mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-11 07:38:17 -05:00
Compare commits
12 Commits
docs/6.3.1
...
james/buil
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
23f1118209 | ||
|
|
9696d8efb2 | ||
|
|
9dbffddfe7 | ||
|
|
3166703028 | ||
|
|
85bd6e98f5 | ||
|
|
f76145c2ad | ||
|
|
027b2ea376 | ||
|
|
76d6e892bb | ||
|
|
fe69fc1bb4 | ||
|
|
4d31d717a6 | ||
|
|
1f74defe18 | ||
|
|
3cf3266c49 |
@@ -1,166 +0,0 @@
|
||||
parameters:
|
||||
- name: checkoutRepo
|
||||
type: string
|
||||
default: 'self'
|
||||
- name: checkoutRef
|
||||
type: string
|
||||
default: ''
|
||||
- name: aptPackages
|
||||
type: object
|
||||
default:
|
||||
- cmake
|
||||
- python3-pip
|
||||
- name: pipModules
|
||||
type: object
|
||||
default:
|
||||
- astunparse==1.6.2
|
||||
- colorlover
|
||||
- dash>=1.12.0
|
||||
- matplotlib
|
||||
- numpy>=1.17.5
|
||||
- pandas>=1.4.3
|
||||
- pymongo
|
||||
- pyyaml
|
||||
- tabulate
|
||||
- tqdm
|
||||
- dash-svg
|
||||
- dash-bootstrap-components
|
||||
- kaleido
|
||||
- setuptools
|
||||
- plotille
|
||||
- mock
|
||||
- pytest
|
||||
- pytest-cov
|
||||
- pytest-xdist
|
||||
- name: rocmDependencies
|
||||
type: object
|
||||
default:
|
||||
- clr
|
||||
- llvm-project
|
||||
- rocm-cmake
|
||||
- rocm-core
|
||||
- rocminfo
|
||||
- ROCR-Runtime
|
||||
- rocprofiler
|
||||
- rocprofiler-register
|
||||
- roctracer
|
||||
|
||||
jobs:
|
||||
- job: omniperf
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
pool:
|
||||
vmImage: ${{ variables.BASE_BUILD_POOL }}
|
||||
workspace:
|
||||
clean: all
|
||||
strategy:
|
||||
matrix:
|
||||
gfx942:
|
||||
JOB_GPU_TARGET: gfx942
|
||||
steps:
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
|
||||
parameters:
|
||||
aptPackages: ${{ parameters.aptPackages }}
|
||||
pipModules: ${{ parameters.pipModules }}
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
|
||||
parameters:
|
||||
checkoutRepo: ${{ parameters.checkoutRepo }}
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
|
||||
parameters:
|
||||
${{ if eq(parameters.checkoutRef, '') }}:
|
||||
dependencySource: staging
|
||||
${{ elseif ne(parameters.checkoutRef, '') }}:
|
||||
dependencySource: tag-builds
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
|
||||
parameters:
|
||||
dependencyList: ${{ parameters.rocmDependencies }}
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
# CI case: download latest default branch build
|
||||
${{ if eq(parameters.checkoutRef, '') }}:
|
||||
dependencySource: staging
|
||||
# manual build case: triggered by ROCm/ROCm repo
|
||||
${{ elseif ne(parameters.checkoutRef, '') }}:
|
||||
dependencySource: tag-builds
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
|
||||
parameters:
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
|
||||
- job: omniperf_testing
|
||||
dependsOn: omniperf
|
||||
condition: and(succeeded(), eq(variables.ENABLE_GFX942_TESTS, 'true'), not(containsValue(split(variables.DISABLED_GFX942_TESTS, ','), variables['Build.DefinitionName'])))
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
- name: PYTHON_VERSION
|
||||
value: 3.10
|
||||
pool: $(JOB_TEST_POOL)
|
||||
workspace:
|
||||
clean: all
|
||||
strategy:
|
||||
matrix:
|
||||
gfx942:
|
||||
JOB_GPU_TARGET: gfx942
|
||||
JOB_TEST_POOL: ${{ variables.GFX942_TEST_POOL }}
|
||||
steps:
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
|
||||
parameters:
|
||||
aptPackages: ${{ parameters.aptPackages }}
|
||||
pipModules: ${{ parameters.pipModules }}
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
|
||||
parameters:
|
||||
checkoutRepo: ${{ parameters.checkoutRepo }}
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
|
||||
parameters:
|
||||
${{ if eq(parameters.checkoutRef, '') }}:
|
||||
dependencySource: staging
|
||||
${{ elseif ne(parameters.checkoutRef, '') }}:
|
||||
dependencySource: tag-builds
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
|
||||
parameters:
|
||||
dependencyList: ${{ parameters.rocmDependencies }}
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
${{ if eq(parameters.checkoutRef, '') }}:
|
||||
dependencySource: staging
|
||||
${{ elseif ne(parameters.checkoutRef, '') }}:
|
||||
dependencySource: tag-builds
|
||||
- task: Bash@3
|
||||
displayName: Add ROCm binaries to PATH
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
|
||||
- task: Bash@3
|
||||
displayName: Add ROCm compilers to PATH
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
|
||||
parameters:
|
||||
extraBuildFlags: >-
|
||||
-DCMAKE_HIP_ARCHITECTURES=$(JOB_GPU_TARGET)
|
||||
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
|
||||
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/rocm/lib/cmake/hip
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DENABLE_TESTS=ON
|
||||
-DINSTALL_TESTS=ON
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
|
||||
parameters:
|
||||
componentName: omniperf
|
||||
testDir: $(Build.BinariesDirectory)/libexec/omniperf
|
||||
testExecutable: export OMNIPERF_ARCH_OVERRIDE="MI300X"; ctest
|
||||
- task: Bash@3
|
||||
displayName: Remove ROCm binaries from PATH
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
|
||||
- task: Bash@3
|
||||
displayName: Remove ROCm compilers from PATH
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
|
||||
@@ -26,7 +26,6 @@ parameters:
|
||||
- llvm-project
|
||||
- MIOpen
|
||||
- MIVisionX
|
||||
- omniperf
|
||||
- rccl
|
||||
- rdc
|
||||
- rocAL
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
|
||||
parameters:
|
||||
- name: checkoutRef
|
||||
type: string
|
||||
default: refs/tags/$(LATEST_RELEASE_TAG)
|
||||
|
||||
resources:
|
||||
repositories:
|
||||
- repository: pipelines_repo
