Compare commits

...

13 Commits

Author SHA1 Message Date
Adel Johar
a93ac383c2 Docs: Update JAX compatibility page 2025-02-13 16:58:05 +01:00
Peter Park
2751a17cf0 Update vLLM benchmarking guide (#4347)
* update vllm-benchmark

fix hlist overflow

update standalone benchmarking options

update list of models

fix typo and model name

unnecessary duplicate info

update formatting

update vllm benchmark guide

- remove Llama 2 FP8
- add Jais 13B
- update commands

update docker pull tag

update MAD available models

remove extra mad models not relevant to vllm

update PyTorch version

add changelog

add model names to .wordlist.txt

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* fix typo

* update link

* fix link text

* change changelog to previous versions

* fix typo

* remove "for"

---------

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>
2025-02-05 17:18:35 -05:00
Peter Park
9b0ae86b1b Fix ROCm Bandwidth Test license type
Fix ROCm Bandwidth Test license type
2025-02-05 16:40:31 -05:00
harkgill-amd
16f7cb4c04 Update issue workflow to trigger on edit (#4346) 2025-02-05 14:46:16 -05:00
harkgill-amd
de007b6faf Update issue_retrieval.yml (#4342) 2025-02-05 13:21:44 -05:00
Daniel Su
aa1333269c Ex CI: add ROCM_PATH to rocBLAS (#4343) 2025-02-05 13:20:36 -05:00
Pratik Basyal
acb8f60304 Radeon support note updated in 6.3.2 (#4339) 2025-02-04 17:44:24 -05:00
Istvan Kiss
faa67965dd Precision support page update 2025-02-04 16:17:31 +01:00
Daniel Su
7179f2a72f Ex CI: add REPO_RADEON_VERSION as a global variable, clean up other variables (#4334) 2025-02-03 16:04:07 -05:00
Daniel Su
0df0f74312 Ex CI: rocprof-sdk & rocprof-systems VCN tracing dependencies (#4332) 2025-02-03 11:00:52 -05:00
Pratik Basyal
f885b5df6e Updated ROCm install on Linux installation method link (#4313) 2025-01-31 16:48:33 -05:00
dependabot[bot]
ee70cb0bb5 Build(deps): Bump rocm-docs-core from 1.13.0 to 1.15.0 in /docs/sphinx (#4315)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.13.0 to 1.15.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.13.0...v1.15.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-29 17:14:55 -07:00
Jeffrey Novotny
d401b5f152 Add ToC and index links to the AI Developer Tutorials (#4312)
* Add ToC and index links to the AI Developer Tutorials

* Change link positioning

* Change wording
2025-01-29 14:43:32 -05:00
31 changed files with 501 additions and 424 deletions

View File

@@ -59,14 +59,10 @@ jobs:
value: $(Build.BinariesDirectory)/rocm
- name: TENSILE_ROCM_ASSEMBLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
- name: CMAKE_CXX_COMPILER
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
- name: TENSILE_ROCM_PATH
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin:$(Agent.BuildDirectory)/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: DAY_STRING
value: $[format('{0:ddMMyyyy}', pipeline.startTime)]
pool: ${{ variables.ULTRA_BUILD_POOL }}
@@ -154,9 +150,8 @@ jobs:
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/amdclang
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- TENSILE_ROCM_PATH:::/home/user/workspace/rocm/bin/hipcc
- ROCM_PATH:::/home/user/workspace/rocm
extraCopyDirectories:
- deps

View File

@@ -64,10 +64,10 @@ jobs:
value: $(Build.BinariesDirectory)/rocm
- name: TENSILE_ROCM_ASSEMBLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang
- name: CMAKE_CXX_COMPILER
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
@@ -96,8 +96,8 @@ jobs:
-DCMAKE_TOOLCHAIN_FILE=toolchain-linux.cmake
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DTensile_CODE_OBJECT_VERSION=default
-DTensile_LOGIC=asm_full
@@ -125,8 +125,8 @@ jobs:
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
- job: rocBLAS_testing
dependsOn: rocBLAS

View File

@@ -49,21 +49,10 @@ jobs:
workspace:
clean: all
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -104,21 +93,10 @@ jobs:
JOB_GPU_TARGET: gfx942
JOB_TEST_POOL: ${{ variables.GFX942_TEST_POOL }}
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml

View File

@@ -48,21 +48,10 @@ jobs:
gfx942:
JOB_GPU_TARGET: gfx942
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -106,21 +95,10 @@ jobs:
JOB_GPU_TARGET: gfx942
JOB_TEST_POOL: ${{ variables.GFX942_TEST_POOL }}
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml

View File

@@ -36,7 +36,7 @@ jobs:
-DCPACK_GENERATOR=DEB
-DCPACK_DEBIAN_PACKAGE_RELEASE="local.9999~99.99"
-DCPACK_RPM_PACKAGE_RELEASE="local.9999"
-DROCM_VERSION="$(next-release)"
-DROCM_VERSION="$(NEXT_RELEASE_VERSION)"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -35,7 +35,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerRadeon: true
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -37,6 +37,8 @@ parameters:
- clr
- llvm-project
- rccl
- rocDecode
- rocJPEG
- rocm-cmake
- rocm-core
- rocminfo
@@ -60,7 +62,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerRadeon: true
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -99,6 +101,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true
- job: rocprofiler_sdk_testing
dependsOn: rocprofiler_sdk
@@ -119,7 +122,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerRadeon: true
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -155,3 +158,4 @@ jobs:
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true

View File

@@ -46,13 +46,14 @@ parameters:
- name: rocmDependencies
type: object
default:
- amdsmi
- aomp
- clr
- llvm-project
- rccl
- rocDecode
- rocJPEG
- rocm-core
- rocm_smi_lib
- rocminfo
- ROCR-Runtime
- rocprofiler-register
@@ -75,7 +76,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerRadeon: true
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -159,7 +160,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerRadeon: true
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -19,7 +19,7 @@ jobs:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
container:
image: ${{ variables.DOCKER_IMAGE_NAME }}:${{ variables.LATEST_DOCKER_VERSION }}
image: rocm/dev-ubuntu-22.04:${{ variables.LATEST_RELEASE_VERSION }}
workspace:
clean: all
steps:

View File

@@ -4,13 +4,13 @@ steps:
inputs:
targetType: inline
script: |
export packageName=$(curl -s https://repo.radeon.com/rocm/apt/latest/pool/main/h/hsa-amd-aqlprofile/ | grep -oP "href=\"\K[^\"]*$(lsb_release -rs)[^\"]*\.deb")
export packageName=$(curl -s https://repo.radeon.com/rocm/apt/$(REPO_RADEON_VERSION)/pool/main/h/hsa-amd-aqlprofile/ | grep -oP "href=\"\K[^\"]*$(lsb_release -rs)[^\"]*\.deb")
echo "##vso[task.setvariable variable=packageName;isreadonly=true]$packageName"
- task: Bash@3
displayName: 'Download aqlprofile'
inputs:
targetType: inline
script: wget -nv https://repo.radeon.com/rocm/apt/latest/pool/main/h/hsa-amd-aqlprofile/$(packageName)
script: wget -nv https://repo.radeon.com/rocm/apt/$(REPO_RADEON_VERSION)/pool/main/h/hsa-amd-aqlprofile/$(packageName)
workingDirectory: '$(Pipeline.Workspace)'
- task: Bash@3
displayName: 'Extract aqlprofile'

View File

@@ -6,21 +6,21 @@ parameters:
- name: pipModules
type: object
default: []
- name: registerRadeon
- name: registerROCmPackages
type: boolean
default: false
steps:
- ${{ if eq(parameters.registerRadeon, true) }}:
- ${{ if eq(parameters.registerROCmPackages, true) }}:
- task: Bash@3
displayName: 'Register repo.radeon packages'
displayName: 'Register AMDGPU & ROCm repos'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/latest/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/latest jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$(REPO_RADEON_VERSION)/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$(REPO_RADEON_VERSION) jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
# firefox takes time to upgrade and is not needed for CI workloads, hold version

View File

@@ -154,8 +154,8 @@ steps:
script: |
echo "RUN mkdir --parents --mode=0755 /etc/apt/keyrings" >> Dockerfile
echo "RUN wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | tee /etc/apt/keyrings/rocm.gpg > /dev/null" >> Dockerfile
echo "RUN echo \"deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/latest/ubuntu jammy main\" | tee /etc/apt/sources.list.d/amdgpu.list" >> Dockerfile
echo "RUN echo \"deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/latest jammy main\" | tee --append /etc/apt/sources.list.d/rocm.list" >> Dockerfile
echo "RUN echo \"deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$(REPO_RADEON_VERSION)/ubuntu jammy main\" | tee /etc/apt/sources.list.d/amdgpu.list" >> Dockerfile
echo "RUN echo \"deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$(REPO_RADEON_VERSION) jammy main\" | tee --append /etc/apt/sources.list.d/rocm.list" >> Dockerfile
echo "RUN printf 'Package: *\\nPin: release o=repo.radeon.com\\nPin-Priority: 600' > /etc/apt/preferences.d/rocm-pin-600" >> Dockerfile
echo "RUN DEBIAN_FRONTEND=noninteractive apt-get --yes update" >> Dockerfile
- ${{ if eq(parameters.registerCUDAPackages, true) }}:

