Compare commits

...

46 Commits

Author SHA1 Message Date
Adel Johar
0e184e66d7 Docs: Overhaul JAX compatibility page 2025-06-12 14:35:41 +02:00
Pratik Basyal
629b9184b4 Link to 6.4.1 updated from internal to public (#4913) (#4914) 2025-06-10 17:19:45 -04:00
Peter Park
b3e8ac32e7 Merge pull request #4911 from peterjunpark/docs/6.4.1
[docs/6.4.1] Add Mochi Video to pytorch-inference-benchmark-models.yaml
2025-06-10 13:18:50 -04:00
Peter Park
419b3a02a2 add mochi video to pytorch-inference-benchmark-models.yaml
fix container tag

fix container tag

update model selector col width in pytorch-inference.rst

model name

(cherry picked from commit 51fc77d7fc)
2025-06-10 13:07:35 -04:00
Alex Xu
304809951f upgrade rocm-docs-core to 1.20.1
(cherry picked from commit 685457834a)
2025-06-09 14:54:01 -04:00
yugang-amd
c9f1c821eb Update for vllm -05/27 (#4886) (#4888)
* Update vLLM inference benchmark Docker page for rocm/vllm 5/27

* update repo for Pytorch
2025-06-05 13:40:56 -04:00
Pratik Basyal
876e11fc8d KMD version updated in compatibility matrix (#4873) (#4879) 2025-06-04 06:43:49 -04:00
Pratik Basyal
1c2513b788 GPU SKU added to ROCm 6.4.1 (#4875) 2025-06-03 16:28:34 -04:00
yugang-amd
7d26eb0e6f Fix broken link (#4867) 2025-06-03 11:01:44 -04:00
randyh62
a62f4a5296 add reference to HIP 7.0 blog for upcoming changes (#4862) 2025-05-30 19:37:06 -07:00
yugang-amd
404e91f2d9 Update compatibility-matrix.rst (#4860) 2025-05-30 17:50:33 -04:00
alexxu-amd
50cfc538ff Change viewer link from latest to mainline in what-is-rocm page (#4856)
* change viewer link from latest to mainline

* correct format

(cherry picked from commit c1919faccd)
2025-05-30 17:18:40 -04:00
Swati Rawat
a9c323e596 Docs: Add rocprof-compute-viewer (#4850)
* Docs: Add rocprof-compute-viewer

* update requirements.txt

---------

Co-authored-by: Alex Xu <alex.xu@amd.com>
(cherry picked from commit 6142df329b)
2025-05-30 15:22:51 -04:00
Peter Park
7a81d10c1d Add RHEL 9.6 to compat matrix (#4839)
* add RHEL 9.6 to compat matrix

* add os support note

(cherry picked from commit 2addcb0bca)
2025-05-30 14:57:24 -04:00
Jeffrey Novotny
43736ef655 Merge pull request #4853 from amd-jnovotny/release-notes-641-docs641
Cherry-pick to docs/6.4.1: Update release notes with RHEL 9.6 (#4848)
2025-05-30 14:54:17 -04:00
Jeffrey Novotny
d4416e2162 Update release notes with RHEL 9.6 (#4848)
(cherry picked from commit 106cecba5e)
2025-05-30 14:50:30 -04:00
yugang-amd
00f74d2d8e Add microsoft/phi-4 vllm-benchmark-models (#4801) (#4847)
* add Phi-4 to vllm-benchmark-models.yaml

fix model_repo

* update model group names

Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-30 09:20:17 -04:00
Peter Park
db9e845844 Add vLLM benchmark and ML framework Docker doc updates to docs/6.4.1 (#4844)
* Add Falcon-180B to vLLM benchmark Docker doc (#4836)

* add Falcon to vllm-benchmark-models.yaml

* update group name

(cherry picked from commit daf2e980d9)

* Update ML framework Docker inventories for 6.4.1 (#4841)

* Update tensorflow Docker compatibility table

* update jax Docker compatibility table

* fix py versions

* update pytorch Docker compatibility table

(cherry picked from commit 93fd0ef1d4)
2025-05-29 18:50:03 -04:00
Peter Park
4963eeab00 Update ML framework Docker inventories for 6.4.1 (#4841)
* Update tensorflow Docker compatibility table

* update jax Docker compatibility table

* fix py versions

* update pytorch Docker compatibility table

(cherry picked from commit 93fd0ef1d4)
2025-05-29 18:34:47 -04:00
Peter Park
7c25ce240b Add Falcon-180B to vLLM benchmark Docker doc (#4836)
* add Falcon to vllm-benchmark-models.yaml

* update group name

(cherry picked from commit daf2e980d9)
2025-05-29 18:34:47 -04:00
Peter Park
bac2d038f7 Merge pull request #4830 from peterjunpark/docs/6.4.1
[docs/6.4.1] Fix typo in Megatron-LM Docker pull tags
2025-05-28 15:18:14 -04:00
Peter Park
fdeaacd3cc fix megatron-lm pull tags 2025-05-28 15:12:50 -04:00
Peter Park
8e61ba4f90 Fix rocm/vllm pull tag
fix
2025-05-28 14:42:35 -04:00
Peter Park
4051e985d4 Merge pull request #4826 from peterjunpark/docs/6.4.1
[6.4.1] Add latest rocm/vllm Docker details in vLLM inference benchmark guide
2025-05-28 14:27:08 -04:00
Peter Park
94ee445a8a Add latest rocm/vllm Docker details in vLLM inference benchmark guide (#4824)
* update rocm/vllm Docker details to latest release

