Compare commits

...

21 Commits

Author SHA1 Message Date
randyh62
14f22f35ca Revert "wavesize Release Note update (#4372)"
This reverts commit 1ad5a42302.
2025-02-13 14:09:02 -08:00
randyh62
1ad5a42302 wavesize Release Note update (#4372)
* wavesize Release Note update

* minor edit
2025-02-13 13:51:55 -08:00
Alex Xu
0189b5f4cf revert rocm-docs-core back to 1.15.0 due to github action deprecation from rocm-docs-core 2025-02-11 16:37:31 -05:00
Alex Xu
d3f2ce089f bump rocm-docs-core to 1.16.0 2025-02-11 15:59:07 -05:00
Pratik Basyal
7170d9813d Debian 12 support for single-node added (#300) (#4356) 2025-02-07 18:27:04 -05:00
Peter Park
355846ad80 Merge pull request #4348 from peterjunpark/docs/6.3.2
[docs/6.3.2] Update vLLM benchmarking guide
2025-02-05 17:50:02 -05:00
Peter Park
13f85fa72a Fix ROCm Bandwidth Test license type
Fix ROCm Bandwidth Test license type

(cherry picked from commit 9b0ae86b1b)
2025-02-05 17:20:30 -05:00
Peter Park
9b28bc4f09 Update vLLM benchmarking guide (#4347)
* update vllm-benchmark

fix hlist overflow

update standalone benchmarking options

update list of models

fix typo and model name

unnecessary duplicate info

update formatting

update vllm benchmark guide

- remove Llama 2 FP8
- add Jais 13B
- update commands

update docker pull tag

update MAD available models

remove extra mad models not relevant to vllm

update PyTorch version

add changelog

add model names to .wordlist.txt

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* fix typo

* update link

* fix link text

* change changelog to previous versions

* fix typo

* remove "for"

---------

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>
(cherry picked from commit 2751a17cf0)
2025-02-05 17:19:58 -05:00
Pratik Basyal
76ffcee2c8 Radeon support note updated in 6.3.2 (#4339) (#4340) 2025-02-04 17:52:57 -05:00
Pratik Basyal
2d0610b254 Updated ROCm install on Linux installation method link (#4313) (#4324) 2025-01-31 16:59:54 -05:00
Jeffrey Novotny
82062ce632 Merge pull request #4320 from amd-jnovotny/ai-tutorials-link-docs632
Cherry-pick to docs/6.3.2: Add ToC and index links to the AI Developer Tutorials (#4312)
2025-01-30 12:10:17 -05:00
Jeffrey Novotny
efdf8539d1 Add ToC and index links to the AI Developer Tutorials (#4312)
* Add ToC and index links to the AI Developer Tutorials

* Change link positioning

* Change wording

(cherry picked from commit d401b5f152)
2025-01-30 10:51:55 -05:00
Peter Park
4776254a95 Merge pull request #4317 from peterjunpark/docs/6.3.2
[docs/6.3.2] Fix merge conflict markers in vllm-benchmark.rst
2025-01-30 09:09:37 -05:00
Peter Park
7aeec73c20 Fix merge conflict markers in vllm-benchmark.rst
(cherry picked from commit 511cf4eec7)
2025-01-30 08:02:44 -05:00
Alex Xu
1888fa5b8b Merge branch 'roc-6.3.x' into docs/6.3.2 2025-01-28 17:05:57 -05:00
Alex Xu
92ba9ff5e4 Merge branch 'roc-6.3.x' into docs/6.3.2 2025-01-28 16:41:22 -05:00
Alex Xu
9616e612cb Merge branch 'roc-6.3.x' into docs/6.3.2 2025-01-28 14:25:50 -05:00
Alex Xu
dd19f4b2f8 Merge branch 'roc-6.3.x' into docs/6.3.2 2025-01-28 14:18:45 -05:00
alexxu-amd
19641e5bdb Sync develop into docs/6.3.2 2025-01-28 09:43:30 -05:00
alexxu-amd
688d1ad54b Sync develop into docs/6.3.2 2025-01-27 13:29:31 -05:00
Alex Xu
2ff7de6b0a bump rocm-docs-core to 1.14.1 2025-01-24 16:00:47 -05:00
17 changed files with 364 additions and 142 deletions