View File

@@ -27,14 +27,14 @@ variables:
value: rocm-ci_larger_base_disk_pool
- name: GFX942_TEST_POOL
value: gfx942_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.3.2
- name: REPO_RADEON_VERSION
value: 6.3.2
- name: NEXT_RELEASE_VERSION
value: 6.4.0
- name: LATEST_RELEASE_TAG
value: rocm-6.1.0
- name: DOCKER_IMAGE_NAME
value: rocm/dev-ubuntu-22.04
- name: LATEST_DOCKER_VERSION
value: 6.1
- name: KEYRING_VERSION
value: 6.3
value: rocm-6.3.2
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID
value: 197
- name: AMDMIGRAPHX_PIPELINE_ID
@@ -151,8 +151,6 @@ variables:
value: 105
- name: HIPTENSOR_TAGGED_PIPELINE_ID
value: 56
- name: LAST_RELEASE
value: 6.1.0
- name: LLVM_PROJECT_PIPELINE_ID
value: 2
- name: LLVM_PROJECT_TAGGED_PIPELINE_ID
@@ -183,10 +181,6 @@ variables:
value: 100
- name: RDC_TAGGED_PIPELINE_ID
value: 59
- name: REIMAGE_ORG
value: AGS-ROCm-CI
- name: REIMAGE_REPO
value: cirrascale-reimage-automation
- name: ROCAL_PIPELINE_ID
value: 151
- name: ROCALUTION_GFX942_TEST_PIPELINE_ID

View File

@@ -2,7 +2,7 @@ name: Issue retrieval
on:
issues:
types: [opened]
types: [opened, edited]
jobs:
auto-retrieve:
@@ -15,7 +15,7 @@ jobs:
app_id: ${{ secrets.ACTION_APP_ID }}
private_key: ${{ secrets.ACTION_PEM }}
- name: 'Retrieve Issue'
uses: abhimeda/rocm_issue_management@main
uses: harkgill-amd/rocm_issue_management@main
with:
authentication-token: ${{ steps.generate_token.outputs.token }}
github-organization: 'ROCm'

View File

@@ -74,6 +74,7 @@ Conda
ConnectX
CuPy
Dashboarding
DBRX
DDR
DF
DGEMM
@@ -92,6 +93,7 @@ DataFrame
DataLoader
DataParallel
Debian
DeepSeek
DeepSpeed
Dependabot
Deprecations
@@ -129,6 +131,7 @@ GDS
GEMM
GEMMs
GFortran
Gemma
GiB
GIM
GL
@@ -674,6 +677,7 @@ namespace
namespaces
nanoGPT
num
numpy
numref
ocl
opencl