* Add previous vLLM version

* fix 'further reading' xrefs

* improve model grouping names

* fix links

* update model picker text

(cherry picked from commit cebf0f5975)
2025-05-28 14:23:05 -04:00
Peter Park
535859ac9f Add RDNA4 RX 9070 GRE to gpu-arch-specs.rst and RELEASE.md (#4820) (#4821)
(cherry picked from commit 0acb457389)
2025-05-28 10:26:55 -04:00
Peter Park
2e5fe544a0 Add RDNA4 RX 9070 GRE to gpu-arch-specs.rst and RELEASE.md (#4820)
(cherry picked from commit 0acb457389)
2025-05-28 10:21:50 -04:00
yugang-amd
4dae0ba84d Update SGPR for RDNA3 and RDNA2 series (#4815) 2025-05-27 15:13:22 -04:00
yugang-amd
5ddab465c3 Bump up requirement version (#4805)
* bump up requirement version

* update requirements.txt

* Use Python 3.10
2025-05-27 11:08:55 -04:00
yugang-amd
151e563dcb Merge pull request #4792 from yugang-amd/wavefront-size-6-4-1
Update wavefront size
2025-05-26 14:56:38 -04:00
yugang-amd
2098af1456 Merge pull request #4803 from yugang-amd/link-fix-6-4-1
fix broken links
2025-05-26 14:42:39 -04:00
yugang-amd
ae1a330fd7 fix links 2025-05-26 14:35:36 -04:00
yugang-amd
cab805674a update wavefront size
(cherry picked from commit 230b01565f)
2025-05-26 13:56:14 -04:00
yugang-amd
387cfab91f fix typo 2025-05-26 12:53:18 -04:00
yugang-amd
525703a5ab update wavefront size 2025-05-22 17:41:36 -04:00
Peter Park
ce65e6783b Merge pull request #4783 from peterjunpark/docs/6.4.1
Document specs for Radeon RX 9070 + small fix in megatron-lm doc (#4780)
2025-05-22 16:33:33 -04:00
Peter Park
6d2b1595b3 Document specs for Radeon RX 9070 + small fix in megatron-lm doc (#4780)
* Document specs for Radeon RX 9070

* fix wrong version in megatron-lm.rst

(cherry picked from commit 505041d90a)
2025-05-22 16:30:56 -04:00
yugang-amd
31e9013bdc update rocSHMEM xrefs
(cherry picked from commit 7697298f5d)
2025-05-22 15:19:09 -04:00
Peter Park
698ac70662 Merge pull request #4779 from peterjunpark/docs/6.4.1
[6.4.1] Add Megatron-LM benchmark doc 5/2 (#4778)
2025-05-22 14:36:29 -04:00
Peter Park
9b69755b99 Add Megatron-LM benchmark doc 5/2 (#4778)
* reorg files

* add tabs

* update template

* update template

* update wordlist and toc

* add previous version to doc

* add selector paragraph

* update wordlist.txt

(cherry picked from commit 9ed65a81c4)
2025-05-22 14:29:40 -04:00
Peter Park
05773ca41e Merge pull request #4776 from peterjunpark/docs/6.4.1
[docs/6.4.1] fix 9070 XT gfx target in gpu-arch-specs table (#4775)
2025-05-22 12:15:41 -04:00
Peter Park
4f80043312 fix 9070 XT gfx target in gpu-arch-specs table (#4775)
(cherry picked from commit 6d9f430c70)
2025-05-22 12:12:14 -04:00
Peter Park
223fbb8f28 remove HIP upcoming changes reference link (#4771) (#4772)
(cherry picked from commit f1f2b3cac2)
2025-05-21 12:27:07 -07:00
Alex Xu
845b3c4d5a Merge branch 'roc-6.4.x' into docs/6.4.1 2025-05-21 15:04:20 -04:00
Alex Xu
8e7d43bec2 Merge branch 'roc-6.4.x' into docs/6.4.1 2025-05-21 12:27:43 -04:00
alexxu-amd
080b15d261 Sync develop into docs/6.4.1 2025-05-20 21:24:27 -04:00
24 changed files with 1466 additions and 887 deletions

View File

@@ -228,6 +228,7 @@ LM
LSAN
LSan
LTS
LSTMs
LanguageCrossEntropy
LoRA
MEM
@@ -272,6 +273,7 @@ NBIO
NBIOs
NCCL
NCF
NFS
NIC
NICs
NLI
@@ -500,6 +502,7 @@ ZenDNN
accuracies
activations
addr
ade
ai
alloc
allocatable
@@ -515,6 +518,7 @@ avx
awk
backend
backends
bb
benchmarked
benchmarking
bfloat
@@ -538,6 +542,7 @@ cd
centos
centric
changelog
checkpointing
chiplet
cmake
cmd
@@ -578,6 +583,7 @@ de
deallocation
debuggability
debian
deepseek
denoise
denoised
denoises
@@ -601,6 +607,7 @@ embeddings
enablement
encodings
endfor
endif
endpgm
enqueue
env
@@ -673,6 +680,7 @@ installable
interop
interprocedural
intra
intrinsics
invariants
invocating
ipo
@@ -702,6 +710,7 @@ migratable
miopen
miopengemm
mivisionx
mixtral
mjx
mkdir
mlirmiopen
@@ -833,6 +842,7 @@ sm
smi
softmax
spack
spmm
src
stochastically
strided
@@ -843,6 +853,7 @@ subfolder
subfolders
submodule
submodules
subnet
supercomputing
symlink
symlinks