View File

@@ -74,6 +74,7 @@ Conda
ConnectX
CuPy
Dashboarding
DBRX
DDR
DF
DGEMM
@@ -92,6 +93,7 @@ DataFrame
DataLoader
DataParallel
Debian
DeepSeek
DeepSpeed
Dependabot
Deprecations
@@ -129,6 +131,7 @@ GDS
GEMM
GEMMs
GFortran
Gemma
GiB
GIM
GL

View File

@@ -29,8 +29,7 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a
display connected, continue to use ROCm 6.2.3. See the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
documentation to verify compatibility and system requirements.
```
## Release highlights

View File

@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |

View File

@@ -7,7 +7,7 @@ ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#mi300x-past-60]_,Debian 12 [#mi300x-past-60]_,,,,,,,,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
1 ROCm Version 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
7 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3

View File

@@ -32,7 +32,7 @@ compatibility and system requirements.
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
,Debian 12 [#mi300x]_,Debian 12 [#mi300x]_,
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
@@ -148,7 +148,8 @@ compatibility and system requirements.
.. rubric:: Footnotes
.. [#mi300x] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
@@ -215,7 +216,8 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#mi300x-past-60] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].

View File

@@ -16,6 +16,9 @@ Throughout the following topics, this guide discusses the goals and :ref:`challe
model <fine-tuning-llms-concept-challenge>` like Llama 2. In the
sections that follow, you'll find practical guides on libraries and tools to accelerate your fine-tuning.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Conceptual overview of fine-tuning LLMs <overview>`
- :doc:`Fine-tuning and inference <fine-tuning-and-inference>` using a

View File

@@ -12,6 +12,9 @@ You can use ROCm to perform distributed training, which enables you to train mod
Overall, ROCm can be used to improve the performance and efficiency of your AI applications. With its training, fine-tuning, and inference support, ROCm provides a complete solution for optimizing AI workflows and achieving the optimum results possible on AMD GPUs.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
In this guide, you'll learn how to use ROCm for AI:
- :doc:`Training <training/index>`

View File

@@ -277,7 +277,7 @@ Installing FBGEMM_GPU
Installing FBGEMM_GPU consists of the following steps:
* Set up an isolated Miniconda environment
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/native-install/index>`
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* Install the nightly `PyTorch <https://pytorch.org/>`_ build
* Complete the pre-build and build tasks

View File

@@ -11,6 +11,9 @@ Understanding the ROCm™ software platforms architecture and capabilities is
Throughout the following topics, this section provides a comprehensive guide to setting up and deploying AI inference on AMD GPUs. This includes instructions on how to install ROCm, how to use Hugging Face Transformers to manage pre-trained models for natural language processing (NLP) tasks, how to validate vLLM on AMD Instinct™ MI300X accelerators and illustrate how to deploy trained models in production environments.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Installing ROCm and machine learning frameworks <install>`
- :doc:`Running models from Hugging Face <hugging-face-models>`

View File

@@ -26,7 +26,7 @@ If youre using a Radeon GPU for graphics-accelerated applications, refer to t
ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install/install-overview>`:
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/native-install/index>`
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`

View File

@@ -10,49 +10,22 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
.. _vllm-benchmark-vllm:
@@ -91,9 +64,9 @@ MI300X accelerator with the prebuilt vLLM Docker image.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once setup is complete, you can choose between two options to reproduce the
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
@@ -130,45 +103,89 @@ Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
.. _vllm-benchmark-mad-models:
Available models