View File

@@ -29,8 +29,7 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a
display connected, continue to use ROCm 6.2.3. See the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
documentation to verify compatibility and system requirements.
```
## Release highlights

View File

@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |

View File

@@ -55,7 +55,7 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
@@ -83,7 +83,8 @@ icon to view the image on Docker Hub.
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/apt/6.2.4/>`_.
associated inventories represent the latest JAX version from the official Docker Hub and are
tested for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
@@ -94,25 +95,25 @@ associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.12.7/images/sha256-a6032d89c07573b84c44e42c637bf9752b1b7cd2a222d39344e603d8f4c63beb?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.1-jax0.5.0-py3.12.8/images/sha256-897d7471a954d9df7f79cd28b87ec515fbb94189fc3cf13e3a1588aa6b2a5fee?context_explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.11.10/images/sha256-d462f7e445545fba2f3b92234a21beaa52fe6c5f550faabcfdcd1bf53486d991?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.1-jax0.5.0-py3.11.11/images/sha256-f59243f324ee8da8dd54cd81b3649a860b2b454eaac8e4ce41d5c5f40e42b0e8?context_explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.10 <https://www.python.org/downloads/release/python-31110/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.10.15/images/sha256-6f2d4d0f529378d9572f0e8cfdcbc101d1e1d335bd626bb3336fff87814e9d60?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.1-jax0.5.0-py3.10.16/images/sha256-6f12e5f6a3b5d033d2b1a43938b6804978d999978e68e402228d02984a69fb9d?context_explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.15 <https://www.python.org/downloads/release/python-31015/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Critical ROCm libraries for JAX
================================================================================
@@ -210,7 +211,7 @@ performance, and feature set available to developers.
Supported and unsupported features
===============================================================================
The following table maps GPU-accelerated JAX modules to their supported
The following table maps the public JAX API modules to their supported
ROCm and JAX versions.
.. list-table::
@@ -247,21 +248,11 @@ ROCm and JAX versions.
devices.
- 0.3.20
- 5.1.0
* - ``jax.dlpack``
- For exchanging tensor data between JAX and other libraries that support the
DLPack standard.
- 0.1.57
- 5.0.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.dtypes``
- Provides utilities for working with and managing data types in JAX
arrays and computations.
- 0.1.66
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
@@ -275,27 +266,10 @@ ROCm and JAX versions.
array.
- 0.1.57
- 5.0.0
* - ``jax.profiler``
- Contains JAXs tracing and time profiling features.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.tree``
- Provides utilities for working with tree-like container data structures.
- 0.4.26
- 5.6.0
* - ``jax.tree_util``
- Provides utilities for working with nested data structures, or
``pytrees``.
- 0.1.65
- 5.0.0
* - ``jax.typing``
- Provides JAX-specific static type annotations.
- 0.3.18
- 5.1.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
@@ -322,10 +296,10 @@ ROCm and JAX versions.
- jax_triton 0.2.0
- 6.2.4
jax.scipy module
jax.lax module
-------------------------------------------------------------------------------
A SciPy-like API for scientific computing.
A module for primitives operations.
.. list-table::
:header-rows: 1
@@ -333,129 +307,14 @@ A SciPy-like API for scientific computing.
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
* - ``jax.scipy.fft``
- 0.1.71
* - ``jax.lax.linalg``
- 0.3.2
- 5.0.0
* - ``jax.scipy.integrate``
- 0.4.15
- 5.5.0
* - ``jax.scipy.interpolate``
- 0.1.76
- 5.0.0
* - ``jax.scipy.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.ndimage``
- 0.1.56
- 5.0.0
* - ``jax.scipy.optimize``
- 0.1.57
- 5.0.0
* - ``jax.scipy.signal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.spatial.transform``
- 0.4.12
- 5.4.0
* - ``jax.scipy.sparse.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.special``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats``
- 0.1.56
- 5.0.0
jax.scipy.stats module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.beta``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.betabinom``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.binom``
- 0.4.14
- 5.4.0
* - ``jax.scipy.stats.cauchy``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.chi2``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.dirichlet``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.expon``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gamma``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gennorm``
- 0.3.15
- 5.2.0
* - ``jax.scipy.stats.geom``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.laplace``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.logistic``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.multinomial``
- 0.3.18
- 5.1.0
* - ``jax.scipy.stats.multivariate_normal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.nbinom``
- 0.1.72
- 5.0.0
* - ``jax.scipy.stats.norm``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.pareto``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.poisson``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.t``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.truncnorm``
