, and schedule-related environment variables. The `num_teams` clause in an OpenMP target construct acts as an override and prevents the generation of the No-Loop kernel. If the specification of `num_teams` clause is a user requirement then clang tries to generate the Big-Jump-Loop kernel instead of the No-Loop kernel.
- Assert the absence of the teams, threads, and schedule-related environment variables by adding the command-line option `-fopenmp-target-ignore-env-vars`.
- To automatically enable the specialized kernel generation, use `-Ofast` or `-fopenmp-target-fast` for compilation.
- To disable specialized kernel generation, use `-fno-openmp-target-ignore-env-vars`.
#### No-Loop Kernel Generation
The No-loop kernel generation feature optimizes the compiler performance by generating a specialized kernel for certain OpenMP target constructs such as target teams distribute parallel for. The specialized kernel generation feature assumes every thread executes a single iteration of the user loop, which leads the runtime to launch a total number of GPU threads equal to or greater than the iteration space size of the target region loop. This allows the compiler to generate code for the loop body without an enclosing loop, resulting in reduced control-flow complexity and potentially better performance.
#### Big-Jump-Loop Kernel Generation
A No-Loop kernel is not generated if the OpenMP teams construct uses a `num_teams` clause. Instead, the compiler attempts to generate a different specialized kernel called the Big-Jump-Loop kernel. The compiler launches the kernel with a grid size determined by the number of teams specified by the OpenMP `num_teams` clause and the `blocksize` chosen either by the compiler or specified by the corresponding OpenMP clause.
#### Xteam Optimized Reduction Kernel Generation
If the OpenMP construct has a reduction clause, the compiler attempts to generate optimized code by utilizing efficient Xteam communication. New APIs for Xteam reduction are implemented in the device runtime and are automatically generated by clang.
In scenarios where a No-loop kernel is generated but the OpenMP construct has a
reduction clause, the compiler may generate optimized code utilizing efficient
Cross-Team (Xteam) communication. No separate user option is required, and there
is a significant performance improvement with Xteam reduction. New APIs for
Xteam reduction are implemented in the device runtime, and clang generates these
APIs automatically.

View File

@@ -1109,7 +1109,7 @@ The following table lists the other Clang options and their support status.
|-ftime-trace|Supported|Turns on time profiler. Generates JSON file based on output filename|
|-ftrap-function= \<value\>|Unsupported|Issues call to specified function rather than a trap instruction|
|-ftrapv-handler= \<function name\>|Unsupported|Specifies the function to be called on overflow|
|-ftrapv|Supported|Traps on integer overflow|
|-ftrapv|Unsupported|Traps on integer overflow|
|-ftrigraphs|Supported|Processes trigraph sequences|
|-ftrivial-auto-var-init-stop-after= \<value\>|Supported|Stops initializing trivial automatic stack variables after the specified number of instances|
|-ftrivial-auto-var-init= \<value\>|Supported|Initializes trivial automatic stack variables. Values: uninitialized (default) / pattern|

View File

@@ -7,8 +7,6 @@
The ROCm Validation Suite is a system administrators and cluster manager's tool for detecting and troubleshooting common problems affecting AMD GPU(s) running in a high-performance computing environment, enabled using the ROCm software stack on a compatible platform.
- {doc}`Documentation <rocmvalidationsuite:index>`
- [GitHub](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite)
- [Changelog](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/CHANGELOG.md)
:::
@@ -16,7 +14,6 @@ The ROCm Validation Suite is a system administrators and cluster manager's to
TransferBench is a simple utility capable of benchmarking simultaneous transfers between user-specified devices (CPUs/GPUs).
- {doc}`Documentation <transferbench:index>`
- [GitHub](https://github.com/ROCmSoftwarePlatform/TransferBench/)
- [Changelog](https://github.com/ROCmSoftwarePlatform/TransferBench/blob/develop/CHANGELOG.md)
- {doc}`transferbench:examples/index`