|
||||
type: github
|
||||
endpoint: ROCm
|
||||
name: ROCm/ROCm
|
||||
- repository: release_repo
|
||||
type: github
|
||||
endpoint: ROCm
|
||||
name: ROCm/omniperf
|
||||
ref: ${{ parameters.checkoutRef }}
|
||||
|
||||
trigger: none
|
||||
pr: none
|
||||
|
||||
jobs:
|
||||
- template: ${{ variables.CI_COMPONENT_PATH }}/omniperf.yml
|
||||
parameters:
|
||||
checkoutRepo: release_repo
|
||||
checkoutRef: ${{ parameters.checkoutRef }}
|
||||
@@ -62,7 +62,7 @@ parameters:
|
||||
ROCgdb: amd-staging
|
||||
rocJPEG: develop
|
||||
rocm-cmake: develop
|
||||
rocm-core: amd-staging
|
||||
rocm-core: master
|
||||
rocm-examples: develop
|
||||
rocminfo: amd-staging
|
||||
rocMLIR: develop
|
||||
|
||||
@@ -107,6 +107,7 @@ FFT
|
||||
FFTs
|
||||
FFmpeg
|
||||
FHS
|
||||
FIXME
|
||||
FMA
|
||||
FP
|
||||
FX
|
||||
@@ -131,6 +132,7 @@ GiB
|
||||
GIM
|
||||
GL
|
||||
GLXT
|
||||
Gloo
|
||||
GMI
|
||||
GPG
|
||||
GPR
|
||||
@@ -148,6 +150,7 @@ HCA
|
||||
HGX
|
||||
HIPCC
|
||||
HIPExtension
|
||||
HIPification
|
||||
HIPIFY
|
||||
HPC
|
||||
HPCG
|
||||
@@ -243,6 +246,7 @@ MyEnvironment
|
||||
MyST
|
||||
NBIO
|
||||
NBIOs
|
||||
NCCL
|
||||
NIC
|
||||
NICs
|
||||
NLI
|
||||
@@ -401,9 +405,14 @@ TensorFlow
|
||||
TensorParallel
|
||||
ToC
|
||||
TorchAudio
|
||||
torchaudio
|
||||
TorchElastic
|
||||
TorchMIGraphX
|
||||
torchrec
|
||||
TorchScript
|
||||
TorchServe
|
||||
torchserve
|
||||
torchtext
|
||||
TorchVision
|
||||
TransferBench
|
||||
TrapStatus
|
||||
@@ -510,6 +519,9 @@ copyable
|
||||
cpp
|
||||
csn
|
||||
cuBLAS
|
||||
cuda
|
||||
cuDNN
|
||||
cudnn
|
||||
cuFFT
|
||||
cuLIB
|
||||
cuRAND
|
||||
@@ -674,6 +686,7 @@ prebuilt
|
||||
precompiled
|
||||
preconditioner
|
||||
preconfigured
|
||||
preemptible
|
||||
prefetch
|
||||
prefetchable
|
||||
prefill
|
||||
@@ -690,6 +703,7 @@ profilers
|
||||
protobuf
|
||||
pseudorandom
|
||||
py
|
||||
recommender
|
||||
quantile
|
||||
quantizer
|
||||
quasirandom
|
||||
|
||||
@@ -50,7 +50,8 @@ The following example shows how to use the repo tool to download the ROCm source
|
||||
```bash
|
||||
mkdir -p ~/ROCm/
|
||||
cd ~/ROCm/
|
||||
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x
|
||||
export ROCM_VERSION=6.3.1
|
||||
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
|
||||
~/bin/repo sync
|
||||
```
|
||||
|
||||
@@ -87,11 +88,11 @@ export ROCM_VERSION=6.3.1
|
||||
# Option 1: Start a docker container
|
||||
# Pulling required base docker images:
|
||||
# Ubuntu20.04 built from ROCm/tools/rocm-build/docker/ubuntu20/Dockerfile
|
||||
docker pull rocm/rocm-build-ubuntu-20.04:6.2
|
||||
docker pull rocm/rocm-build-ubuntu-20.04:6.3
|
||||
# Ubuntu22.04 built from ROCm/tools/rocm-build/docker/ubuntu22/Dockerfile
|
||||
docker pull rocm/rocm-build-ubuntu-22.04:6.2
|
||||
docker pull rocm/rocm-build-ubuntu-22.04:6.3
|
||||
# Ubuntu24.04 built from ROCm/tools/rocm-build/docker/ubuntu24/Dockerfile
|
||||
docker pull rocm/rocm-build-ubuntu-24.04:6.2
|
||||
docker pull rocm/rocm-build-ubuntu-24.04:6.3
|
||||
|
||||
# Start docker container and mount the source code folder:
|
||||
docker run -ti \
|
||||
|
||||
@@ -22,7 +22,7 @@ ROCm Version,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.
|
||||
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
|
||||
,,,,,,,,,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,
|
||||
:doc:`PyTorch <rocm-install-on-linux:install/3rd-party/pytorch-install>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
|
||||
|
@@ -47,7 +47,7 @@ compatibility and system requirements.
|
||||
,gfx908,gfx908,gfx908
|
||||
,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
|
||||
:doc:`PyTorch <rocm-install-on-linux:install/3rd-party/pytorch-install>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
|
||||
:doc:`PyTorch <../compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
|
||||
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.35,0.4.35,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3
|
||||
|
||||
916
docs/compatibility/pytorch-compatibility.rst
Normal file
916
docs/compatibility/pytorch-compatibility.rst
Normal file
@@ -0,0 +1,916 @@
|
||||
.. meta::
|
||||
:description: PyTorch compatibility
|
||||
:keywords: GPU, PyTorch compatibility
|
||||
|
||||
********************************************************************************
|
||||
PyTorch compatibility
|
||||
********************************************************************************
|
||||
|
||||
`PyTorch <https://pytorch.org/>`_ is an open-source tensor library designed for
|
||||
deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
|
||||
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
|
||||
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
|
||||
|
||||
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
|
||||
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
|
||||
|
||||
- ROCm PyTorch release:
|
||||
|
||||
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
|
||||
version.
|
||||
|
||||
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
|
||||
pre-installed.
|
||||
|
||||
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
|
||||
|
||||
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
|
||||
|
||||
- Official PyTorch release:
|
||||
|
||||
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
|
||||
|
||||
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
|
||||
|
||||
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
|
||||
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
|
||||
|
||||
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
|
||||
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
|
||||
manual code modifications.