View File

@@ -6,7 +6,7 @@ different versions of the ROCm software stack and its components.
## ROCm 6.4.1
See the [ROCm 6.4.1 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
See the [ROCm 6.4.1 release notes](https://rocm.docs.amd.com/en/docs-6.4.1/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.4.2)
@@ -894,6 +894,18 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **ROCm Validation Suite** (1.1.0)
#### Added
* Configuration files for MI210.
* Support for OCP fp8 data type.
* GPU index-based CLI execution.
#### Changed
* JSON logging with updated schema.
### **rocPRIM** (3.4.0)
#### Added

View File

@@ -74,14 +74,14 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
ROCm 6.4.1 introduces support for the RDNA4 architecture-based [Radeon AI PRO
R9700](https://www.amd.com/en/products/graphics/workstations/radeon-ai-pro/ai-9000-series/amd-radeon-ai-pro-r9700.html),
[Radeon RX 9070 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070xt.html), and
[Radeon RX 9070](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070.html),
[Radeon RX 9070 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070xt.html),
Radeon RX 9070 GRE, and
[Radeon RX 9060 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9060xt.html) GPUs
for compute workloads. Currently, these GPUs are only supported on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.5, and RHEL 9.4.
for compute workloads. It also adds support for RDNA3 architecture-based [Radeon PRO W7700](https://www.amd.com/en/products/graphics/workstations/radeon-pro/w7700.html) and [Radeon RX 7800 XT](https://www.amd.com/en/products/graphics/desktops/radeon/7000-series/amd-radeon-rx-7800-xt.html) GPUs. These GPUs are supported on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
For details, see the full list of [Supported GPUs
(Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html#supported-gpus).
Operating system support remains unchanged in this release.
See the [Compatibility
matrix](../../docs/compatibility/compatibility-matrix.rst)
for more information about operating system and hardware compatibility.
@@ -165,7 +165,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://github.com/ROCm/rocSHMEM">rocSHMEM</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSHMEM/en/docs-6.4.1/index.html">rocSHMEM</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/rocSHMEM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -654,4 +654,4 @@ There are a number of upcoming changes planned for HIP runtime API in an upcomin
that are not backward compatible with prior releases. Most of these changes increase
alignment between HIP and CUDA APIs or behavior. Some of the upcoming changes are to
clean up header files, remove namespace collision, and have a clear separation between
`hipRTC` and HIP runtime. For more information refer to [HIP Upcoming changes](https://rocm.docs.amd.com/en/docs-6.4.0/about/release-notes.html#id15).
`hipRTC` and HIP runtime. For more information, see [HIP 7.0 Is Coming: What You Need to Know to Stay Ahead](https://rocm.blogs.amd.com/ecosystems-and-partners/transition-to-hip-7.0:-guidance-on-upcoming-compatibility-changes/README.html).

View File

@@ -2,7 +2,7 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
@@ -17,8 +17,9 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA4-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA4-OS-past-60]_,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
@@ -41,7 +42,7 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
CUB,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
@@ -56,7 +57,7 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
1 ROCm Version 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.6, 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
17 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
18 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
19 .. _gpu-support-compatibility-matrix-past-60:
20 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1201 [#RDNA4-OS-past-60]_ gfx1201 [#RDNA-OS-past-60]_
21 gfx1200 [#RDNA4-OS-past-60]_ gfx1200 [#RDNA-OS-past-60]_
22 gfx1101 [#RDNA-OS-past-60]_
23 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
24 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
25 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
42 CUB 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
43
44 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
45 KMD versions :doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
46
47 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
48 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
57
58 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
59 :doc:`RCCL <rccl:index>` 2.22.3 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
60 `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ :doc:`rocSHMEM <rocshmem:index>` 2.0.0 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
61
62 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
63 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0

View File

@@ -28,7 +28,7 @@ compatibility and system requirements.
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_","Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_
@@ -42,8 +42,9 @@ compatibility and system requirements.
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA4-OS]_,,
,gfx1200 [#RDNA4-OS]_,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS]_,,
,gfx1200 [#RDNA-OS]_,,
,gfx1101 [#RDNA-OS]_,,
,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942
@@ -65,7 +66,7 @@ compatibility and system requirements.
CUB,2.5.0,2.5.0,2.3.2
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
@@ -80,7 +81,7 @@ compatibility and system requirements.
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
@@ -156,7 +157,7 @@ compatibility and system requirements.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA4-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), and Radeon RX 9060 XT (gfx1200) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.5, and RHEL 9.4.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
.. _OS-kernel-versions:
@@ -174,7 +175,8 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 GA, 6.8 HWE", 2.35
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.5, 5.14+, 2.34
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14+, 2.34
, 9.5, 5.14+, 2.34
,9.4, 5.14+, 2.34
,9.3, 5.14+, 2.34
,,
@@ -235,4 +237,4 @@ Expand for full historical view of:
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#kfd_support-past-60] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA4-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), and Radeon RX 9060 XT (gfx1200) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.5, and RHEL 9.4.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.