View File

@@ -9,18 +9,15 @@ work, but aren't tested.
## Deep Learning
ROCm releases support the most recent and two prior releases of PyTorch and
TensorFlow.
TensorFlow
| ROCm | [PyTorch](https://github.com/pytorch/pytorch/releases/) | [TensorFlow](https://github.com/tensorflow/tensorflow/releases/) |
|:------|:--------------------------:|:--------------------:|
| 5.0.2 | 1.8, 1.9, 1.10 | 2.6, 2.7, 2.8 |
| 5.1.3 | 1.9, 1.10, 1.11 | 2.7, 2.8, 2.9 |
| 5.2.x | 1.10, 1.11, 1.12 | 2.8, 2.9, 2.9 |
| 5.3.x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10 |
| 5.4.x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10, 2.11 |
| 5.5.x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.10, 2.11, 2.13 |
| 5.6.x | 1.12.1, 1.13, 2.0 | 2.12, 2.13 |
| 5.7.x | 1.12.1, 1.13, 2.0 | 2.12, 2.13 |
| ROCm | [PyTorch](https://github.com/pytorch/pytorch/releases/) | [TensorFlow](https://github.com/tensorflow/tensorflow/releases/) | [MAGMA](https://icl.utk.edu/magma/index.html) |
|:------|:--------------------------:|:--------------------:|:-----:|
| 5.0.2 | 1.8, 1.9, 1.10 | 2.6, 2.7, 2.8 | |
| 5.1.3 | 1.9, 1.10, 1.11 | 2.7, 2.8, 2.9 | |
| 5.2.x | 1.10, 1.11, 1.12 | 2.8, 2.9, 2.9 | |
| 5.3.x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10 | |
| 5.4.x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10, 2.11 | 2.5.4 |
## Communication libraries
@@ -33,14 +30,6 @@ UCX version | ROCm 5.4 and older | ROCm 5.5 and newer |
| -1.14.0 | COMPATIBLE | INCOMPATIBLE |
| 1.14.1+ | COMPATIBLE | COMPATIBLE |
The Unified Collective Communication Library [UCC](https://https://github.com/openucx/ucc)
also has support for ROCm devices.
UCC version | ROCm 5.5 and older | ROCm 5.6 and newer |
|:----------|:------------------:|:------------------:|
| -1.1.0 | COMPATIBLE | INCOMPATIBLE |
| 1.2.0+ | COMPATIBLE | COMPATIBLE |
## Algorithm libraries
ROCm releases provide algorithm libraries with interfaces compatible with
@@ -56,9 +45,6 @@ contemporary CUDA / NVIDIA HPC SDK alternatives.
| 5.2.x | 1.15 | 22.2, 22.3 |
| 5.3.x | 1.16 | 22.7 |
| 5.4.x | 1.16 | 22.9 |
| 5.5.x | 1.17 | 22.9 |
| 5.6 | 1.17.2 | 22.9 |
| 5.7 | 1.17.2 | 22.9 |
For the latest documentation of these libraries, refer to the
[associated documentation](../reference/gpu_libraries/c%2B%2B_primitives.md).

View File

@@ -21,7 +21,7 @@ The software support matrices for ROCm container releases is listed.
#### `CentOS7+ rocm5.6_internal_testing +169530b`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.8](https://www.python.org/downloads/release/python-380/)
* [Torch 2.0.0](https://github.com/ROCmSoftwarePlatform/pytorch/tree/rocm5.6_internal_testing)
* [Apex 0.1](https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1)
@@ -31,7 +31,7 @@ The software support matrices for ROCm container releases is listed.
#### `1.13 +bfeb431`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.8](https://www.python.org/downloads/release/python-380/)
* [Torch 1.13.1](https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.13)
* [Apex 0.1](https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1)
@@ -44,7 +44,7 @@ The software support matrices for ROCm container releases is listed.
#### `1.12 +05d5d04`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.8](https://www.python.org/downloads/release/python-380/)
* [Torch 1.12.1](https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.12)
* [Apex 0.1](https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1)
@@ -59,7 +59,7 @@ The software support matrices for ROCm container releases is listed.
#### `tensorflow_develop-upstream-QA-rocm56 +c88a9f4`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.9](https://www.python.org/downloads/release/python-390/)
* `tensorflow-rocm` 2.13.0
* [OFED 5.3](https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz)
@@ -69,7 +69,7 @@ The software support matrices for ROCm container releases is listed.
#### `r2.11-rocm-enhanced +5be4141`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.9](https://www.python.org/downloads/release/python-390/)
* [`tensorflow-rocm` 2.11.0](https://pypi.org/project/tensorflow-rocm/2.11.0.540/)
* [OFED 5.3](https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz)
@@ -79,7 +79,7 @@ The software support matrices for ROCm container releases is listed.
#### `r2.10-rocm-enhanced +72789a3`
* [ROCm5.6](https://repo.radeon.com/rocm/apt/5.6/)
* [ROCm5.6](https://repo.radeon.com/rocm/apt/latest/)
* [Python 3.9](https://www.python.org/downloads/release/python-390/)
* [`tensorflow-rocm` 2.10.1](https://pypi.org/project/tensorflow-rocm/2.10.1.540/)
* [OFED 5.3](https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz)