|
||||
|
||||
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
|
||||
the stable release of ROCm to maintain consistency.
|
||||
|
||||
.. _pytorch-docker-compat:
|
||||
|
||||
Docker image compatibility
|
||||
================================================================================
|
||||
|
||||
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
|
||||
images with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
|
||||
|
||||
.. list-table:: PyTorch Docker image components
|
||||
:header-rows: 1
|
||||
:class: docker-image-compatibility
|
||||
|
||||
* - Docker
|
||||
- PyTorch
|
||||
- Ubuntu
|
||||
- Python
|
||||
- Apex
|
||||
- torchvision
|
||||
- TensorBoard
|
||||
- MAGMA
|
||||
- UCX
|
||||
- OMPI
|
||||
- OFED
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 24.04
|
||||
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3918/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
|
||||
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
|
||||
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 20.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
|
||||
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 22.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
|
||||
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
|
||||
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 20.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
|
||||
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
|
||||
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
Critical ROCm libraries for PyTorch
|
||||
================================================================================
|
||||
|
||||
The functionality of PyTorch with ROCm is shaped by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - ROCm library
|
||||
- Version
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
|
||||
- 1.1.0
|
||||
- Enables faster execution of core operations like matrix multiplication
|
||||
(GEMM), convolutions and transformations.
|
||||
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
|
||||
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
|
||||
and ``torch.nn.MultiheadAttention``.
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Supports operations like matrix multiplication, matrix-vector products,
|
||||
and tensor contractions. Utilized in both dense and batched linear
|
||||
algebra operations.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- hipBLASLt is an extension of the hipBLAS library, providing additional
|
||||
features like epilogues fused into the matrix multiplication kernel or
|
||||
use of integer tensor cores.
|
||||
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
|
||||
matrix multiplications used in convolutional and linear layers.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
|
||||
and ``torch.topk``. Operations on sparse tensors or tensors with
|
||||
irregular shapes often involve scanning, sorting, and filtering, which
|
||||
hipCUB handles efficiently.
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
|
||||
- Used in functions like the ``torch.fft`` module.
|
||||
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
|
||||
- 2.11.0
|
||||
- Provides fast random number generation for GPUs.
|
||||
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
|
||||
``torch.nn.Dropout``.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
|
||||
singular value decompositions (SVD).
|
||||
- Supports functions like ``torch.linalg.solve``,
|
||||
``torch.linalg.eig``, and ``torch.linalg.svd``.
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
|
||||
- 0.2.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
|
||||
- 1.4.0
|
||||
- Optimizes for high-performance tensor operations, such as contractions.
|
||||
- Accelerates tensor algebra, especially in deep learning and scientific
|
||||
computing.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- Optimizes deep learning primitives such as convolutions, pooling,
|
||||
normalization, and activation functions.
|
||||
- Speeds up convolutional neural networks (CNNs), recurrent neural
|
||||
networks (RNNs), and other layers. Used in operations like
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
|
||||
- 2.11.0
|
||||
- Add graph-level optimizations, ONNX models and mixed precision support
|
||||
and enable Ahead-of-Time (AOT) Compilation.
|
||||
- Speeds up inference models and executes ONNX models for
|
||||
compatibility with other frameworks.
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
|
||||
- 3.1.0
|
||||
- Optimizes acceleration for computer vision and AI workloads like
|
||||
preprocessing, augmentation, and inferencing.
|
||||
- Faster data preprocessing and augmentation pipelines for datasets like
|
||||
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
|
||||
and ``torchvision`` workflows.
|
||||
* - `rocAL <https://github.com/ROCm/rocAL>`_
|
||||
- 2.1.0
|
||||
- Accelerates the data pipeline by offloading intensive preprocessing and
|
||||
augmentation tasks. rocAL is part of MIVisionX.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- Optimizes for multi-GPU communication for operations like AllReduce and
|
||||
Broadcast.
|
||||
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
|
||||
Handles communication in multi-GPU setups.
|
||||
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
|
||||
- 0.8.0
|
||||
- Provide hardware-accelerated data decoding capabilities, particularly
|
||||
for image, video, and other dataset formats.
|
||||
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
|
||||
and ``torch.distributed``.
|
||||
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
|
||||
- 0.6.0
|
||||
- Provide hardware-accelerated JPEG image decoding and encoding.
|
||||
- GPU accelerated ``torchvision.io.decode_jpeg`` and
|
||||
``torchvision.io.encode_jpeg`` and can be integrated in
|
||||
``torch.utils.data`` and ``torchvision``.
|
||||
* - `RPP <https://github.com/ROCm/RPP>`_
|
||||
- 1.9.1
|
||||
- Speed up data augmentation, transformation, and other preprocessing step.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Utilized in backend operations for tensor computations requiring
|
||||
parallel processing.
|
||||
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
|
||||
- 1.6.0
|
||||
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
|
||||
multiplication (GEMM) and accumulation operations with mixed precision
|
||||
support.
|
||||
- Linear layers (``torch.nn.Linear``), convolutional layers
|
||||
(``torch.nn.Conv2d``), attention layers, general tensor operations that
|
||||
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
|
||||
more.
|
||||
|
||||
Supported and unsupported features
|
||||
================================================================================
|
||||
|
||||
The following section maps GPU-accelerated PyTorch features to their supported
|
||||
ROCm and PyTorch versions.
|
||||
|
||||
torch
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
|
||||
PyTorch, providing data structures for multi-dimensional tensors and
|
||||
implementing mathematical operations on them. It also includes utilities for
|
||||
efficient serialization of tensors and arbitrary data types, along with various
|
||||
other tools.