----------------
.. hlist::
:columns: 3
.. list-table::
:header-rows: 1
:widths: 2, 3
* ``pyt_vllm_llama-3.1-8b``
* - Model name
- Tag
* ``pyt_vllm_llama-3.1-70b``
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-405b``
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-2-7b``
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-70b``
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
* ``pyt_vllm_mixtral-8x7b``
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_mixtral-8x22b``
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mistral-7b``
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_qwen2-7b``
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_qwen2-72b``
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
* ``pyt_vllm_jais-13b``
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_jais-30b``
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
* ``pyt_vllm_llama-3.1-70b_fp8``
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-405b_fp8``
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
* ``pyt_vllm_mixtral-8x7b_fp8``
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
* ``pyt_vllm_mixtral-8x22b_fp8``
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
.. _vllm-benchmark-standalone:
@@ -181,8 +198,8 @@ snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
@@ -224,8 +241,8 @@ See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. _vllm-benchmark-standalone-options:
Options
-------
Options and available models
----------------------------
.. list-table::
:header-rows: 1
@@ -248,72 +265,100 @@ Options
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- JAIS 13B
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
@@ -335,34 +380,34 @@ options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
@@ -394,17 +439,40 @@ Further reading
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Using ROCm for AI <../index>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
<<<<<<< HEAD:docs/how-to/performance-validation/mi300x/vllm-benchmark.rst
=======
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
>>>>>>> develop:docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -14,6 +14,9 @@ Training models on AMD GPUs with the ROCm™ software platform allows you to use
The ROCm software platform makes it easier to train models on AMD GPUs while maintaining compatibility with existing code and tools. The platform also provides features like multi-GPU support, allowing for scaling and parallelization of model training across multiple GPUs to enhance performance.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`

View File

@@ -12,7 +12,7 @@ myst:
This chapter reviews system settings that are required to configure the system
for ROCm virtualization on RDNA2-based AMD Radeon™ PRO GPUs. Installing ROCm on
Bare Metal follows the routine ROCm
{doc}`installation procedure<rocm-install-on-linux:install/native-install/index>`.
{doc}`installation procedure<rocm-install-on-linux:install/install-methods/package-manager-index>`.
To enable ROCm virtualization on V620, one has to setup Single Root I/O
Virtualization (SR-IOV) in the BIOS via setting found in the following
@@ -166,4 +166,4 @@ First, assign GPU virtual function (VF) to VM using the following steps.
Then start the VM.
Finally install ROCm on the virtual machine (VM). For detailed instructions,
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/native-install/index>`.
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/install-methods/package-manager-index>`.

View File

@@ -38,6 +38,7 @@ ROCm documentation is organized into the following categories:
:class-body: rocm-card-banner rocm-hue-12
* [Use ROCm for AI](./how-to/rocm-for-ai/index.rst)
* [AI tutorials](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/)
* [Use ROCm for HPC](./how-to/rocm-for-hpc/index.rst)
* [System optimization](./how-to/system-optimization/index.rst)
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)

View File

@@ -89,7 +89,10 @@ subtrees:
title: Profile and debug
- file: how-to/rocm-for-ai/inference-optimization/workload.rst
title: Workload tuning
- url: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
title: AI tutorials
- file: how-to/rocm-for-hpc/index.rst
title: Use ROCm for HPC
- file: how-to/system-optimization/index.rst