View File

@@ -1,55 +1,18 @@
# GPU Support and OS Compatibility (Linux)
# GPU and OS Support (Linux)
(supported_distributions)=
## Supported Linux Distributions
## Supported Distributions
AMD ROCm™ Platform supports the following Linux distributions.
::::{tab-set}
:::{tab-item} Supported
| Distribution | Processor Architectures | Validated Kernel | Support |
| :----------- | :---------------------: | :--------------: | ------: |
| CentOS 7.9 | x86-64 | 3.10 | ✅ |
| RHEL 7.9 | x86-64 | 3.10 | ✅ |
| RHEL 8.7 | x86-64 | 4.18 | ✅ |
| RHEL 8.8 | x86-64 | 4.18 | ✅ |
| RHEL 9.1 | x86-64 | 5.14 | ✅ |
| RHEL 9.2 | x86-64 | 5.14 | ✅ |
| SLES 15 SP4 | x86-64 | 5.14.21 | ✅ |
| SLES 15 SP5 | x86-64 | 5.14.21 | ✅ |
| Ubuntu 20.04.5 | x86-64 | 5.15 | ✅ |
| Ubuntu 20.04.6 | x86-64 | 5.15 | ✅ |
| Ubuntu 22.04.2 | x86-64 | 5.19 | ✅ |
| Ubuntu 22.04.3 | x86-64 | 6.2 | ✅ |
:::{versionadded} 5.7.0
- Ubuntu 22.04.3 support was added.
:::
:::{tab-item} Unsupported
| Distribution | Processor Architectures | Validated Kernel | Support |
| :----------- | :---------------------: | :--------------: | ------: |
| RHEL 9.0 | x86-64 | 5.14 | ❌ |
| RHEL 8.6 | x86-64 | 5.14 | ❌ |
| SLES 15 SP3 | x86-64 | 5.3 | ❌ |
| Ubuntu 22.04.0 | x86-64 | 5.15 LTS, 5.17 OEM | ❌ |
| Ubuntu 20.04.4 | x86-64 | 5.13 HWE, 5.13 OEM | ❌ |
| Ubuntu 22.04.1 | x86-64 | 5.15 LTS | ❌ |
:::
::::
- ✅: **Supported** - AMD performs full testing of all ROCm components on distro
GA image.
- ❌: **Unsupported** - AMD no longer performs builds and testing on these
previously supported distro GA images.
| Distribution |Processor Architectures| Validated Kernel |
|--------------------|-----------------------|--------------------|
| RHEL 9.1 | x86-64 | 5.14 |
| RHEL 8.6 to 8.7 | x86-64 | 4.18 |
| SLES 15 SP4 | x86-64 | 5.14.21 |
| Ubuntu 20.04.5 LTS | x86-64 | 5.15 |
| Ubuntu 22.04.1 LTS | x86-64 | 5.15, 5.17 OEM |
## Virtualization Support
@@ -61,11 +24,9 @@ ROCm supports virtualization for select GPUs only as shown below.
| VMWare | ESXi 8 | MI210 | Ubuntu 20.04 (`5.15.0-56-generic`), SLES 15 SP4 (`5.14.21-150400.24.18-default`) |
| VMWare | ESXi 7 | MI210 | Ubuntu 20.04 (`5.15.0-56-generic`), SLES 15 SP4 (`5.14.21-150400.24.18-default`) |
## Linux Supported GPUs
(supported_gpus)=
The table below shows supported GPUs for Instinct™, Radeon Pro™ and Radeon™
GPUs. Please click the tabs below to switch between GPU product lines. If a GPU
is not listed on this table, the GPU is not officially supported by AMD.
## GPU Support Table
::::{tab-set}
@@ -91,20 +52,21 @@ Use Driver Shipped with ROCm
[Use Radeon Pro Driver](https://www.amd.com/en/support/linux-drivers)
| Name | Architecture |[LLVM Target](https://www.llvm.org/docs/AMDGPUUsage.html#processors) | Support|
|:----:|:------------:|:--------------------------------------------------------------------:|:-------:|
|:----:|:------------:|:-------------------------------------------------------------------:|:-------:|
| AMD Radeon™ Pro W6800 | RDNA2 | gfx1030 | ✅ |
| AMD Radeon™ Pro V620 | RDNA2 | gfx1030 | ✅ |
| AMD Radeon™ Pro VII | GCN5.1 | gfx906 | ✅ |
:::
:::{tab-item} Radeon™
:sync: radeonpro
:sync: radeon
[Use Radeon Pro Driver](https://www.amd.com/en/support/linux-drivers)
| Name | Architecture |[LLVM Target](https://www.llvm.org/docs/AMDGPUUsage.html#processors) | Support|
|:----:|:---------------:|:--------------------------------------------------------------------:|:-------:|
| AMD Radeon™ VII | GCN5.1 | gfx906 | ✅ |
| Name | Architecture |[LLVM Target](https://www.llvm.org/docs/AMDGPUUsage.html#processors) | Support|
|:----:|:------------:|:-------------------------------------------------------------------:|:-------:|
| AMD Radeon™ VII | GCN5.1 | gfx906 | ✅ |
:::