|
||||
|
||||
Tensor data types
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
|
||||
|
||||
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``torch.float8_e4m3fn``
|
||||
- 8-bit floating point, e4m3
|
||||
- 2.3
|
||||
- 5.5
|
||||
* - ``torch.float8_e5m2``
|
||||
- 8-bit floating point, e5m2
|
||||
- 2.3
|
||||
- 5.5
|
||||
* - ``torch.float16`` or ``torch.half``
|
||||
- 16-bit floating point
|
||||
- 0.1.6
|
||||
- 2.0
|
||||
* - ``torch.bfloat16``
|
||||
- 16-bit floating point
|
||||
- 1.6
|
||||
- 2.6
|
||||
* - ``torch.float32`` or ``torch.float``
|
||||
- 32-bit floating point
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.float64`` or ``torch.double``
|
||||
- 64-bit floating point
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.complex32`` or ``torch.chalf``
|
||||
- PyTorch provides native support for 32-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.complex64`` or ``torch.cfloat``
|
||||
- PyTorch provides native support for 64-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.complex128`` or ``torch.cdouble``
|
||||
- PyTorch provides native support for 128-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.uint8``
|
||||
- 8-bit integer (unsigned)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.uint16``
|
||||
- 16-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.uint32``
|
||||
- 32-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.uint64``
|
||||
- 32-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.int8``
|
||||
- 8-bit integer (signed)
|
||||
- 1.12
|
||||
- 5.0
|
||||
* - ``torch.int16`` or ``torch.short``
|
||||
- 16-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.int32`` or ``torch.int``
|
||||
- 32-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.int64`` or ``torch.long``
|
||||
- 64-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.bool``
|
||||
- Boolean
|
||||
- 1.2
|
||||
- 2.0
|
||||
* - ``torch.quint8``
|
||||
- Quantized 8-bit integer (unsigned)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.qint8``
|
||||
- Quantized 8-bit integer (signed)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.qint32``
|
||||
- Quantized 32-bit integer (signed)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.quint4x2``
|
||||
- Quantized 4-bit integer (unsigned)
|
||||
- 1.8
|
||||
- 5.0
|
||||
|
||||
.. note::
|
||||
|
||||
Unsigned types aside from ``uint8`` are currently only have limited support in
|
||||
eager mode (they primarily exist to assist usage with ``torch.compile``).
|
||||
|
||||
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
|
||||
collected the native HW support of different data types.
|
||||
|
||||
torch.cuda
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
|
||||
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
|
||||
computations, memory management, and efficient execution of tensor operations,
|
||||
leveraging ROCm and CUDA as the underlying frameworks.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - Device management
|
||||
- Utilities for managing and interacting with GPUs.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Tensor operations on GPU
|
||||
- Perform tensor operations such as addition and matrix multiplications on
|
||||
the GPU.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Streams and events
|
||||
- Streams allow overlapping computation and communication for optimized
|
||||
performance, events enable synchronization.
|
||||
- 1.6.0
|
||||
- 3.8
|
||||
* - Memory management
|
||||
- Functions to manage and inspect memory usage like
|
||||
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
|
||||
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
|
||||
- 0.3.0
|
||||
- 1.9.2
|
||||
* - Running process lists of memory management
|
||||
- Return a human-readable printout of the running processes and their GPU
|
||||
memory use for a given device with functions like
|
||||
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
|
||||
- 1.8.0
|
||||
- 4.0
|
||||
* - Communication collectives
|
||||
- A set of APIs that enable efficient communication between multiple GPUs,
|
||||
allowing for distributed computing and data parallelism.
|
||||
- 1.9.0
|
||||
- 5.0
|
||||
* - ``torch.cuda.CUDAGraph``
|
||||
- Graphs capture sequences of GPU operations to minimize kernel launch
|
||||
overhead and improve performance.
|
||||
- 1.10.0
|
||||
- 5.3
|
||||
* - TunableOp
|
||||
- A mechanism that allows certain operations to be more flexible and
|
||||
optimized for performance. It enables automatic tuning of kernel
|
||||
configurations and other settings to achieve the best possible
|
||||
performance based on the specific hardware (GPU) and workload.
|
||||
- 2.0
|
||||
- 5.4
|
||||
* - NVIDIA Tools Extension (NVTX)
|
||||
- Integration with NVTX for profiling and debugging GPU performance using
|
||||
NVIDIA's Nsight tools.
|
||||
- 1.8.0
|
||||
- ❌
|
||||
* - Lazy loading NVRTC
|
||||
- Delays JIT compilation with NVRTC until the code is explicitly needed.
|
||||
- 1.13.0
|
||||
- ❌
|
||||
* - Jiterator (beta)
|
||||
- Jiterator allows asynchronous data streaming into computation streams
|
||||
during training loops.
|
||||
- 1.13.0
|
||||
- 5.2
|
||||
|
||||
.. Need to validate and extend.
|
||||
|
||||
torch.backends.cuda
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
``torch.backends.cuda`` is a PyTorch module that provides configuration options
|
||||
and flags to control the behavior of CUDA or ROCm operations. It is part of the
|
||||
PyTorch backend configuration system, which allows users to fine-tune how
|
||||
PyTorch interacts with the CUDA or ROCm environment.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``cufft_plan_cache``
|
||||
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
|
||||
- 1.7.0
|
||||
- 5.0
|
||||
* - ``matmul.allow_tf32``
|
||||
- Enables or disables the use of TensorFloat-32 (TF32) precision for
|
||||
faster matrix multiplications on GPUs with Tensor Cores.
|
||||
- 1.10.0
|
||||
- ❌
|
||||
* - ``matmul.allow_fp16_reduced_precision_reduction``
|
||||
- Reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
allowed with fp16 GEMMs.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``matmul.allow_bf16_reduced_precision_reduction``
|
||||
- Reduced precision reductions are allowed with bf16 GEMMs.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``enable_cudnn_sdp``
|
||||
- Globally enables cuDNN SDPA's kernels within SDPA.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``enable_flash_sdp``
|
||||
- Globally enables or disables FlashAttention for SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
* - ``enable_mem_efficient_sdp``
|
||||
- Globally enables or disables Memory-Efficient Attention for SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
* - ``enable_math_sdp``
|
||||
- Globally enables or disables the PyTorch C++ implementation within SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
|
||||
.. Need to validate and extend.
|
||||
|
||||
torch.backends.cudnn
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Supported ``torch`` options:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``allow_tf32``
|
||||
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
|
||||
Ampere or newer GPUs.
|
||||
- 1.12.0
|
||||
- ❌
|
||||
* - ``deterministic``
|
||||
- A bool that, if True, causes cuDNN to only use deterministic
|
||||
convolution algorithms.
|
||||
- 1.12.0
|
||||
- 6.0
|
||||
|
||||
Automatic mixed precision: torch.amp
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
PyTorch that automates the process of using both 16-bit (half-precision,
|
||||
float16) and 32-bit (single-precision, float32) floating-point types in model
|
||||
training and inference.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - Autocasting
|
||||
- Instances of autocast serve as context managers or decorators that allow
|
||||
regions of your script to run in mixed precision.