- 0.4.0
- 5.3.0
* - ``jax.scipy.stats.uniform``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.vonmises``
- 0.4.2
- 5.3.0
* - ``jax.scipy.stats.wrapcauchy``
- 0.4.20
- 5.6.0
jax.extend module
-------------------------------------------------------------------------------
Modules for JAX extensions.
A module for primitives operations.
.. list-table::
:header-rows: 1
@@ -463,18 +322,30 @@ Modules for JAX extensions.
* - Module
- Since JAX
- Since ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
* - ``jax.extend.linear_util``
- 0.4.17
- 5.6.0
* - ``jax.extend.mlir``
- 0.4.26
- 5.6.0
* - ``jax.extend.random``
* - ``jax.extend.core``
- 0.4.15
- 5.5.0
* - ``jax.extend.core.primitives``
- 0.4.32
- 5.5.0
jax.numpy module
-------------------------------------------------------------------------------
A module for primitives operations.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.numpy.fft``
- 0.3.20
- 5.1.0
* - ``jax.numpy.linalg``
- 0.3.20
- 5.1.0
jax.experimental module
-------------------------------------------------------------------------------
@@ -490,9 +361,6 @@ Experimental modules and APIs.
* - ``jax.experimental.checkify``
- 0.1.75
- 5.0.0
* - ``jax.experimental.compilation_cache.compilation_cache``
- 0.1.68
- 5.0.0
* - ``jax.experimental.custom_partitioning``
- 0.4.0
- 5.3.0
@@ -514,8 +382,11 @@ Experimental modules and APIs.
* - ``jax.experimental.pjit``
- 0.1.61
- 5.0.0
* - ``jax.experimental.serialize_executable``
- 0.4.0
* - ``jax.experimental.roofline``
- 0.4.36
- 5.3.0
* - ``jax.experimental.rnn``
- 0.4.3
- 5.3.0
* - ``jax.experimental.shard_map``
- 0.4.3
@@ -572,9 +443,6 @@ Experimental support for sparse matrix operations.
* - ``jax.experimental.sparse.linalg``
- 0.3.15
- 5.2.0
* - ``jax.experimental.sparse.sparsify``
- 0.3.25
- ❌
.. list-table::
:header-rows: 1
@@ -622,9 +490,6 @@ ROCm.
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
- 0.4.0
* - ``jax.experimental.sparsify``
- Converts a dense matrix to a sparse matrix representation.
- Experimental
Use cases and recommendations
================================================================================

View File

@@ -16,6 +16,9 @@ Throughout the following topics, this guide discusses the goals and :ref:`challe
model <fine-tuning-llms-concept-challenge>` like Llama 2. In the
sections that follow, you'll find practical guides on libraries and tools to accelerate your fine-tuning.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Conceptual overview of fine-tuning LLMs <overview>`
- :doc:`Fine-tuning and inference <fine-tuning-and-inference>` using a

View File

@@ -12,6 +12,9 @@ You can use ROCm to perform distributed training, which enables you to train mod
Overall, ROCm can be used to improve the performance and efficiency of your AI applications. With its training, fine-tuning, and inference support, ROCm provides a complete solution for optimizing AI workflows and achieving the optimum results possible on AMD GPUs.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
In this guide, you'll learn how to use ROCm for AI:
- :doc:`Training <training/index>`

View File

@@ -277,7 +277,7 @@ Installing FBGEMM_GPU
Installing FBGEMM_GPU consists of the following steps:
* Set up an isolated Miniconda environment
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/native-install/index>`
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* Install the nightly `PyTorch <https://pytorch.org/>`_ build
* Complete the pre-build and build tasks

View File

@@ -11,6 +11,9 @@ Understanding the ROCm™ software platforms architecture and capabilities is
Throughout the following topics, this section provides a comprehensive guide to setting up and deploying AI inference on AMD GPUs. This includes instructions on how to install ROCm, how to use Hugging Face Transformers to manage pre-trained models for natural language processing (NLP) tasks, how to validate vLLM on AMD Instinct™ MI300X accelerators and illustrate how to deploy trained models in production environments.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Installing ROCm and machine learning frameworks <install>`
- :doc:`Running models from Hugging Face <hugging-face-models>`

View File

@@ -26,7 +26,7 @@ If youre using a Radeon GPU for graphics-accelerated applications, refer to t
ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install/install-overview>`:
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/native-install/index>`
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`

View File

@@ -10,49 +10,22 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
.. _vllm-benchmark-vllm:
@@ -91,9 +64,9 @@ MI300X accelerator with the prebuilt vLLM Docker image.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once setup is complete, you can choose between two options to reproduce the
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
@@ -130,45 +103,89 @@ Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
.. _vllm-benchmark-mad-models:
Available models
----------------
.. hlist::
:columns: 3
.. list-table::
:header-rows: 1
:widths: 2, 3
* ``pyt_vllm_llama-3.1-8b``
* - Model name
- Tag
* ``pyt_vllm_llama-3.1-70b``
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-405b``
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-2-7b``
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-70b``