View File

@@ -5,65 +5,64 @@ The following table is a list of ROCm components with links to their respective
terms. These components may include third party components subject to
additional licenses. Please review individual repositories for more information.
The table shows ROCm components, the name of license and link to the license terms.
The table is ordered to follow ROCm's manifest file.
<!-- spellcheck-disable -->
| Component | License |
| Component | License |
|:------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------:|
| [AMDMIGraphX](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/) | [MIT](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/LICENSE) |
| [HIPCC](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) | [MIT](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) |
| [HIPIFY](https://github.com/ROCm-Developer-Tools/HIPIFY/) | [MIT](https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/LICENSE.txt) |
| [HIP](https://github.com/ROCm-Developer-Tools/HIP/) | [MIT](https://github.com/ROCm-Developer-Tools/HIP/blob/develop/LICENSE.txt) |
| [MIOpenGEMM](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/blob/master/LICENSE.txt) |
| [MIOpen](https://github.com/ROCmSoftwarePlatform/MIOpen/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpen/blob/master/LICENSE.txt) |
| [MIVisionX](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/) | [MIT](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/LICENSE.txt) |
| [RCP](https://github.com/GPUOpen-Tools/radeon_compute_profiler/) | [MIT](https://github.com/GPUOpen-Tools/radeon_compute_profiler/blob/master/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/COPYING) |
| [ROCR-Runtime](https://github.com/RadeonOpenCompute/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/LICENSE.txt) |
| [ROCT-Thunk-Interface](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/) | [MIT](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/blob/master/LICENSE.md) |
| [ROCclr](https://github.com/ROCm-Developer-Tools/ROCclr/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/LICENSE.txt) |
| [ROCdbgapi](https://github.com/ROCm-Developer-Tools/ROCdbgapi/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCdbgapi/blob/amd-master/LICENSE.txt) |
| [ROCgdb](https://github.com/ROCm-Developer-Tools/ROCgdb/) | [GNU General Public License v2.0](https://github.com/ROCm-Developer-Tools/ROCgdb/blob/amd-master/COPYING) |
| [ROCm-CompilerSupport](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/blob/amd-stg-open/LICENSE.txt) |
| [ROCm-Device-Libs](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/LICENSE.TXT) |
| [ROCm-OpenCL-Runtime/api/opencl/khronos/icd](https://github.com/KhronosGroup/OpenCL-ICD-Loader/) | [Apache 2.0](https://github.com/KhronosGroup/OpenCL-ICD-Loader/blob/main/LICENSE) |
| [ROCm-OpenCL-Runtime](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/) | [MIT](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/blob/develop/LICENSE.txt) |
| [ROCmValidationSuite](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/LICENSE) |
| [Tensile](https://github.com/ROCmSoftwarePlatform/Tensile/) | [MIT](https://github.com/ROCmSoftwarePlatform/Tensile/blob/develop/LICENSE.md) |
| [aomp-extras](https://github.com/ROCm-Developer-Tools/aomp-extras/) | [MIT](https://github.com/ROCm-Developer-Tools/aomp-extras/blob/aomp-dev/LICENSE) |
| [aomp](https://github.com/ROCm-Developer-Tools/aomp/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/LICENSE) |
| [atmi](https://github.com/RadeonOpenCompute/atmi/) | [MIT](https://github.com/RadeonOpenCompute/atmi/blob/master/LICENSE.txt) |
| [clang-ocl](https://github.com/RadeonOpenCompute/clang-ocl/) | [MIT](https://github.com/RadeonOpenCompute/clang-ocl/blob/master/LICENSE) |
| [flang](https://github.com/ROCm-Developer-Tools/flang/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/flang/blob/master/LICENSE.txt) |