@@ -126,6 +129,7 @@ subtrees:
- url: https://github.com/amd/rocm-examples
title: ROCm examples
- caption: Conceptual
entries:
- file: conceptual/gpu-arch.md

View File

@@ -1,3 +1,3 @@
rocm-docs-core==1.13.0
rocm-docs-core==1.15.0
sphinx-reredirects
sphinx-sitemap

View File

@@ -8,27 +8,42 @@ accessible-pygments==0.0.5
# via pydata-sphinx-theme
alabaster==1.0.0
# via sphinx
babel==2.16.0
asttokens==3.0.0
# via stack-data
attrs==25.1.0
# via
# jsonschema
# jupyter-cache
# referencing
babel==2.17.0
# via
# pydata-sphinx-theme
# sphinx
beautifulsoup4==4.12.3
beautifulsoup4==4.13.3
# via pydata-sphinx-theme
breathe==4.35.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2025.1.31
# via requests
cffi==1.17.1
# via
# cryptography
# pynacl
charset-normalizer==3.4.0
charset-normalizer==3.4.1
# via requests
click==8.1.7
# via sphinx-external-toc
cryptography==43.0.3
click==8.1.8
# via
# jupyter-cache
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==44.0.1
# via pyjwt
deprecated==1.2.15
debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
deprecated==1.2.18
# via pygithub
docutils==0.21.2
# via
@@ -36,63 +51,151 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
fastjsonschema==2.20.0
# via rocm-docs-core
gitdb==4.0.11
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.21.1
# via
# nbformat
# rocm-docs-core
gitdb==4.0.12
# via gitpython
gitpython==3.1.43
gitpython==3.1.44
# via rocm-docs-core
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==8.6.1
# via
# jupyter-cache
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.32.0
# via
# ipykernel
# myst-nb
jedi==0.19.2
# via ipython
jinja2==3.1.5
# via
# myst-parser
# sphinx
jsonschema==4.23.0
# via nbformat
jsonschema-specifications==2024.10.1
# via jsonschema
jupyter-cache==1.0.1
# via myst-nb
jupyter-client==8.6.3
# via
# ipykernel
# nbclient
jupyter-core==5.7.2
# via
# ipykernel
# jupyter-client
# nbclient
# nbformat
markdown-it-py==3.0.0
# via
# mdit-py-plugins
# myst-parser
markupsafe==3.0.2
# via jinja2
matplotlib-inline==0.1.7
# via
# ipykernel
# ipython
mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-parser==4.0.0
myst-nb==1.2.0
# via rocm-docs-core
myst-parser==4.0.0
# via myst-nb
nbclient==0.10.2
# via
# jupyter-cache
# myst-nb
nbformat==5.10.4
# via
# jupyter-cache
# myst-nb
# nbclient
nest-asyncio==1.6.0
# via ipykernel
packaging==24.2
# via sphinx
# via
# ipykernel
# sphinx
parso==0.8.4
# via jedi
pexpect==4.9.0
# via ipython
platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.50
# via ipython
psutil==6.1.1
# via ipykernel
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
pygithub==2.5.0
# via rocm-docs-core
pygments==2.18.0
pygments==2.19.1
# via
# accessible-pygments
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
python-dateutil==2.9.0.post0
# via jupyter-client
pyyaml==6.0.2
# via
# jupyter-cache
# myst-nb
# myst-parser
# rocm-docs-core
# sphinx-external-toc
pyzmq==26.2.1
# via
# ipykernel
# jupyter-client
referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.13.0
rocm-docs-core==1.15.0
# via -r requirements.in
smmap==5.0.1
rpds-py==0.22.3
# via
# jsonschema
# referencing
six==1.17.0
# via python-dateutil
smmap==5.0.2
# via gitdb
snowballstemmer==2.2.0
# via sphinx
@@ -101,6 +204,7 @@ soupsieve==2.6
sphinx==8.1.3
# via
# breathe
# myst-nb
# myst-parser
# pydata-sphinx-theme
# rocm-docs-core
@@ -119,7 +223,7 @@ sphinx-design==0.6.1
# via rocm-docs-core
sphinx-external-toc==1.0.1
# via rocm-docs-core
sphinx-notfound-page==1.0.4
sphinx-notfound-page==1.1.0
# via rocm-docs-core
sphinx-reredirects==0.1.5
# via -r requirements.in
@@ -137,15 +241,44 @@ sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
tomli==2.1.0
sqlalchemy==2.0.38
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.2.1
# via sphinx
tornado==6.4.2
# via
# ipykernel
# jupyter-client
traitlets==5.14.3
# via
# comm
# ipykernel
# ipython
# jupyter-client
# jupyter-core
# matplotlib-inline
# nbclient
# nbformat
typing-extensions==4.12.2
# via
# beautifulsoup4
# ipython
# myst-nb
# pydata-sphinx-theme
# pygithub
urllib3==2.2.3
# referencing
# sqlalchemy
urllib3==2.3.0
# via
# pygithub
# requests
wrapt==1.17.0
wcwidth==0.2.13
# via prompt-toolkit
wrapt==1.17.2
# via deprecated
zipp==3.21.0
# via importlib-metadata