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
* ``pyt_vllm_mixtral-8x7b``
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_mixtral-8x22b``
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mistral-7b``
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_qwen2-7b``
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_qwen2-72b``
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
* ``pyt_vllm_jais-13b``
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_jais-30b``
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
* ``pyt_vllm_llama-3.1-70b_fp8``
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-405b_fp8``
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
* ``pyt_vllm_mixtral-8x7b_fp8``
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
* ``pyt_vllm_mixtral-8x22b_fp8``
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
.. _vllm-benchmark-standalone:
@@ -181,8 +198,8 @@ snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
@@ -224,8 +241,8 @@ See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. _vllm-benchmark-standalone-options:
Options
-------
Options and available models
----------------------------
.. list-table::
:header-rows: 1
@@ -248,72 +265,100 @@ Options
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- JAIS 13B
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
@@ -335,34 +380,34 @@ options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
@@ -394,7 +439,7 @@ Further reading
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Using ROCm for AI <../index>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
@@ -402,6 +447,32 @@ Further reading
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -14,6 +14,9 @@ Training models on AMD GPUs with the ROCm™ software platform allows you to use
The ROCm software platform makes it easier to train models on AMD GPUs while maintaining compatibility with existing code and tools. The platform also provides features like multi-GPU support, allowing for scaling and parallelization of model training across multiple GPUs to enhance performance.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`

View File

@@ -12,7 +12,7 @@ myst:
This chapter reviews system settings that are required to configure the system
for ROCm virtualization on RDNA2-based AMD Radeon™ PRO GPUs. Installing ROCm on
Bare Metal follows the routine ROCm
{doc}`installation procedure<rocm-install-on-linux:install/native-install/index>`.
{doc}`installation procedure<rocm-install-on-linux:install/install-methods/package-manager-index>`.
To enable ROCm virtualization on V620, one has to setup Single Root I/O
Virtualization (SR-IOV) in the BIOS via setting found in the following
@@ -166,4 +166,4 @@ First, assign GPU virtual function (VF) to VM using the following steps.
Then start the VM.
Finally install ROCm on the virtual machine (VM). For detailed instructions,
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/native-install/index>`.
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/install-methods/package-manager-index>`.

View File

@@ -38,6 +38,7 @@ ROCm documentation is organized into the following categories:
:class-body: rocm-card-banner rocm-hue-12
* [Use ROCm for AI](./how-to/rocm-for-ai/index.rst)
* [AI tutorials](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/)
* [Use ROCm for HPC](./how-to/rocm-for-hpc/index.rst)
* [System optimization](./how-to/system-optimization/index.rst)
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)

View File

@@ -1,19 +1,23 @@
.. meta::
:description: Supported data types in ROCm
:keywords: int8, float8, float8 (E4M3), float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32, float,
float32, float64, double, AMD, ROCm, AMDGPU
:description: Supported data types of AMD GPUs and libraries in ROCm.
:keywords: precision, data types, HIP types, int8, float8, float8 (E4M3),
float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32,
float, float32, float64, double, AMD data types, HIP data types,
ROCm precision, ROCm data types
*************************************************************
Precision support
Data types and precision support
*************************************************************
Use the following sections to identify data types and HIP types ROCm™ supports.
This topic lists the supported data types of AMD GPUs and ROCm libraries.
Corresponding :doc:`HIP <hip:index>` data types are also noted.
Integral types
==========================================
The signed and unsigned integral types that are supported by ROCm are listed in the following table,
together with their corresponding HIP type and a short description.
The signed and unsigned integral types supported by ROCm are listed in
the following table, along with their corresponding HIP type and a short
description.
.. list-table::
@@ -46,8 +50,8 @@ together with their corresponding HIP type and a short description.
Floating-point types
==========================================
The floating-point types that are supported by ROCm are listed in the following table, together with
their corresponding HIP type and a short description.
The floating-point types supported by ROCm are listed in the following
table, along with their corresponding HIP type and a short description.
.. image:: ../data/about/compatibility/floating-point-data-types.png
:alt: Supported floating-point types
@@ -63,43 +67,62 @@ their corresponding HIP type and a short description.
*
- float8 (E4M3)
- ``-``