| [half](https://github.com/ROCmSoftwarePlatform/half/) | [MIT](https://github.com/ROCmSoftwarePlatform/half/blob/master/LICENSE.txt) |
| [hipBLAS](https://github.com/ROCmSoftwarePlatform/hipBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/LICENSE.md) |
| [hipCUB](https://github.com/ROCmSoftwarePlatform/hipCUB/) | [Custom](https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/LICENSE.txt) |
| [hipFFT](https://github.com/ROCmSoftwarePlatform/hipFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/LICENSE.md) |
| [hipSOLVER](https://github.com/ROCmSoftwarePlatform/hipSOLVER/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCmSoftwarePlatform/hipSPARSELt/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSPARSELt/blob/develop/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCmSoftwarePlatform/hipSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSPARSE/blob/develop/LICENSE.md) |
| [hipTensor](https://github.com/ROCmSoftwarePlatform/hipTensor) | [MIT](https://github.com/ROCmSoftwarePlatform/hipTensor/blob/develop/LICENSE) |
| [hipamd](https://github.com/ROCm-Developer-Tools/hipamd/) | [MIT](https://github.com/ROCm-Developer-Tools/hipamd/blob/develop/LICENSE.txt) |
| [hipfort](https://github.com/ROCmSoftwarePlatform/hipfort/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipfort/blob/master/LICENSE) |
| [llvm-project](https://github.com/ROCm-Developer-Tools/llvm-project/) | [Apache](https://github.com/ROCm-Developer-Tools/llvm-project/blob/main/LICENSE.TXT) |
| [rccl](https://github.com/ROCmSoftwarePlatform/rccl/) | [Custom](https://github.com/ROCmSoftwarePlatform/rccl/blob/develop/LICENSE.txt) |
| [rdc](https://github.com/RadeonOpenCompute/rdc/) | [MIT](https://github.com/RadeonOpenCompute/rdc/blob/master/LICENSE) |
| [rocALUTION](https://github.com/ROCmSoftwarePlatform/rocALUTION/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/LICENSE.md) |
| [rocBLAS](https://github.com/ROCmSoftwarePlatform/rocBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/LICENSE.md) |
| [rocFFT](https://github.com/ROCmSoftwarePlatform/rocFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/LICENSE.md) |
| [rocPRIM](https://github.com/ROCmSoftwarePlatform/rocPRIM/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/LICENSE.txt) |
| [rocRAND](https://github.com/ROCmSoftwarePlatform/rocRAND/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/LICENSE.txt) |
| [rocSOLVER](https://github.com/ROCmSoftwarePlatform/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCmSoftwarePlatform/rocSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCmSoftwarePlatform/rocThrust/) | [Apache 2.0](https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/LICENSE) |
| [rocWMMA](https://github.com/ROCmSoftwarePlatform/rocWMMA/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/LICENSE.md) |
| [rocm-cmake](https://github.com/RadeonOpenCompute/rocm-cmake/) | [MIT](https://github.com/RadeonOpenCompute/rocm-cmake/blob/develop/LICENSE) |
| [rocm_bandwidth_test](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [rocm_smi_lib](https://github.com/RadeonOpenCompute/rocm_smi_lib/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/License.txt) |
| [rocminfo](https://github.com/RadeonOpenCompute/rocminfo/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocminfo/blob/master/License.txt) |
| [rocprofiler](https://github.com/ROCm-Developer-Tools/rocprofiler/) | [MIT](https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/LICENSE) |
| [rocr_debug_agent](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/blob/master/LICENSE.txt) |
| [roctracer](https://github.com/ROCm-Developer-Tools/roctracer/) | [MIT](https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/LICENSE) |
| rocm-llvm-alt | [AMD Proprietary License](https://www.amd.com/en/support/amd-software-eula)
