Compare commits

..

49 Commits

Author SHA1 Message Date
Istvan Kiss
2b294a6f65 Fix white paper links 2025-02-28 14:54:07 +01:00
Adel Johar
e5bf76ead1 Merge pull request #4422 from ROCm/docs_6.3.3_update_fix_arch
Merge pull request #4393 from ROCm/docs_fix_arch
2025-02-28 14:09:20 +01:00
Adel Johar
5393e90a8e Merge pull request #4393 from ROCm/docs_fix_arch
Docs: Fix gpu-arch-spec.rst
2025-02-27 16:35:33 +01:00
Peter Park
fbc2815223 Merge pull request #4417 from peterjunpark/docs/6.3.3
[docs/6.3.3] Update PT and TF docker inventories in compatibility docs (#4415)
2025-02-26 09:28:30 -05:00
Peter Park
2b96a37b08 Fix tensorflow-rocm repo.radeon.com url 2025-02-25 12:58:02 -05:00
Peter Park
1e5ad14d86 Update PT and TF docker inventories in compatibility docs (#4415)
* update PyTorch docker inventories in compatibility doc

* update TF docker inventories in compatibility doc

* update text to rocm 6.3.3

(cherry picked from commit 934767322b)
2025-02-25 12:38:25 -05:00
Peter Park
f9d6bd4db8 Merge pull request #4410 from peterjunpark/docs/6.3.3
[docs/6.3.3] fix tab sync and nested tab Megatron-LM doc (#4409)
2025-02-21 17:23:06 -05:00
Peter Park
23e78c8d55 fix tab sync and nested tab Megatron-LM doc (#4409)
(cherry picked from commit 1ea1c5c6e0)
2025-02-21 17:20:15 -05:00
Peter Park
0edd31bde6 Merge pull request #4408 from peterjunpark/docs/6.3.3
Update docs on Megatron-LM and PyTorch training Dockers (#4407)
2025-02-21 13:29:10 -05:00
Peter Park
4af488e27d Update docs on Megatron-LM and PyTorch training Dockers (#4407)
* Update Megatron-LM and PyTorch Training Docker docs

Also restructure TOC

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update "start training" text

Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update conf.py

fix spacing

fix branding issue

add disable numa

reorg

remove extra text

(cherry picked from commit 389fa7071b)
2025-02-21 13:10:42 -05:00
Parag Bhandari
7ae7046301 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:25:14 -05:00
Parag Bhandari
358092386e Merge branch 'develop' into roc-6.3.x 2025-02-19 17:25:03 -05:00
Parag Bhandari
e071738908 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:22:38 -05:00
pbhandar-amd
cd79403931 Update vllm-benchmark.rst 2025-02-19 17:21:29 -05:00
Parag Bhandari
275ef1d511 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 16:41:11 -05:00
Parag Bhandari
065fe8b138 Merge branch 'develop' into roc-6.3.x 2025-02-19 16:30:33 -05:00
Parag Bhandari
be36c1808e Merge branch 'develop' into docs/6.3.3 2025-02-19 15:34:46 -05:00
Parag Bhandari
64c362a961 Manually update requirements.in and txt 2025-02-19 11:35:30 -05:00
pbhandar-amd
d392eca232 Update documentation requirements 2025-02-19 11:10:09 -05:00
pbhandar-amd
1b58c08394 Sync develop into docs/6.3.3 2025-02-18 14:05:45 -05:00
alexxu-amd
73ab81fbaf Merge pull request #4314 from amd-jnovotny/ai-tutorials-link-roc63x
Cherry-pick to roc-6.3.x: Add ToC and index links to the AI Developer Tutorials (#4312)
2025-01-29 16:44:22 -05:00
Jeffrey Novotny
ddfb5bda12 Add ToC and index links to the AI Developer Tutorials (#4312)
* Add ToC and index links to the AI Developer Tutorials