- An 8-bit floating-point number that mostly follows IEEE-754 conventions and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
- An 8-bit floating-point number that mostly follows IEEE-754 conventions
and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ ,
with expanded range and no infinity or signed zero. NaN is
represented as negative zero.
*
- float8 (E5M2)
- ``-``
- An 8-bit floating-point number mostly following IEEE-754 conventions and **S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
- An 8-bit floating-point number mostly following IEEE-754 conventions and
**S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ ,
with expanded range and no infinity or signed zero. NaN is
represented as negative zero.
*
- float16
- ``half``
- A 16-bit floating-point number that conforms to the IEEE 754-2008 half-precision storage format.
- A 16-bit floating-point number that conforms to the IEEE 754-2008
half-precision storage format.
*
- bfloat16
- ``bfloat16``
- A shortened 16-bit version of the IEEE 754 single-precision storage format.
- A shortened 16-bit version of the IEEE 754 single-precision storage
format.
*
- tensorfloat32
- ``-``
- A floating-point number that occupies 32 bits or less of storage, providing improved range compared to half (16-bit) format, at (potentially) greater throughput than single-precision (32-bit) formats.
- A floating-point number that occupies 32 bits or less of storage,
providing improved range compared to half (16-bit) format, at
(potentially) greater throughput than single-precision (32-bit) formats.
*
- float32
- ``float``
- A 32-bit floating-point number that conforms to the IEEE 754 single-precision storage format.
- A 32-bit floating-point number that conforms to the IEEE 754
single-precision storage format.
*
- float64
- ``double``
- A 64-bit floating-point number that conforms to the IEEE 754 double-precision storage format.
- A 64-bit floating-point number that conforms to the IEEE 754
double-precision storage format.
.. note::
* The float8 and tensorfloat32 types are internal types used in calculations in Matrix Cores and can be stored in any type of the same size.
* The encodings for FP8 (E5M2) and FP8 (E4M3) that are natively supported by MI300 differ from the FP8 (E5M2) and FP8 (E4M3) encodings used in H100 (`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
* The float8 and tensorfloat32 types are internal types used in calculations
in Matrix Cores and can be stored in any type of the same size.
* The encodings for FP8 (E5M2) and FP8 (E4M3) that the
MI300 series natively supports differ from the FP8 (E5M2) and FP8 (E4M3)
encodings used in NVIDIA H100
(`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
* In some AMD documents and articles, float8 (E5M2) is referred to as bfloat8.
ROCm support icons
==========================================
In the following sections, we use icons to represent the level of support. These icons, described in the
following table, are also used on the library data type support pages.
In the following sections, icons represent the level of support. These
icons, described in the following table, are also used in the library data type
support pages.
.. list-table::
:header-rows: 1
@@ -121,14 +144,27 @@ following table, are also used on the library data type support pages.
.. note::
* Full support means that the type is supported natively or with hardware emulation.
* Native support means that the operations for that type are implemented in hardware. Types that are not natively supported are emulated with the available hardware. The performance of non-natively supported types can differ from the full instruction throughput rate. For example, 16-bit integer operations can be performed on the 32-bit integer ALUs at full rate; however, 64-bit integer operations might need several instructions on the 32-bit integer ALUs.
* Any type can be emulated by software, but this page does not cover such cases.
* Full support means that the type is supported natively or with hardware
emulation.
Hardware type support
* Native support means that the operations for that type are implemented in
hardware. Types that are not natively supported are emulated with the
available hardware. The performance of non-natively supported types can
differ from the full instruction throughput rate. For example, 16-bit
integer operations can be performed on the 32-bit integer ALUs at full rate;
however, 64-bit integer operations might need several instructions on the
32-bit integer ALUs.
* Any type can be emulated by software, but this page does not cover such
cases.
Hardware data type support
==========================================
AMD GPU hardware support for data types is listed in the following tables.
The following tables provide information about AMD Instinct accelerators support
for various data types. The MI200 series GPUs, which include MI210, MI250, and
MI250X, are based on the CDNA2 architecture. The MI300 series GPUs, consisting
of MI300A, MI300X, and MI325X, are built on the CDNA3 architecture.
Compute units support
-------------------------------------------------------------------------------
@@ -375,21 +411,23 @@ The following table lists data type support for atomic operations.
.. note::
For cases that are not natively supported, you can emulate atomic operations using software.
Software-emulated atomic operations have high negative performance impact when they frequently
access the same memory address.
You can emulate atomic operations using software for cases that are not