| [ROCK-Kernel-Driver](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/COPYING) |
| [ROCT-Thunk-Interface](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/) | [MIT](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/blob/master/LICENSE.md) |
| [ROCR-Runtime](https://github.com/RadeonOpenCompute/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/LICENSE.txt) |
| [rocm_smi_lib](https://github.com/RadeonOpenCompute/rocm_smi_lib/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/License.txt) |
| [rocm-cmake](https://github.com/RadeonOpenCompute/rocm-cmake/) | [MIT](https://github.com/RadeonOpenCompute/rocm-cmake/blob/develop/LICENSE) |
| [rocminfo](https://github.com/RadeonOpenCompute/rocminfo/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocminfo/blob/master/License.txt) |
| [rocprofiler](https://github.com/ROCm-Developer-Tools/rocprofiler/) | [MIT](https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/LICENSE) |
| [roctracer](https://github.com/ROCm-Developer-Tools/roctracer/) | [MIT](https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/LICENSE) |
| [ROCm-OpenCL-Runtime](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/) | [MIT](https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/blob/develop/LICENSE.txt) |
| [ROCm-OpenCL-Runtime/api/opencl/khronos/icd](https://github.com/KhronosGroup/OpenCL-ICD-Loader/) | [Apache 2.0](https://github.com/KhronosGroup/OpenCL-ICD-Loader/blob/main/LICENSE) |
| [clang-ocl](https://github.com/RadeonOpenCompute/clang-ocl/) | [MIT](https://github.com/RadeonOpenCompute/clang-ocl/blob/master/LICENSE) |
| [HIP](https://github.com/ROCm-Developer-Tools/HIP/) | [MIT](https://github.com/ROCm-Developer-Tools/HIP/blob/develop/LICENSE.txt) |
| [hipamd](https://github.com/ROCm-Developer-Tools/hipamd/) | [MIT](https://github.com/ROCm-Developer-Tools/hipamd/blob/develop/LICENSE.txt) |
| [ROCclr](https://github.com/ROCm-Developer-Tools/ROCclr/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/LICENSE.txt) |
| [HIPIFY](https://github.com/ROCm-Developer-Tools/HIPIFY/) | [MIT](https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/LICENSE.txt) |
| [HIPCC](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) | [MIT](https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt) |
| [llvm-project](https://github.com/ROCm-Developer-Tools/llvm-project/) | [Apache](https://github.com/ROCm-Developer-Tools/llvm-project/blob/main/LICENSE.TXT) |
| rocm-llvm-alt | [AMD Proprietary License](https://www.amd.com/en/support/amd-software-eula)
| [ROCm-Device-Libs](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/LICENSE.TXT) |
| [atmi](https://github.com/RadeonOpenCompute/atmi/) | [MIT](https://github.com/RadeonOpenCompute/atmi/blob/master/LICENSE.txt) |
| [ROCm-CompilerSupport](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/blob/amd-stg-open/LICENSE.txt) |
| [rocr_debug_agent](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm-Developer-Tools/rocr_debug_agent/blob/master/LICENSE.txt) |
| [rocm_bandwidth_test](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/RadeonOpenCompute/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [half](https://github.com/ROCmSoftwarePlatform/half/) | [MIT](https://github.com/ROCmSoftwarePlatform/half/blob/master/LICENSE.txt) |
| [RCP](https://github.com/GPUOpen-Tools/radeon_compute_profiler/) | [MIT](https://github.com/GPUOpen-Tools/radeon_compute_profiler/blob/master/LICENSE) |
| [ROCgdb](https://github.com/ROCm-Developer-Tools/ROCgdb/) | [GNU General Public License v2.0](https://github.com/ROCm-Developer-Tools/ROCgdb/blob/amd-master/COPYING) |
| [ROCdbgapi](https://github.com/ROCm-Developer-Tools/ROCdbgapi/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCdbgapi/blob/amd-master/LICENSE.txt) |
| [rdc](https://github.com/RadeonOpenCompute/rdc/) | [MIT](https://github.com/RadeonOpenCompute/rdc/blob/master/LICENSE) |