* Change link positioning

* Change wording

(cherry picked from commit d401b5f152)
2025-01-29 14:45:32 -05:00
Alex Xu
ae7f47a0a2 Merge branch 'develop' into roc-6.3.x 2025-01-28 17:05:44 -05:00
Alex Xu
5e5f7d6bb7 Merge branch 'develop' into roc-6.3.x 2025-01-28 16:41:02 -05:00
Alex Xu
da1125e228 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:25:35 -05:00
Alex Xu
e55b9f2a33 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:18:28 -05:00
Yanyao Wang
761a524d03 Merge pull request #4225 from WBobby/roc-6.3.x
Fix miopen-deps build issue by updating rocm-recipes for boost link
2025-01-06 10:03:50 -06:00
Wang, Yanyao
c895ee483c Fix miopen-deps build issue by updating rocm-recipes for boost link
Signed-off-by: Wang, Yanyao <yanyao.wang@amd.com>
2025-01-05 18:07:31 -08:00
Yanyao Wang
e049d952d4 Merge pull request #4221 from WBobby/roc-6.3.x
Add the required manifest file into roc-6.3.x branch
2025-01-03 11:21:45 -06:00
Wang, Yanyao
ce41922bb5 Update the base docker images for ROCm6.3 2025-01-03 08:10:06 -08:00
Wang, Yanyao
2b53b40caa Add manifest file for ROCm6.3.1 2025-01-03 08:07:38 -08:00
Peter Park
9250e1ba28 Fix PyTorch Compatibility link and remove incomplete rows (#4195)
* fix pytorch-compatibility filename

fix links

* remove incomplete rows in pytorch-compatibility

* fix broken refs
2024-12-24 13:51:33 -05:00
alexxu-amd
3c055ab65b Change version variable to latest
Since gpu-cluster-networking gets moved to dcgpu. All versioning will be renamed.
2024-12-24 13:51:33 -05:00
Peter Park
44aaf1b57c Add PyTorch compatibility doc (#4193)
* Add compatibility framework pages

* update formatting

* WIP

* satisfy spellcheck linter

* PR feedbacks

* caps

* remove jax and tensorflow pages

* comment out "?"s

* update wordlist

* fix toc and table

* update toc and deep-learning-rocm.rst

---------

Co-authored-by: Istvan Kiss <neon60@gmail.com>
2024-12-24 13:51:33 -05:00
alexxu-amd
822e789998 Update index.md 2024-12-24 13:51:33 -05:00
alexxu-amd
243ac78609 Update _toc.yml.in 2024-12-24 13:51:33 -05:00
Daniel Su
c2f483332f External CI: revert sync changes (#4191) 2024-12-24 13:51:33 -05:00
dependabot[bot]
b35267b6bd Build(deps): Bump rocm-docs-core from 1.11.0 to 1.12.0 in /docs/sphinx (#4167)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.11.0 to 1.12.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.11.0...v1.12.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-12-24 13:51:33 -05:00
Alex Xu
deb4895b11 Merge branch 'develop' into roc-6.3.x 2024-12-20 18:42:53 -05:00
Yanyao Wang
8c036531e8 Merge pull request #4163 from WBobby/roc-6.3.x-pr
Update build scripts of ROCm6.3 release to roc-6.3.x branch
2024-12-16 12:23:11 -06:00
Wang, Yanyao
484cbefc2e Update build scripts of ROCm6.3 release to roc-6.3.x branch 2024-12-15 17:35:58 -08:00
alexxu-amd
721b60d52f Merge pull request #4155 from amd-jnovotny/user-kernel-space-rocm-roc63x
Cherry-pick to roc-6.3.x: Change reference to kernel-mode GPU compute driver in ROCm (#4147)
2024-12-13 13:15:06 -05:00
Jeffrey Novotny
8ebe7be283 Change reference to kernel-mode GPU compute driver in ROCm (#4147)
* Change reference to kernel-mode GPU compute driver in ROCm

* More changes for kernel-mode terminology

* Fix linting

(cherry picked from commit 04fdc08328)
2024-12-13 12:13:15 -05:00
Sam Wu
7e8947fdb4 Merge pull request #4128 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-06 11:34:46 -07:00
Sam Wu
66cac5301f Merge pull request #4113 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-05 09:35:17 -07:00
Sam Wu
9f3a1de117 Merge branch 'develop' into roc-6.3.x 2024-12-04 19:34:29 -07:00
Sam Wu
0915fb17e8 Merge pull request #4109 from ROCm/develop
fix links to smi tools full changelog on GH (#4108) in 6.3 release branch
2024-12-04 19:08:06 -07:00
Sam Wu
0d3eb1d774 Merge pull request #4104 from ROCm/develop
Merge develop into ROCm 6.3 release branch
2024-12-04 17:09:23 -07:00
Sam Wu
7a258cdba9 Merge pull request #4093 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-03 16:17:01 -07:00
74 changed files with 1517 additions and 2069 deletions

View File

@@ -84,8 +84,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -67,8 +67,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -77,8 +77,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -67,8 +67,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -87,6 +87,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
- job: Tensile_testing
timeoutInMinutes: 90