natively supported. Software-emulated atomic operations have a high negative
performance impact when they frequently access the same memory address.
Data Type support in ROCm Libraries
Data type support in ROCm libraries
==========================================
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16, bfloat16, int32,
tensorfloat32, float32, int64, and float64 is listed in the following tables.
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16,
bfloat16, int32, tensorfloat32, float32, int64, and float64 is listed in the
following tables.
Libraries input/output type support
-------------------------------------------------------------------------------
The following tables list ROCm library support for specific input and output data types. For a detailed
description, refer to the corresponding library data type support page.
The following tables list ROCm library support for specific input and output
data types. Refer to the corresponding library data type support page for a
detailed description.
.. tab-set::
@@ -516,8 +554,9 @@ description, refer to the corresponding library data type support page.
Libraries internal calculations type support
-------------------------------------------------------------------------------
The following tables list ROCm library support for specific internal data types. For a detailed
description, refer to the corresponding library data type support page.
The following tables list ROCm library support for specific internal data types.
Refer to the corresponding library data type support page for a detailed
description.
.. tab-set::

View File

@@ -89,7 +89,10 @@ subtrees:
title: Profile and debug
- file: how-to/rocm-for-ai/inference-optimization/workload.rst
title: Workload tuning
- url: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
title: AI tutorials
- file: how-to/rocm-for-hpc/index.rst
title: Use ROCm for HPC
- file: how-to/system-optimization/index.rst
@@ -126,6 +129,7 @@ subtrees:
- url: https://github.com/amd/rocm-examples
title: ROCm examples
- caption: Conceptual
entries:
- file: conceptual/gpu-arch.md

View File

@@ -1,3 +1,3 @@
rocm-docs-core==1.13.0
rocm-docs-core==1.15.0
sphinx-reredirects
sphinx-sitemap

View File

@@ -8,6 +8,13 @@ accessible-pygments==0.0.5
# via pydata-sphinx-theme
alabaster==1.0.0
# via sphinx
asttokens==3.0.0
# via stack-data
attrs==25.1.0
# via
# jsonschema
# jupyter-cache
# referencing
babel==2.16.0
# via
# pydata-sphinx-theme
@@ -25,9 +32,17 @@ cffi==1.17.1
charset-normalizer==3.4.0
# via requests
click==8.1.7
# via sphinx-external-toc
# via
# jupyter-cache
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==43.0.3
# via pyjwt
debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
deprecated==1.2.15
# via pygithub
docutils==0.21.2
@@ -36,34 +51,103 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.20.0
# via rocm-docs-core
# via
# nbformat
# rocm-docs-core
gitdb==4.0.11
# via gitpython
gitpython==3.1.43
# via rocm-docs-core
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==8.6.1
# via
# jupyter-cache
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.31.0
# via
# ipykernel
# myst-nb
jedi==0.19.2
# via ipython
jinja2==3.1.5
# via
# myst-parser
# sphinx
jsonschema==4.23.0
# via nbformat
jsonschema-specifications==2024.10.1
# via jsonschema
jupyter-cache==1.0.1
# via myst-nb
jupyter-client==8.6.3
# via
# ipykernel
# nbclient
jupyter-core==5.7.2
# via
# ipykernel
# jupyter-client
# nbclient
# nbformat
markdown-it-py==3.0.0
# via
# mdit-py-plugins
# myst-parser
markupsafe==3.0.2
# via jinja2
matplotlib-inline==0.1.7
# via
# ipykernel
# ipython
mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-parser==4.0.0
myst-nb==1.1.2
# via rocm-docs-core
myst-parser==4.0.0
# via myst-nb
nbclient==0.10.2
# via
# jupyter-cache
# myst-nb
nbformat==5.10.4
# via
# jupyter-cache
# myst-nb
# nbclient
nest-asyncio==1.6.0
# via ipykernel
packaging==24.2
# via sphinx
# via
# ipykernel
# sphinx
parso==0.8.4
# via jedi
pexpect==4.9.0
# via ipython
platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.50
# via ipython
psutil==6.1.1
# via ipykernel
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
@@ -75,23 +159,42 @@ pygithub==2.5.0
pygments==2.18.0
# via
# accessible-pygments
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
# via pygithub
pynacl==1.5.0
# via pygithub
python-dateutil==2.9.0.post0
# via jupyter-client
pyyaml==6.0.2
# via
# jupyter-cache
# myst-nb
# myst-parser
# rocm-docs-core
# sphinx-external-toc
pyzmq==26.2.0
# via
# ipykernel
# jupyter-client
referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.13.0
rocm-docs-core==1.15.0
# via -r requirements.in
rpds-py==0.22.3
# via
# jsonschema
# referencing
six==1.17.0
# via python-dateutil
smmap==5.0.1
# via gitdb
snowballstemmer==2.2.0
@@ -101,6 +204,7 @@ soupsieve==2.6
sphinx==8.1.3
# via
# breathe
# myst-nb
# myst-parser
# pydata-sphinx-theme
# rocm-docs-core
@@ -137,15 +241,43 @@ sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
# via sphinx
tornado==6.4.2
# via
# ipykernel
# jupyter-client
traitlets==5.14.3
# via
# comm
# ipykernel
# ipython
# jupyter-client
# jupyter-core
# matplotlib-inline
# nbclient
# nbformat
typing-extensions==4.12.2
# via
# ipython
# myst-nb
# pydata-sphinx-theme
# pygithub
# referencing
# sqlalchemy
urllib3==2.2.3
# via
# pygithub
# requests
wcwidth==0.2.13
# via prompt-toolkit
wrapt==1.17.0
# via deprecated
zipp==3.21.0
# via importlib-metadata