| [rocBLAS](https://github.com/ROCmSoftwarePlatform/rocBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/LICENSE.md) |
| [Tensile](https://github.com/ROCmSoftwarePlatform/Tensile/) | [MIT](https://github.com/ROCmSoftwarePlatform/Tensile/blob/develop/LICENSE.md) |
| [hipBLAS](https://github.com/ROCmSoftwarePlatform/hipBLAS/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/LICENSE.md) |
| [rocFFT](https://github.com/ROCmSoftwarePlatform/rocFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/LICENSE.md) |
| [hipFFT](https://github.com/ROCmSoftwarePlatform/hipFFT/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/LICENSE.md) |
| [rocRAND](https://github.com/ROCmSoftwarePlatform/rocRAND/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/LICENSE.txt) |
| [rocSPARSE](https://github.com/ROCmSoftwarePlatform/rocSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocSPARSE/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCmSoftwarePlatform/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/LICENSE.md) |
| [hipSOLVER](https://github.com/ROCmSoftwarePlatform/hipSOLVER/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCmSoftwarePlatform/hipSPARSE/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipSPARSE/blob/develop/LICENSE.md) |
| [rocALUTION](https://github.com/ROCmSoftwarePlatform/rocALUTION/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/LICENSE.md) |
| [MIOpenGEMM](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/blob/master/LICENSE.txt) |
| [MIOpen](https://github.com/ROCmSoftwarePlatform/MIOpen/) | [MIT](https://github.com/ROCmSoftwarePlatform/MIOpen/blob/master/LICENSE.txt) |
| [rccl](https://github.com/ROCmSoftwarePlatform/rccl/) | [Custom](https://github.com/ROCmSoftwarePlatform/rccl/blob/develop/LICENSE.txt) |
| [MIVisionX](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/) | [MIT](https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/LICENSE.txt) |
| [rocThrust](https://github.com/ROCmSoftwarePlatform/rocThrust/) | [Apache 2.0](https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/LICENSE) |
| [hipCUB](https://github.com/ROCmSoftwarePlatform/hipCUB/) | [Custom](https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/LICENSE.txt) |
| [rocPRIM](https://github.com/ROCmSoftwarePlatform/rocPRIM/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/LICENSE.txt) |
| [rocWMMA](https://github.com/ROCmSoftwarePlatform/rocWMMA/) | [MIT](https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/LICENSE.md) |
| [hipfort](https://github.com/ROCmSoftwarePlatform/hipfort/) | [MIT](https://github.com/ROCmSoftwarePlatform/hipfort/blob/master/LICENSE) |
| [AMDMIGraphX](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/) | [MIT](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/LICENSE) |
| [ROCmValidationSuite](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/) | [MIT](https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/LICENSE) |
| [aomp](https://github.com/ROCm-Developer-Tools/aomp/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/LICENSE) |
| [aomp-extras](https://github.com/ROCm-Developer-Tools/aomp-extras/) | [MIT](https://github.com/ROCm-Developer-Tools/aomp-extras/blob/aomp-dev/LICENSE) |
| [flang](https://github.com/ROCm-Developer-Tools/flang/) | [Apache 2.0](https://github.com/ROCm-Developer-Tools/flang/blob/master/LICENSE.txt) |
Open sourced ROCm components are released via public GitHub
repositories, packages on https://repo.radeon.com and other distribution channels.
@@ -122,4 +121,4 @@ following location: `/opt/rocm/share/doc/<component-name>/`
For example, you can fetch the licensing information of the `_amd_comgr_`
component (Code Object Manager) from the `amd_comgr` folder. A file named
`LICENSE.txt` contains the license details at:
`/opt/rocm-5.4.3/share/doc/amd_comgr/LICENSE.txt`
`/opt/rocm-5.4.1/share/doc/amd_comgr/LICENSE.txt`