View File

@@ -42,8 +42,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,8 +48,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,8 +52,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -63,8 +63,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -72,8 +72,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -158,7 +156,6 @@ jobs:
- deps
- job: hipBLASLt_testing
timeoutInMinutes: 120
dependsOn: hipBLASLt
condition: and(succeeded(), eq(variables.ENABLE_GFX942_TESTS, 'true'), not(containsValue(split(variables.DISABLED_GFX942_TESTS, ','), variables['Build.DefinitionName'])))
variables:

View File

@@ -43,8 +43,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -54,8 +54,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -45,8 +45,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,8 +57,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,8 +52,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -105,7 +105,6 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DCMAKE_Fortran_COMPILER=f95
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-DTensile_LOGIC=
-DTensile_CPU_THREADS=

View File

@@ -42,8 +42,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -51,8 +51,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -29,7 +29,7 @@ jobs:
value: '$(Build.BinariesDirectory)/amdgcn/bitcode'
- name: HIP_PATH
value: '$(Agent.BuildDirectory)/rocm'
pool: ${{ variables.ULTRA_BUILD_POOL }}
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:
@@ -51,7 +51,7 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Build.BinariesDirectory)/llvm;$(Build.BinariesDirectory)"
-DCMAKE_BUILD_TYPE=Release
-DLLVM_ENABLE_PROJECTS=clang;lld;clang-tools-extra;mlir;flang
-DLLVM_ENABLE_PROJECTS=clang;lld;clang-tools-extra;mlir
-DLLVM_ENABLE_RUNTIMES=compiler-rt;libunwind;libcxx;libcxxabi
-DCLANG_ENABLE_AMDCLANG=ON
-DLLVM_TARGETS_TO_BUILD=AMDGPU;X86
@@ -85,7 +85,7 @@ jobs:
componentName: check-llvm
testDir: 'llvm/build'
testExecutable: './bin/llvm-lit'
testParameters: '-q --xunit-xml-output=llvm_test_output.xml --filter-out="live-debug-values-spill-tracking" ./test'
testParameters: '-q --xunit-xml-output=llvm_test_output.xml ./test'
testOutputFile: llvm_test_output.xml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:

View File

@@ -0,0 +1,140 @@
# largely referenced from: https://github.com/ROCm/omnitrace/blob/main/.github/workflows/ubuntu-jammy.yml
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: aptPackages
type: object
default:
- autoconf
- autotools-dev
- bison
- build-essential
- bzip2
- clang
- cmake
- environment-modules
- g++-12
- libdrm-dev
- libfabric-dev
- libiberty-dev
- libpapi-dev
- libpfm4-dev
- libtool
- libopenmpi-dev
- m4
- openmpi-bin
- software-properties-common
- python3-pip
- texinfo
- zlib1g-dev
- name: pipModules
type: object
default:
- numpy
- perfetto
- dataclasses
- name: rocmDependencies
type: object
default:
- aomp
- clr
- llvm-project
- rccl
- rocm-core
- rocm_smi_lib
- rocminfo
- ROCR-Runtime
- rocprofiler
- rocprofiler-register
- roctracer
jobs:
- job: omnitrace
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
strategy:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
- task: Bash@3
displayName: ROCm symbolic link
inputs:
targetType: inline
script: |
sudo rm -rf /opt/rocm
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
- task: Bash@3
displayName: Add ROCm compilers to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
# build flags reference: https://rocm.docs.amd.com/projects/omnitrace/en/latest/install/install.html
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DOMNITRACE_BUILD_TESTING=ON
-DOMNITRACE_BUILD_DYNINST=ON
-DOMNITRACE_BUILD_LIBUNWIND=ON
-DDYNINST_BUILD_TBB=ON
-DDYNINST_BUILD_ELFUTILS=ON
-DDYNINST_BUILD_LIBIBERTY=ON
-DDYNINST_BUILD_BOOST=ON
-DOMNITRACE_USE_PAPI=ON
-DOMNITRACE_USE_MPI=ON
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
multithreadFlag: -- -j32
- task: Bash@3
displayName: Set up omnitrace env
inputs:
targetType: inline
script: source share/omnitrace/setup-env.sh
workingDirectory: build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: omnitrace
- task: Bash@3
displayName: Remove ROCm binaries from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- task: Bash@3
displayName: Remove ROCm compilers from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -64,8 +64,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -65,8 +65,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -73,8 +73,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- task: Bash@3
displayName: 'Register libjpeg-turbo packages'