View File

@@ -53,7 +53,7 @@ Use cases and recommendations
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys JAX-based
nanoGPT. Comparing how essential GPT components—such as self-attention
nanoGPT. Comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in JAX and JAX, also highlights
JAXs unique features.
@@ -97,7 +97,7 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
@@ -110,19 +110,19 @@ icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.12/images/sha256-4069398229078f3311128b6d276c6af377c7e97d3363d020b0bf7154fae619ca"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.12/images/sha256-7a0745a2a2758bdf86397750bac00e9086cbf67d170cfdbb08af73f7c7d18a6a"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.10/images/sha256-a137f901f91ce6c13b424c40a6cf535248d4d20fd36d5daf5eee0570190a4a11"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.10/images/sha256-5f9e8d6e6e69fdc9a1a3f2ba3b1234c3f46c53b7468538c07fd18b00899da54f"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
@@ -160,12 +160,14 @@ associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
.. _key_rocm_libraries:
Key ROCm libraries for JAX
================================================================================
JAX functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
The following ROCm libraries represent potential targets that could be utilized
by JAX on ROCm for various computational tasks. The actual libraries used will
depend on the specific implementation and operations performed.
.. list-table::
:header-rows: 1
@@ -173,347 +175,140 @@ feature set available to developers.
* - ROCm library
- Version
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
``jax.lax.dot_general``, operations like ``jax.numpy.dot``, which
involve vector and matrix computations and batch matrix multiplications
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- Matrix multiplication in ``jax.numpy.matmul`` or ``jax.lax.dot``, and
the XLA (Accelerated Linear Algebra) use hipBLASLt for optimized matrix
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
``jax.numpy.prod``, ``jax.numpy.max`` and ``jax.numpy.min``), prefix sum
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
Supported features
.. note::
This table shows ROCm libraries that could potentially be utilized by JAX. Not
all libraries may be used in every configuration, and the actual library usage
will depend on the specific operations and implementation details.
Supported data types and modules
===============================================================================
The following table maps the public JAX API modules to their supported
ROCm and JAX versions.
The following tables lists the supported public JAX API data types and modules.
Supported data types
--------------------------------------------------------------------------------
ROCm supports all the JAX data types of `jax.dtypes <https://docs.jax.dev/en/latest/jax.dtypes.html>`_
module, `jax.numpy.dtype <https://docs.jax.dev/en/latest/_autosummary/jax.numpy.dtype.html>`_
and `default_dtype <https://docs.jax.dev/en/latest/default_dtypes.html>`_ .
The ROCm supported data types in JAX are collected in the following table.
.. list-table::
:header-rows: 1
* - Module
- Description
- As of JAX
- As of ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
- 5.0.0
* - ``jax.scipy``
- Provides GPU-accelerated and differentiable implementations of many
functions from the SciPy library, leveraging JAX's transformations
(e.g., ``grad``, ``jit``, ``vmap``).
- 0.1.56
- 5.0.0
* - ``jax.lax``
- A library of primitives operations that underpins libraries such as
``jax.numpy.`` Transformation rules, such as Jacobian-vector product
(JVP) and batching rules, are typically defined as transformations on
``jax.lax`` primitives.
- 0.1.57
- 5.0.0
* - ``jax.random``
- Provides a number of routines for deterministic generation of sequences
of pseudorandom numbers.
- 0.1.58
- 5.0.0
* - ``jax.sharding``
- Allows to define partitioning and distributing arrays across multiple
devices.
- 0.3.20
- 5.1.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
- 5.0.0
* - ``jax.nn``
- Contains common functions for neural network libraries.
- 0.1.56
- 5.0.0
* - ``jax.ops``
- Computes the minimum, maximum, sum or product within segments of an
array.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
components.
- 0.4.15
- 5.5.0
* - ``jax.example_libraries``
- Serves as a collection of example code and libraries that demonstrate
various capabilities of JAX.
- 0.1.74
- 5.0.0
* - ``jax.experimental``
- Namespace for experimental features and APIs that are in development or
are not yet fully stable for production use.
- 0.1.56
- 5.0.0
* - ``jax.lib``
- Set of internal tools and types for bridging between JAXs Python
frontend and its XLA backend.
- 0.4.6
- 5.3.0
* - ``jax_triton``
- Library that integrates the Triton deep learning compiler with JAX.
- jax_triton 0.2.0
- 6.2.4
jax.scipy module
-------------------------------------------------------------------------------
A SciPy-like API for scientific computing.
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
* - ``jax.scipy.fft``
- 0.1.71
- 5.0.0
* - ``jax.scipy.integrate``
- 0.4.15
- 5.5.0
* - ``jax.scipy.interpolate``
- 0.1.76
- 5.0.0
* - ``jax.scipy.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.ndimage``
- 0.1.56
- 5.0.0
* - ``jax.scipy.optimize``
- 0.1.57
- 5.0.0
* - ``jax.scipy.signal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.spatial.transform``
- 0.4.12
- 5.4.0
* - ``jax.scipy.sparse.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.special``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats``
- 0.1.56
- 5.0.0
jax.scipy.stats module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.beta``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.betabinom``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.binom``
- 0.4.14
- 5.4.0
* - ``jax.scipy.stats.cauchy``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.chi2``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.dirichlet``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.expon``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gamma``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gennorm``
- 0.3.15
- 5.2.0
* - ``jax.scipy.stats.geom``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.laplace``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.logistic``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.multinomial``
- 0.3.18
- 5.1.0
* - ``jax.scipy.stats.multivariate_normal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.nbinom``
- 0.1.72
- 5.0.0
* - ``jax.scipy.stats.norm``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.pareto``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.poisson``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.t``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.truncnorm``
- 0.4.0
- 5.3.0
* - ``jax.scipy.stats.uniform``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.vonmises``
- 0.4.2
- 5.3.0
* - ``jax.scipy.stats.wrapcauchy``
- 0.4.20
- 5.6.0
jax.extend module
-------------------------------------------------------------------------------
Modules for JAX extensions.
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
* - ``jax.extend.linear_util``
- 0.4.17
- 5.6.0
* - ``jax.extend.mlir``
- 0.4.26
- 5.6.0
* - ``jax.extend.random``
- 0.4.15
- 5.5.0
Unsupported JAX features
===============================================================================
The following GPU-accelerated JAX features are not supported by ROCm for
the listed supported JAX versions.
.. list-table::
:header-rows: 1
* - Feature
* - Data type
- Description
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
* - ``bfloat16``
- 16-bit bfloat (brain floating point).
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
* - ``bool``
- Boolean.
* - MOSAIC (GPU)
- Mosaic is a library of kernel-building abstractions for JAX's Pallas system
* - ``complex128``
- 128-bit complex.
* - ``complex64``
- 64-bit complex.
* - ``float16``
- 16-bit (half precision) floating-point.
* - ``float32``
- 32-bit (single precision) floating-point.
* - ``float64``
- 64-bit (double precision) floating-point.
* - ``half``
- 16-bit (half precision) floating-point.
* - ``int16``
- Signed 16-bit integer.
* - ``int32``
- Signed 32-bit integer.
* - ``int64``
- Signed 64-bit integer.
* - ``int8``
- Signed 8-bit integer.
* - ``uint16``
- Unsigned 16-bit (word) integer.
* - ``uint32``
- Unsigned 32-bit (dword) integer.
* - ``uint64``
- Unsigned 64-bit (qword) integer.
* - ``uint8``
- Unsigned 8-bit (byte) integer.
.. note::
JAX data type support is effected by the :ref:`key_rocm_libraries` and it's
collected on :doc:`ROCm data types and precision support <rocm:reference/precision-support>`
page.
Supported modules
--------------------------------------------------------------------------------
For a complete and up-to-date list of JAX public modules (for example, ``jax.numpy``,
``jax.scipy``, ``jax.lax``), their descriptions, and usage, please refer directly to the
`official JAX API documentation <https://jax.readthedocs.io/en/latest/jax.html>`_.
.. note::
Since version 0.1.56, JAX has full support for ROCm, and the
:ref:`Known issues and important notes <jax_comp_known_issues>` section
contains details about limitations specific to the ROCm backend. The list of
JAX API modules is maintained by the JAX project and is subject to change.
Refer to the official Jax documentation for the most up-to-date information.