|
||||
- 1.9
|
||||
- 2.5
|
||||
* - Gradient scaling
|
||||
- To prevent underflow, “gradient scaling” multiplies the network’s
|
||||
loss(es) by a scale factor and invokes a backward pass on the scaled
|
||||
loss(es). Gradients flowing backward through the network are then
|
||||
scaled by the same factor. In other words, gradient values have a
|
||||
larger magnitude, so they don’t flush to zero.
|
||||
- 1.9
|
||||
- 2.5
|
||||
* - CUDA op-specific behavior
|
||||
- These ops always go through autocasting whether they are invoked as part
|
||||
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
|
||||
functions are exposed in multiple namespaces, they go through
|
||||
autocasting regardless of the namespace.
|
||||
- 1.9
|
||||
- 2.5
|
||||
|
||||
Distributed library features
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The PyTorch distributed library includes a collective of parallelism modules, a
|
||||
communications layer, and infrastructure for launching and debugging large
|
||||
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
|
||||
|
||||
The Distributed Library feature in PyTorch provides tools and APIs for building
|
||||
and running distributed machine learning workflows. It allows training models
|
||||
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
|
||||
of computational resources and scalability for large-scale tasks.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - TensorPipe
|
||||
- TensorPipe is a point-to-point communication library integrated into
|
||||
PyTorch for distributed training. It is designed to handle tensor data
|
||||
transfers efficiently between different processes or devices, including
|
||||
those on separate machines.
|
||||
- 1.8
|
||||
- 5.4
|
||||
* - Gloo
|
||||
- Gloo is designed for multi-machine and multi-GPU setups, enabling
|
||||
efficient communication and synchronization between processes. Gloo is
|
||||
one of the default backends for PyTorch's Distributed Data Parallel
|
||||
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
|
||||
- 1.0
|
||||
- 2.0
|
||||
|
||||
torch.compiler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``torch.compiler`` (AOT Autograd)
|
||||
- Autograd captures not only the user-level code, but also backpropagation,
|
||||
which results in capturing the backwards pass “ahead-of-time”. This
|
||||
enables acceleration of both forwards and backwards pass using
|
||||
``TorchInductor``.
|
||||
- 2.0
|
||||
- 5.3
|
||||
* - ``torch.compiler`` (TorchInductor)
|
||||
- The default ``torch.compile`` deep learning compiler that generates fast
|
||||
code for multiple accelerators and backends. You need to use a backend
|
||||
compiler to make speedups through ``torch.compile`` possible. For AMD,
|
||||
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
|
||||
- 2.0
|
||||
- 5.3
|
||||
|
||||
torchaudio
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
|
||||
utilities for processing audio data in PyTorch, such as audio loading,
|
||||
transformations, and feature extraction.
|
||||
|
||||
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
|
||||
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
|
||||
|
||||
The following ``torchaudio`` features are GPU-accelerated.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since torchaudio version
|
||||
- Since ROCm
|
||||
* - ``torchaudio.transforms.Spectrogram``
|
||||
- Generate spectrogram of an input waveform using STFT.
|
||||
- 0.6.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MelSpectrogram``
|
||||
- Generate the mel-scale spectrogram of raw audio signals.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MFCC``
|
||||
- Extract of MFCC features.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.Resample``
|
||||
- Resample a signal from one frequency to another
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
|
||||
torchvision
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
|
||||
provide datasets, model architectures, and common image transformations for
|
||||
computer vision.
|
||||
|
||||
The following ``torchvision`` features are GPU-accelerated.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since torchvision version
|
||||
- Since ROCm
|
||||
* - ``torchvision.transforms.functional``
|
||||
- Provides GPU-compatible transformations for image preprocessing like
|
||||
resize, normalize, rotate and crop.
|
||||
- 0.2.0
|
||||
- 4.0
|
||||
* - ``torchvision.ops``
|
||||
- GPU-accelerated operations for object detection and segmentation tasks.
|
||||
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
|
||||
``box_convert``.
|
||||
- 0.6.0
|
||||
- 3.3
|
||||
* - ``torchvision.models`` with ``.to('cuda')``
|
||||
- ``torchvision`` provides several pre-trained models (ResNet, Faster
|
||||
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
|
||||
training.
|
||||
- 0.1.6
|
||||
- 2.x
|
||||
* - ``torchvision.io``
|
||||
- Video decoding and frame extraction using GPU acceleration with NVIDIA’s
|
||||
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
|
||||
- 0.4.0
|
||||
- 6.3
|
||||
|
||||
torchtext
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
|
||||
utilities for processing and working with text data in PyTorch, including
|
||||
tokenization, vocabulary management, and text embeddings. torchtext supports
|
||||
preprocessing pipelines and integration with PyTorch models, simplifying the
|
||||
implementation of natural language processing (NLP) tasks.
|
||||
|
||||
To leverage GPU acceleration in torchtext, you need to move tensors
|
||||
explicitly to the GPU using ``.to('cuda')``.
|
||||
|
||||
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchtune
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
|
||||
authoring, fine-tuning and experimenting with LLMs.
|
||||
|
||||
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchserve
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchserve <https://pytorch.org/torchserve/>`_ is a PyTorch domain library
|
||||
for common sparsity and parallelism primitives needed for large-scale recommender
|
||||
systems.
|
||||
|
||||
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchrec
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
|
||||
common sparsity and parallelism primitives needed for large-scale recommender
|
||||
systems.
|
||||
|
||||
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
Unsupported PyTorch features
|
||||
----------------------------
|
||||
|
||||
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
|
||||
|
||||
.. list-table::
|
||||
:widths: 30, 60, 10
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
* - APEX batch norm
|
||||
- Use APEX batch norm instead of PyTorch batch norm.
|
||||
- 1.6.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
|
||||
- A bool that controls whether TensorFloat-32 tensor cores may be used in
|
||||
matrix multiplications.
|
||||
- 1.7
|
||||
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
|
||||
- Integration with NVTX for profiling and debugging GPU performance using
|
||||
NVIDIA's Nsight tools.
|
||||
- 1.7.0
|
||||
* - ``torch.cuda`` / Lazy loading NVRTC
|
||||
- Delays JIT compilation with NVRTC until the code is explicitly needed.
|
||||
- 1.8.0
|
||||
* - ``torch-tensorrt``
|
||||
- Integrate TensorRT library for optimizing and deploying PyTorch models.
|
||||
ROCm does not have equialent library for TensorRT.