View File

@@ -12,12 +12,4 @@ the compatibility combinations that are currently supported.
| 5.2.0 | 5.0.2, 5.1.3 |
| 5.2.3 | 5.3.0, 5.4.0 |
| 5.3.0 | 5.1.3, 5.2.3 |
| 5.3.3 | 5.4.0, 5.5.0 |
| 5.4.0 | 5.2.3, 5.3.3 |
| 5.4.3 | 5.5.0, 5.6.0 |
| 5.4.4 | 5.5.0 |
| 5.5.0 | 5.3.3, 5.4.3 |
| 5.5.1 | 5.6.0, 5.7.0 |
| 5.6.0 | 5.4.3, 5.5.1 |
| 5.6.1 | 5.7.0 |
| 5.7.0 | 5.5.0, 5.6.1 |

View File

@@ -1,25 +0,0 @@
# ROCm Release History
| Version | Release Date |
| ------- | ------------ |
| [5.7.0](https://rocm.docs.amd.com/en/docs-5.7.0/) | Sep 15, 2023 |
| [5.6.1](https://rocm.docs.amd.com/en/docs-5.6.1/) | Aug 29, 2023 |
| [5.6.0](https://rocm.docs.amd.com/en/docs-5.6.0/) | Jun 28, 2023 |
| [5.5.1](https://rocm.docs.amd.com/en/docs-5.5.1/) | May 24, 2023 |
| [5.5.0](https://rocm.docs.amd.com/en/docs-5.5.0/) | May 1, 2023 |
| [5.4.3](https://rocm.docs.amd.com/en/docs-5.4.3/) | Feb 7, 2023 |
| [5.4.2](https://rocm.docs.amd.com/en/docs-5.4.2/) | Jan 13, 2023 |
| [5.4.1](https://rocm.docs.amd.com/en/docs-5.4.1/) | Dec 15, 2022 |
| [5.4.0](https://rocm.docs.amd.com/en/docs-5.4.0/) | Nov 30, 2022 |
| [5.3.3](https://rocm.docs.amd.com/en/docs-5.3.3/) | Nov 17, 2022 |
| [5.3.2](https://rocm.docs.amd.com/en/docs-5.3.2/) | Nov 9, 2022 |
| [5.3.0](https://rocm.docs.amd.com/en/docs-5.3.0/) | Oct 4, 2022 |
| [5.2.3](https://rocm.docs.amd.com/en/docs-5.2.3/) | Aug 18, 2022 |
| [5.2.1](https://rocm.docs.amd.com/en/docs-5.2.1/) | Jul 21, 2022 |
| [5.2.0](https://rocm.docs.amd.com/en/docs-5.2.0/) | Jun 28, 2022 |
| [5.1.3](https://rocm.docs.amd.com/en/docs-5.1.3/) | May 20, 2022 |
| [5.1.1](https://rocm.docs.amd.com/en/docs-5.1.1/) | Apr 8, 2022 |
| [5.1.0](https://rocm.docs.amd.com/en/docs-5.1.0/) | Mar 30, 2022 |
| [5.0.2](https://rocm.docs.amd.com/en/docs-5.0.2/) | Mar 4, 2022 |
| [5.0.1](https://rocm.docs.amd.com/en/docs-5.0.1/) | Feb 16, 2022 |
| [5.0.0](https://rocm.docs.amd.com/en/docs-5.0.0/) | Feb 9, 2022 |

Some files were not shown because too many files have changed in this diff Show More