View File

@@ -95,7 +95,7 @@ Docker image compatibility
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
inventories were tested on `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -116,137 +116,122 @@ Click |docker-icon| to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-c76af9bfb1c25b0f40d4c29e8652105c57250bf018d23ff595b06bd79666fdd7"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-130536fdfceb374626a7bcb8d00b9d796ddfc3115677d51229e5b852d96b5ef4"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-f9d226135d51831c810dcb1251636ec61f85c65fcdda03e188c053a5d4f6585b"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-20a2e24b4738dc1f1a44a04f23827918b56c99f7e697e6fccb90e9c4fae8ca9b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-3490e74d4f43dcdb3351dd334108d1ccd47e5a687c0523a2424ac1bcdd3dd6dd"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-f09cb8ca39cc39222fb554060711f5c19130f7b4047aaf41fad4ba3ec470ca03"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-26c5dfffb4a54625884abca83166940f17dd27bc75f1b24f6e80fbcb7d4e9afb"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.11.9 <https://www.python.org/downloads/release/python-3119/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-a91c100d1fe608dae3eb7f60a751630363d4027ac3d077d428e92945204c338e"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-66a89ce6485bb887af74bb9bd76bb613ab9834a6b1374649ea7ae379883454a4"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-f378a24561fa6efc178b6dc93fc7d82e5b93653ecd59c89d4476674d29e1284d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-c716cf167e6e49893f11de03606ed37044153aca089e74ca615065c06877f86b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-2308dbd0e650b7bf8d548575cbb6e2bdc021f9386384ce570da16d58ee684d22"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-0434cbc9b07b2c26e39480d7447f676f9057a1054dcff00e0050c25a6eddbd3c"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-eefd2ab019728f91f94c5e6a9463cb0ea900b3011458d18fe5d88e50c0b57d86"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-688b1c0073092615fb98778d78b16191e506097ee116a2d3d2628b264d5d367b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-473643226ab0e93a04720b256ed772619878abf9c42b9f84828cefed522696fd"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Key ROCm libraries for PyTorch