|
||||
- 1.9.0
|
||||
* - ``torch.backends`` / ``cudnn.allow_tf32``
|
||||
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
|
||||
- 1.10.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
|
||||
- Reduced precision reductions with fp16 accumulation type are
|
||||
allowed with fp16 GEMMs.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
|
||||
- Reduced precision reductions are allowed with bf16 GEMMs.
|
||||
- 2.0
|
||||
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
|
||||
- Flash attention backend for SDPA to accelerate attention computation in
|
||||
transformer-based models.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
|
||||
- Globally enables cuDNN SDPA's kernels within SDPA.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
|
||||
- Globally enables or disables FlashAttention for SDPA.
|
||||
- 2.1
|
||||
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
|
||||
- Globally enables or disables Memory-Efficient Attention for SDPA.
|
||||
- 2.1
|
||||
* - ``torch.backends.cuda`` / ``enable_math_sdp``
|
||||
- Globally enables or disables the PyTorch C++ implementation within SDPA.
|
||||
- 2.1
|
||||
* - Dynamic parallelism
|
||||
- PyTorch itself does not directly expose dynamic parallelism as a core
|
||||
feature. Dynamic parallelism allow GPU threads to launch additional
|
||||
threads which can be reached using custom operations via the
|
||||
``torch.utils.cpp_extension`` module.
|
||||
- Not a core feature
|
||||
* - Unified memory support in PyTorch
|
||||
- Unified Memory is not directly exposed in PyTorch's core API, it can be
|
||||
utilized effectively through custom CUDA extensions or advanced
|
||||
workflows.
|
||||
- Not a core feature
|
||||
|
||||
Use cases and recommendations
|
||||
================================================================================
|
||||
|
||||
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/train-a-model>` provides
|
||||
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
|
||||
for optimizing training workflows on AMD GPUs using PyTorch features.
|
||||
|
||||
* :doc:`Single-GPU fine-tuning and inference </how-to/llm-fine-tuning-optimization/single-gpu-fine-tuning-and-inference>`
|
||||
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
|
||||
machine learning models, particularly large language models (LLMs), on systems with a single AMD
|
||||
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
|
||||
executing fine-tuning and inference workflows in such environments.
|
||||
|
||||
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/llm-fine-tuning-optimization/multi-gpu-fine-tuning-and-inference>`
|
||||
describes and demonstrates the fine-tuning and inference of machine learning models on systems
|
||||
with multi MI300X accelerators.
|
||||
|
||||
* The :doc:`Instinct MI300X workload optimization guide </how-to/tuning-guides/mi300x/workload>` provides detailed
|
||||
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
|
||||
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
|
||||
accelerator.
|
||||
|
||||
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
|
||||
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
|
||||
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
|
||||
|
||||
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 13 KiB |
@@ -11,20 +11,24 @@ ROCm provides a comprehensive ecosystem for deep learning development, including
|
||||
deep learning frameworks and libraries such as PyTorch, TensorFlow, and JAX. ROCm works closely with these
|
||||
frameworks to ensure that framework-specific optimizations take advantage of AMD accelerator and GPU architectures.
|
||||
|
||||
The following guides cover installation processes for ROCm-aware deep learning frameworks.
|
||||
The following guides provide information on compatibility and supported
|
||||
features for these ROCm-enabled deep learning frameworks.
|
||||
|
||||
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
|
||||
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
|
||||
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
|
||||
* :doc:`PyTorch compatibility <../compatibility/pytorch-compatibility>`
|
||||
.. * :doc:`TensorFlow compatibility <../compatibility/tensorflow-compatibility>`
|
||||
.. * :doc:`JAX compatibility <../compatibility/jax-compatibility>`
|
||||
|
||||
The following chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
|
||||
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
|
||||
|
||||
.. image:: ../data/how-to/framework_install_2024_07_04.png
|
||||
:alt: Flowchart for installing ROCm-aware machine learning frameworks
|
||||
:align: center
|
||||
|
||||
Find information on version compatibility and framework release notes in :doc:`Third-party support matrix
|
||||
<rocm-install-on-linux:reference/3rd-party-support-matrix>`.
|
||||
See the installation instructions to get started.
|
||||
|
||||
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
|
||||
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
|
||||
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
|
||||
|
||||
.. note::
|
||||
|
||||
@@ -36,3 +40,4 @@ through the following guides.
|
||||
* :doc:`rocm-for-ai/index`
|
||||
|
||||
* :doc:`llm-fine-tuning-optimization/index`
|
||||
|
||||
|
||||
@@ -1,264 +0,0 @@
|
||||
.. meta::
|
||||
:description: GPU-enabled Message Passing Interface
|
||||
:keywords: Message Passing Interface, MPI, AMD, ROCm
|
||||
|
||||
***************************************************************************************************
|
||||
GPU-enabled Message Passing Interface
|
||||
***************************************************************************************************
|
||||
|
||||
The Message Passing Interface (`MPI <https://www.mpi-forum.org>`_) is a standard API for distributed
|
||||
and parallel application development that can scale to multi-node clusters. To facilitate the porting of
|
||||
applications to clusters with GPUs, ROCm enables various technologies. You can use these
|
||||
technologies add GPU pointers to MPI calls and enable ROCm-aware MPI libraries to deliver optimal
|
||||
performance for both intra-node and inter-node GPU-to-GPU communication.
|
||||
|
||||
The AMD kernel driver exposes remote direct memory access (RDMA) through *PeerDirect* interfaces.
|
||||
This allows network interface cards (NICs) to directly read and write to RDMA-capable GPU device
|
||||
memory, resulting in high-speed direct memory access (DMA) transfers between GPU and NIC. These
|
||||
interfaces are used to optimize inter-node MPI message communication.
|
||||
|
||||
The Open MPI project is an open source implementation of the MPI. It's developed and maintained by
|
||||
a consortium of academic, research, and industry partners. To compile Open MPI with ROCm support,
|
||||
refer to the following sections:
|
||||
|
||||
* :ref:`open-mpi-ucx`
|
||||
* :ref:`open-mpi-libfabric`
|
||||
|
||||
.. _open-mpi-ucx:
|
||||
|
||||
ROCm-aware Open MPI on InfiniBand and RoCE networks using UCX
|
||||
================================================================
|
||||
|
||||
The `Unified Communication Framework <https://www.openucx.org/documentation>`_ (UCX), is an
|
||||
open source, cross-platform framework designed to provide a common set of communication
|
||||
interfaces for various network programming models and interfaces. UCX uses ROCm technologies to
|
||||
implement various network operation primitives. UCX is the standard communication library for
|
||||
InfiniBand and RDMA over Converged Ethernet (RoCE) network interconnect. To optimize data
|
||||
transfer operations, many MPI libraries, including Open MPI, can leverage UCX internally.