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click
validated for `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -73,82 +73,122 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-dev/images/sha256-fa9cf5fa6c6079a7118727531ccd0056c6e3224a42c3d6e78a49e7781daafff4"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-runtime/images/sha256-14addca4b92a47c806b83ebaeed593fc6672cd99f0017ed8dad759fe72ed0309"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.18-runtime/images/sha256-d14d8c4989e7c9a60f4e72461b9e349de72347c6162dcd6897e6f4f80ffbb440"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-dev/images/sha256-f5e151060df04ff5fb59f5604b49cd371931bbe75b06aec9fe7781397c4be0ce"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-dev/images/sha256-081e5bd6615a5dc17247ebd2ccc26895c3feeff086720400fa39b477e60a77c0"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-runtime/images/sha256-5cd4c03fdb1036570c0d4929da60a65c4466998dc80f1dc8a5a0b173eae017fb"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-runtime/images/sha256-bf369637378264f4af6ddad5ca8b8611d3e372ffbea9ab7a06f1e122f0a0867b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-dev/images/sha256-b3add80e374a2db2d1088d746e740afa89d439aca02cacba959ad298f5cd2b3f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-dev/images/sha256-5a502008c50d0b6508e6027f911bdff070a7493700ae064bed74e1d22b91ed50"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-runtime/images/sha256-3a244f026c32177eff7958ffbad390de85b438b2b48b455cc39f15d70fa1270d"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-runtime/images/sha256-1ee5dfffceb71ac66617ada33de3a10de0cb74199cc4b82441192e5e92fa2ddf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-dev/images/sha256-e0cecdfacb59169335049983cdab6da578c209bb9f4d08aad97e184ae59171a6"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-dev/images/sha256-109218ad92bfae83bbd2710475f7502166e1ed54ca0b9748a9cbc3f5a1d75af1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-runtime/images/sha256-6f43de12f7eb202791b698ac51d28b72098de90034dbcd48486629b0125f7707"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-runtime/images/sha256-5d78bd5918d394f92263daa2990e88d695d27200dd90ed83ec64d20c7661c9c1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-dev/images/sha256-b09b1ad921c09c687b7c916141051e9fcf15539a5686e5aa67c689195a522719"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-runtime/images/sha256-20dbd824e85558abfe33fc9283cc547d88cde3c623fe95322743a5082f883a64"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377>`__
- dev
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-runtime/images/sha256-a94150ffb81365234ebfa34e764db5474bc6ab7d141b56495eac349778dafcf3"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
Critical ROCm libraries for TensorFlow
===============================================================================

View File

@@ -0,0 +1,152 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250513
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4
rocm_version: 6.3.1
vllm_version: 0.8.5
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -23,3 +23,11 @@ pytorch_inference_benchmark:
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/chaidiscovery/chai-1
precision: float16
- group: Mochi Video
tag: mochi
models:
- model: Mochi 1
mad_tag: pyt_mochi_video_inference
model_repo: genmo/mochi-1-preview
url: https://huggingface.co/genmo/mochi-1-preview
precision: float16

View File

@@ -1,14 +1,14 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250521
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11
rocm_version: 6.3.1
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
vllm_version: 0.8.5 (0.8.6.dev315+g91a560098.rocm631)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Llama
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
@@ -56,7 +56,7 @@ vllm_benchmark:
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
@@ -108,7 +108,7 @@ vllm_benchmark:
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
@@ -121,7 +121,7 @@ vllm_benchmark:
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
@@ -150,3 +150,18 @@ vllm_benchmark:
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -0,0 +1,29 @@
megatron-lm_benchmark:
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy

View File

@@ -678,7 +678,7 @@ To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md>`__
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and

View File

@@ -0,0 +1,319 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250513-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <../../hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../../fine-tuning/index>`.

View File

@@ -24,20 +24,24 @@ PyTorch inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with PyTorch and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-4 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1" style="display: none;">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -99,7 +103,7 @@ PyTorch inference performance testing
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference
.. container:: model-doc pyt_clip_inference pyt_mochi_video_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
@@ -162,11 +166,14 @@ Further reading
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
:doc:`Running models from Hugging Face <../hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
:doc:`Inference optimization <../../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.

View File

@@ -24,7 +24,7 @@ vLLM inference performance testing
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
@@ -37,11 +37,15 @@ vLLM inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
@@ -50,7 +54,7 @@ vLLM inference performance testing
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -318,23 +322,23 @@ vLLM inference performance testing
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
:doc:`Running models from Hugging Face <../hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
:doc:`Inference optimization <../../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.
Previous versions
=================
@@ -352,6 +356,20 @@ for benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - 6.3.1
- 0.8.5
- 2.7.0
-
* :doc:`Documentation <previous-versions/vllm-0.8.5-20250513>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4>`_
* - 6.3.1
- 0.8.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.4.0/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845>`_
* - 6.3.1
- 0.7.3
- 2.7.0

View File

@@ -45,7 +45,7 @@
(communication-libraries)=
* {doc}`RCCL <rccl:index>`
* [rocSHMEM](https://github.com/ROCm/rocSHMEM)
* {doc}`rocSHMEM <rocshmem:index>`
:::
:::{grid-item-card} Math