|
||||
|
||||
UCX and Open MPI have a compile option to enable ROCm support. To install and configure UCX to compile Open MPI for ROCm, use the following instructions.
|
||||
|
||||
1. Set environment variables to install all software components in the same base directory. We use the
|
||||
home directory in our example, but you can specify a different location if you want.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export INSTALL_DIR=$HOME/ompi_for_gpu
|
||||
export BUILD_DIR=/tmp/ompi_for_gpu_build
|
||||
mkdir -p $BUILD_DIR
|
||||
|
||||
2. Install UCX. To view UCX and ROCm version compatibility, refer to the
|
||||
`communication libraries tables <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/3rd-party-support-matrix.html>`_
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export UCX_DIR=$INSTALL_DIR/ucx
|
||||
cd $BUILD_DIR
|
||||
git clone https://github.com/openucx/ucx.git -b v1.15.x
|
||||
cd ucx
|
||||
./autogen.sh
|
||||
mkdir build
|
||||
cd build
|
||||
../configure -prefix=$UCX_DIR \
|
||||
--with-rocm=/opt/rocm
|
||||
make -j $(nproc)
|
||||
make -j $(nproc) install
|
||||
|
||||
3. Install Open MPI.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export OMPI_DIR=$INSTALL_DIR/ompi
|
||||
cd $BUILD_DIR
|
||||
git clone --recursive https://github.com/open-mpi/ompi.git \
|
||||
-b v5.0.x
|
||||
cd ompi
|
||||
./autogen.pl
|
||||
mkdir build
|
||||
cd build
|
||||
../configure --prefix=$OMPI_DIR --with-ucx=$UCX_DIR \
|
||||
--with-rocm=/opt/rocm
|
||||
make -j $(nproc)
|
||||
make install
|
||||
|
||||
.. _rocm-enabled-osu:
|
||||
|
||||
ROCm-enabled OSU benchmarks
|
||||
---------------------------------------------------------------------------------------------------------------
|
||||
|
||||
You can use OSU Micro Benchmarks (OMB) to evaluate the performance of various primitives on
|
||||
ROCm-supported AMD GPUs. The ``--enable-rocm`` option exposes this functionality.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export OSU_DIR=$INSTALL_DIR/osu
|
||||
cd $BUILD_DIR
|
||||
wget http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-7.2.tar.gz
|
||||
tar xfz osu-micro-benchmarks-7.2.tar.gz
|
||||
cd osu-micro-benchmarks-7.2
|
||||
./configure --enable-rocm \
|
||||
--with-rocm=/opt/rocm \
|
||||
CC=$OMPI_DIR/bin/mpicc CXX=$OMPI_DIR/bin/mpicxx \
|
||||
LDFLAGS="-L$OMPI_DIR/lib/ -lmpi -L/opt/rocm/lib/ \
|
||||
$(hipconfig -C) -lamdhip64" CXXFLAGS="-std=c++11"
|
||||
make -j $(nproc)
|
||||
|
||||
Intra-node run
|
||||
----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
Before running an Open MPI job, you must set the following environment variables to ensure that
|
||||
you're using the correct versions of Open MPI and UCX.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export LD_LIBRARY_PATH=$OMPI_DIR/lib:$UCX_DIR/lib:/opt/rocm/lib
|
||||
export PATH=$OMPI_DIR/bin:$PATH
|
||||
|
||||
To run the OSU bandwidth benchmark between the first two GPU devices (``GPU 0`` and ``GPU 1``)
|
||||
inside the same node, use the following code.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
$OMPI_DIR/bin/mpirun -np 2 \
|
||||
-x UCX_TLS=sm,self,rocm \
|
||||
--mca pml ucx \
|
||||
./c/mpi/pt2pt/standard/osu_bw D D
|
||||
|
||||
This measures the unidirectional bandwidth from the first device (``GPU 0``) to the second device
|
||||
(``GPU 1``). To select specific devices, for example ``GPU 2`` and ``GPU 3``, include the following
|
||||
command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export HIP_VISIBLE_DEVICES=2,3
|
||||
|
||||
To force using a copy kernel instead of a DMA engine for the data transfer, use the following
|
||||
command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export HSA_ENABLE_SDMA=0
|
||||
|
||||
The following output shows the effective transfer bandwidth measured for inter-die data transfer
|
||||
between ``GPU 2`` and ``GPU 3`` on a system with MI250 GPUs. For messages larger than 67 MB, an effective
|
||||
utilization of about 150 GB/sec is achieved:
|
||||
|
||||
.. image:: ../data/how-to/gpu-enabled-mpi-1.png
|
||||
:width: 400
|
||||
:alt: Inter-GPU bandwidth for various payload sizes
|
||||
|
||||
Collective operations
|
||||
----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
Collective operations on GPU buffers are best handled through the Unified Collective Communication
|
||||
(UCC) library component in Open MPI. To accomplish this, you must configure and compile the UCC
|
||||
library with ROCm support.
|
||||
|
||||
.. note::
|
||||
|
||||
You can verify UCC and ROCm version compatibility using the
|
||||
`communication libraries tables <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/3rd-party-support-matrix.html>`_
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export UCC_DIR=$INSTALL_DIR/ucc
|
||||
git clone https://github.com/openucx/ucc.git -b v1.2.x
|
||||
cd ucc
|
||||
./autogen.sh
|
||||
./configure --with-rocm=/opt/rocm \
|
||||
--with-ucx=$UCX_DIR \
|
||||
--prefix=$UCC_DIR
|
||||
make -j && make install
|
||||
|
||||
# Configure and compile Open MPI with UCX, UCC, and ROCm support
|
||||
cd ompi
|
||||
./configure --with-rocm=/opt/rocm \
|
||||
--with-ucx=$UCX_DIR \
|
||||
--with-ucc=$UCC_DIR
|
||||
--prefix=$OMPI_DIR
|
||||
|
||||
To use the UCC component with an MPI application, you must set additional parameters:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mpirun --mca pml ucx --mca osc ucx \
|
||||
--mca coll_ucc_enable 1 \
|
||||
--mca coll_ucc_priority 100 -np 64 ./my_mpi_app
|
||||
|
||||
.. _open-mpi-libfabric:
|
||||
|
||||
ROCm-aware Open MPI using libfabric
|
||||
================================================================
|
||||
|
||||
For network interconnects that are not covered in the previous category, such as HPE Slingshot,
|
||||
ROCm-aware communication can often be achieved through the libfabric library. For more information,
|
||||
refer to the `libfabric documentation <https://github.com/ofiwg/libfabric/wiki>`_.