View File

@@ -282,7 +282,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- GFXIP Major version
- GFXIP Minor version
*
- Radeon AI PRO R7900
- Radeon AI PRO R9700
- RDNA4
- gfx1201
- 16
@@ -305,7 +305,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 28
- 54
- 32
- 32 or 64
- 128
- 56
- 4
@@ -314,7 +314,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -323,7 +323,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -332,7 +332,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -341,7 +341,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -350,7 +350,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -359,7 +359,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 70
- 32
- 32 or 64
- 128
- 96
- 6
@@ -368,7 +368,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -377,7 +377,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 32
- 70
- 32
- 32 or 64
- 128
- 64
- 6
@@ -386,7 +386,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -395,7 +395,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 48
- 32
- 32 or 64
- 128
- 64
- 4
@@ -404,7 +404,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -413,7 +413,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 60
- 32
- 32 or 64
- 128
- 128
- 4
@@ -422,7 +422,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -431,7 +431,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32
- 32 or 64
- 128
- 32
- 2
@@ -440,7 +440,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -449,7 +449,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 72
- 32
- 32 or 64
- 128
- 128
- 4
@@ -458,7 +458,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -467,7 +467,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1012
- 8
- 22
- 32
- 32 or 64
- 128
-
- 4
@@ -525,7 +525,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
*
- Radeon RX 9070 XT
- RDNA4
- gfx1200
- gfx1201
- 16
- 64
- 32 or 64
@@ -540,6 +540,42 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 12
- 0
*
- Radeon RX 9070 GRE
- RDNA4
- gfx1201
- 16
- 48
- 32 or 64
- 128
- 48
- 6
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9070
- RDNA4
- gfx1201
- 16
- 56
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9060 XT
- RDNA4
@@ -564,7 +600,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 24
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -573,7 +609,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -582,7 +618,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 20
- 84
- 32
- 32 or 64
- 128
- 80
- 6
@@ -591,7 +627,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -600,7 +636,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 16
- 80
- 32
- 32 or 64
- 128
- 64
- 6
@@ -609,7 +645,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -618,7 +654,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 60
- 32
- 32 or 64
- 128
- 64
- 4
@@ -627,7 +663,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -636,7 +672,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 12
- 54
- 32
- 32 or 64
- 128
- 48
- 4
@@ -645,7 +681,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -654,7 +690,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1102
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -663,7 +699,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 11
- 0
*
@@ -672,7 +708,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32
- 32 or 64
- 128
- 128
- 4
@@ -681,7 +717,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -690,7 +726,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32
- 32 or 64
- 128
- 128
- 4
@@ -699,7 +735,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -708,7 +744,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 72
- 32
- 32 or 64
- 128
- 128
- 4
@@ -717,7 +753,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -726,7 +762,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 60
- 32
- 32 or 64
- 128
- 128
- 4
@@ -735,7 +771,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -744,7 +780,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32
- 32 or 64
- 128
- 96
- 3
@@ -753,7 +789,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -762,7 +798,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32
- 32 or 64
- 128
- 96
- 3
@@ -771,7 +807,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -780,7 +816,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 10
- 36
- 32
- 32 or 64
- 128
- 80
- 3
@@ -789,7 +825,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -798,7 +834,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -807,7 +843,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -816,7 +852,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -825,7 +861,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -834,7 +870,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32
- 32 or 64
- 128
- 32
- 2
@@ -843,7 +879,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*

View File

@@ -44,11 +44,11 @@ subtrees:
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm.rst
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.rst
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.rst
title: Train a model with JAX MaxText
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
title: Train a model with LLM Foundry
@@ -78,9 +78,9 @@ subtrees:
title: Run models from Hugging Face
- file: how-to/rocm-for-ai/inference/llm-inference-frameworks.rst
title: LLM inference frameworks
- file: how-to/rocm-for-ai/inference/vllm-benchmark.rst
- file: how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst
title: vLLM inference performance testing
- file: how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst
- file: how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference.rst
title: PyTorch inference performance testing
- file: how-to/rocm-for-ai/inference/deploy-your-model.rst
title: Deploy your model