|
||||
|
||||
.. note::
|
||||
|
||||
When using Open MPI v5.0.x with libfabric support, shared memory communication between
|
||||
processes on the same node goes through the *ob1/sm* component. This component has
|
||||
fundamental support for GPU memory that is, accomplished by using a staging host buffer
|
||||
Consequently, the performance of device-to-device shared memory communication is lower than
|
||||
the theoretical peak performance allowed by the GPU-to-GPU interconnect.
|
||||
|
||||
1. Install libfabric. Note that libfabric is often pre-installed. To determine if it's already installed, run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
module avail libfabric
|
||||
|
||||
Alternatively, you can download and compile libfabric with ROCm support. Note that not all
|
||||
components required to support some networks (e.g., HPE Slingshot) are available in the open source
|
||||
repository. Therefore, using a pre-installed libfabric library is strongly recommended over compiling
|
||||
libfabric manually.
|
||||
|
||||
If a pre-compiled libfabric library is available on your system, you can skip the following step.
|
||||
|
||||
2. Compile libfabric with ROCm support.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export OFI_DIR=$INSTALL_DIR/ofi
|
||||
cd $BUILD_DIR
|
||||
git clone https://github.com/ofiwg/libfabric.git -b v1.19.x
|
||||
cd libfabric
|
||||
./autogen.sh
|
||||
./configure --prefix=$OFI_DIR \
|
||||
--with-rocr=/opt/rocm
|
||||
make -j $(nproc)
|
||||
make install
|
||||
|
||||
Installing Open MPI with libfabric support
|
||||
----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
To build Open MPI with libfabric, use the following code:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export OMPI_DIR=$INSTALL_DIR/ompi
|
||||
cd $BUILD_DIR
|
||||
git clone --recursive https://github.com/open-mpi/ompi.git \
|
||||
-b v5.0.x
|
||||
cd ompi
|
||||
./autogen.pl
|
||||
mkdir build
|
||||
cd build
|
||||
../configure --prefix=$OMPI_DIR --with-ofi=$OFI_DIR \
|
||||
--with-rocm=/opt/rocm
|
||||
make -j $(nproc)
|
||||
make install
|
||||
|
||||
ROCm-aware OSU with Open MPI and libfabric
|
||||
----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
Compiling a ROCm-aware version of OSU benchmarks with Open MPI and libfabric uses the same
|
||||
process described in :ref:`rocm-enabled-osu`.
|
||||
|
||||
To run an OSU benchmark using multiple nodes, use the following code:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export LD_LIBRARY_PATH=$OMPI_DIR/lib:$OFI_DIR/lib64:/opt/rocm/lib
|
||||
$OMPI_DIR/bin/mpirun --mca pml ob1 --mca btl_ofi_mode 2 -np 2 \
|
||||
./c/mpi/pt2pt/standard/osu_bw D D
|
||||
@@ -399,9 +399,6 @@ Further reading
|
||||
- To learn how to optimize inference on LLMs, see
|
||||
:doc:`Fine-tuning LLMs and inference optimization </how-to/llm-fine-tuning-optimization/index>`.
|
||||
|
||||
- For a list of other ready-made Docker images for ROCm, see the
|
||||
:doc:`Docker image support matrix <rocm-install-on-linux:reference/docker-image-support-matrix>`.
|
||||
|
||||
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
|
||||
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
|
||||
|
||||
|
||||
@@ -92,7 +92,7 @@ involves configuring tensor parallelism, leveraging advanced features, and
|
||||
ensuring efficient execution. Here’s how to optimize vLLM performance:
|
||||
|
||||
* Tensor parallelism: Configure the
|
||||
:ref:`tensor-parallel-size parameter <mi300x-vllm-optimize-tp-gemm>` to distribute
|
||||
:ref:`tensor-parallel-size parameter <mi300x-vllm-multiple-gpus>` to distribute
|
||||
tensor computations across multiple GPUs. Adjust parameters such as
|
||||
``batch-size``, ``input-len``, and ``output-len`` based on your workload.
|
||||
|
||||
|
||||
@@ -42,7 +42,6 @@ ROCm documentation is organized into the following categories:
|
||||
* [Fine-tune LLMs and inference optimization](./how-to/llm-fine-tuning-optimization/index.rst)
|
||||
* [System optimization](./how-to/system-optimization/index.rst)
|
||||
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)
|
||||
* [GPU cluster networking](https://rocm.docs.amd.com/projects/gpu-cluster-networking/en/latest/index.html)
|
||||
* [System debugging](./how-to/system-debugging.md)
|
||||
* [Use MPI](./how-to/gpu-enabled-mpi.rst)
|
||||
* [Use advanced compiler features](./conceptual/compiler-topics.md)
|
||||
|
||||
@@ -94,10 +94,6 @@ subtrees:
|
||||
title: System tuning
|
||||
- file: how-to/tuning-guides/mi300x/workload.rst
|
||||
title: Workload tuning
|
||||
- url: https://rocm.docs.amd.com/projects/gpu-cluster-networking/en/${branch}/index.html
|
||||
title: GPU cluster networking
|
||||
- file: how-to/gpu-enabled-mpi.rst
|
||||
title: Use MPI
|
||||
- file: how-to/system-debugging.md
|
||||
- file: conceptual/compiler-topics.md
|
||||
title: Use advanced compiler features
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
rocm-docs-core==1.11.0
|
||||
rocm-docs-core==1.12.0
|
||||
sphinx-reredirects
|
||||
sphinx-sitemap
|
||||
|
||||
@@ -90,7 +90,7 @@ requests==2.32.3
|
||||
# via
|
||||
# pygithub
|
||||
# sphinx
|
||||
rocm-docs-core==1.11.0
|
||||
rocm-docs-core==1.12.0
|
||||
# via -r requirements.in
|
||||
smmap==5.0.1
|
||||
# via gitdb
|
||||
|
||||
Reference in New Issue
Block a user