View File

@@ -1,4 +1,4 @@
rocm-docs-core==1.18.2
rocm-docs-core==1.20.1
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -2,7 +2,7 @@
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile docs/sphinx/requirements.in
# pip-compile requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
@@ -10,74 +10,73 @@ alabaster==1.0.0
# via sphinx
asttokens==3.0.0
# via stack-data
attrs==25.1.0
attrs==25.3.0
# via
# jsonschema
# jupyter-cache
# referencing
babel==2.16.0
babel==2.17.0
# via
# pydata-sphinx-theme
# sphinx
beautifulsoup4==4.12.3
beautifulsoup4==4.13.4
# via pydata-sphinx-theme
breathe==4.35.0
breathe==4.36.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2025.4.26
# via requests
cffi==1.17.1
# via
# cryptography
# pynacl
charset-normalizer==3.4.0
charset-normalizer==3.4.2
# via requests
click==8.1.7
click==8.2.1
# via
# jupyter-cache
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==44.0.1
cryptography==45.0.3
# via pyjwt
debugpy==1.8.12
debugpy==1.8.14
# via ipykernel
decorator==5.1.1
decorator==5.2.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
deprecated==1.2.18
# via pygithub
docutils==0.21.2
# via
# breathe
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
exceptiongroup==1.3.0
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.20.0
fastjsonschema==2.21.1
# via
# nbformat
# rocm-docs-core
gitdb==4.0.11
gitdb==4.0.12
# via gitpython
gitpython==3.1.43
gitpython==3.1.44
# via rocm-docs-core
greenlet==3.1.1
greenlet==3.2.3
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==8.6.1
importlib-metadata==8.7.0
# via
# jupyter-cache
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.31.0
ipython==8.37.0
# via
# ipykernel
# myst-nb
@@ -87,9 +86,9 @@ jinja2==3.1.6
# via
# myst-parser
# sphinx
jsonschema==4.23.0
jsonschema==4.24.0
# via nbformat
jsonschema-specifications==2024.10.1
jsonschema-specifications==2025.4.1
# via jsonschema
jupyter-cache==1.0.1
# via myst-nb
@@ -97,7 +96,7 @@ jupyter-client==8.6.3
# via
# ipykernel
# nbclient
jupyter-core==5.7.2
jupyter-core==5.8.1
# via
# ipykernel
# jupyter-client
@@ -117,9 +116,9 @@ mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.1.2
myst-nb==1.2.0
# via rocm-docs-core
myst-parser==4.0.0
myst-parser==4.0.1
# via myst-nb
nbclient==0.10.2
# via
@@ -132,19 +131,20 @@ nbformat==5.10.4
# nbclient
nest-asyncio==1.6.0
# via ipykernel
packaging==24.2
packaging==25.0
# via
# ipykernel
# pydata-sphinx-theme
# sphinx
parso==0.8.4
# via jedi
pexpect==4.9.0
# via ipython
platformdirs==4.3.6
platformdirs==4.3.8
# via jupyter-core
prompt-toolkit==3.0.50
prompt-toolkit==3.0.51
# via ipython
psutil==6.1.1
psutil==7.0.0
# via ipykernel
ptyprocess==0.7.0
# via pexpect
@@ -152,19 +152,19 @@ pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.15.4
# via
# rocm-docs-core
# sphinx-book-theme
pygithub==2.5.0
pygithub==2.6.1
# via rocm-docs-core
pygments==2.18.0
pygments==2.19.1
# via
# accessible-pygments
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -178,7 +178,7 @@ pyyaml==6.0.2
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.2.0
pyzmq==26.4.0
# via
# ipykernel
# jupyter-client
@@ -186,23 +186,23 @@ referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
requests==2.32.3
requests==2.32.4
# via
# pygithub
# sphinx
rocm-docs-core==1.18.2
rocm-docs-core==1.20.1
# via -r requirements.in
rpds-py==0.22.3
rpds-py==0.25.1
# via
# jsonschema
# referencing
six==1.17.0
# via python-dateutil
smmap==5.0.1
smmap==5.0.2
# via gitdb
snowballstemmer==2.2.0
snowballstemmer==3.0.1
# via sphinx
soupsieve==2.6
soupsieve==2.7
# via beautifulsoup4
sphinx==8.1.3
# via
@@ -220,7 +220,7 @@ sphinx==8.1.3
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
sphinx-book-theme==1.1.4
# via rocm-docs-core
sphinx-copybutton==0.5.2
# via rocm-docs-core
@@ -228,7 +228,7 @@ sphinx-design==0.6.1
# via rocm-docs-core
sphinx-external-toc==1.0.1
# via rocm-docs-core
sphinx-notfound-page==1.0.4
sphinx-notfound-page==1.1.0
# via rocm-docs-core
sphinx-reredirects==0.1.6
# via -r requirements.in
@@ -250,13 +250,13 @@ sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
sqlalchemy==2.0.41
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
tomli==2.2.1
# via sphinx
tornado==6.4.2
# via
@@ -272,21 +272,23 @@ traitlets==5.14.3
# matplotlib-inline
# nbclient
# nbformat
typing-extensions==4.12.2
typing-extensions==4.14.0
# via
# beautifulsoup4
# exceptiongroup
# ipython
# myst-nb
# pydata-sphinx-theme
# pygithub
# referencing
# sqlalchemy
urllib3==2.2.3
urllib3==2.4.0
# via
# pygithub
# requests
wcwidth==0.2.13
# via prompt-toolkit
wrapt==1.17.0
wrapt==1.17.2
# via deprecated
zipp==3.21.0
zipp==3.23.0
# via importlib-metadata

View File

@@ -52,7 +52,7 @@ Communication
:header: "Component", "Description"
":doc:`RCCL <rccl:index>`", "Standalone library that provides multi-GPU and multi-node collective communication primitives"
"`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_", "Runtime that provides GPU-centric networking through an OpenSHMEM-like interface. This intra-kernel networking library simplifies application code complexity and enables more fine-grained communication/computation overlap than traditional host-driven networking."
":doc:`rocSHMEM <rocshmem:index>`", "An intra-kernel networking library that provides GPU-centric networking through an OpenSHMEM-like interface"
Math
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -117,6 +117,11 @@ Performance
":doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`", "Toolkit for developing analysis tools for profiling and tracing GPU compute applications. This toolkit is in beta and subject to change"
":doc:`ROCTracer <roctracer:index>`", "Intercepts runtime API calls and traces asynchronous activity"
.. note::
`ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is a tool for visualizing and analyzing GPU thread trace data collected using :doc:`rocprofv3 <rocprofiler-sdk:index>`.
Note that `ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is in an early access state. Running production workloads is not recommended.
Development
^^^^^^^^^^^