View File

@@ -60,8 +60,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -75,8 +75,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -55,8 +55,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,8 +47,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -42,8 +42,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,8 +48,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -45,8 +45,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -58,8 +58,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -56,8 +56,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,8 +47,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,8 +57,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -8,6 +8,7 @@ parameters:
- name: aptPackages
type: object
default:
- cmake
- doxygen
- doxygen-doc
- ninja-build
@@ -17,9 +18,7 @@ parameters:
type: object
default:
- cget
- cmake==3.20.5
- ninja
- rocm-docs-core
jobs:
- job: rocm_cmake
@@ -34,29 +33,21 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- task: Bash@3
displayName: Add CMake to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(python3 -m site --user-base)/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
- task: Bash@3
displayName: CTest setup
inputs:
targetType: inline
script: |
python -m pip install -r $(Build.SourcesDirectory)/docs/requirements.txt
python -m pip install -r $(Build.SourcesDirectory)/test/docsphinx/docs/.sphinx/requirements.txt
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
# extra steps for ctest suite
- script: |
python -m pip install -r $(Build.SourcesDirectory)/docs/requirements.txt
python -m pip install -r $(Build.SourcesDirectory)/test/docsphinx/docs/.sphinx/requirements.txt
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
displayName: "ctest setup"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocm-cmake
testParameters: '-E "pass-version-parent" -VV --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
@@ -65,3 +56,4 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: combined
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -75,8 +75,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -10,7 +10,6 @@ parameters:
default:
- cmake
- libdrm-dev
- pkg-config
- python3-pip
jobs:
@@ -40,6 +39,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocm_smi_lib_testing
dependsOn: rocm_smi_lib

View File

@@ -59,8 +59,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,8 +57,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -72,8 +72,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,8 +57,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -69,6 +69,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocr_debug_agent_testing
dependsOn: rocr_debug_agent

View File

@@ -11,7 +11,6 @@ parameters:
- cmake
- doxygen
- graphviz
- libdrm-amdgpu-dev
- ninja-build
- python3-pip
- name: pipModules
@@ -50,14 +49,11 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -89,7 +85,6 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true
- job: roctracer_testing
dependsOn: roctracer
@@ -109,8 +104,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
@@ -135,4 +128,3 @@ jobs:
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true

View File

@@ -57,8 +57,6 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -1,29 +0,0 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: checkoutRef
type: string
default: refs/tags/$(LATEST_RELEASE_TAG)
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
- repository: release_repo
type: github
endpoint: ROCm
name: ROCm/TransferBench
ref: ${{ parameters.checkoutRef }}
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/TransferBench.yml
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -222,13 +222,13 @@ parameters:
hasGpuTarget: false
rocm-examples:
pipelineId: $(ROCM_EXAMPLES_PIPELINE_ID)
stagingBranch: amd-staging
mainlineBranch: amd-mainline
stagingBranch: develop
mainlineBranch: develop
hasGpuTarget: true
rocminfo:
pipelineId: $(ROCMINFO_PIPELINE_ID)
stagingBranch: amd-staging
mainlineBranch: amd-mainline
mainlineBranch: amd-master
hasGpuTarget: false
rocMLIR:
pipelineId: $(ROCMLIR_PIPELINE_ID)
@@ -262,7 +262,7 @@ parameters:
hasGpuTarget: true
rocprofiler-compute:
pipelineId: $(ROCPROFILER_COMPUTE_PIPELINE_ID)
stagingBranch: develop
stagingBranch: amd-staging
mainlineBranch: amd-mainline
hasGpuTarget: true
rocprofiler-register:

View File

@@ -33,6 +33,7 @@ parameters:
- aomp
- HIPIFY
- MIVisionX
- rocm-cmake
- rocm_smi_lib
- rocprofiler-sdk
- roctracer

View File

@@ -28,13 +28,13 @@ variables:
- name: GFX942_TEST_POOL
value: gfx942_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.3.3
value: 6.3.2
- name: REPO_RADEON_VERSION
value: 6.3.3
value: 6.3.2
- name: NEXT_RELEASE_VERSION
value: 6.4.0
- name: LATEST_RELEASE_TAG
value: rocm-6.3.3
value: rocm-6.3.2
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID
value: 197
- name: AMDMIGRAPHX_PIPELINE_ID

1
.gitignore vendored
View File

@@ -11,7 +11,6 @@ _toc.yml
docBin/
_doxygen/
_readthedocs/
__pycache__/
# avoid duplicating contributing.md due to conf.py
docs/CHANGELOG.md

View File

@@ -156,6 +156,7 @@ HCA
HGX
HIPCC
HIPExtension
HIPification
HIPIFY
HIPification
HIPify
@@ -481,7 +482,6 @@ ZenDNN
accuracies
activations
addr
ai
alloc
allocatable
allocator
@@ -547,7 +547,6 @@ cTDP
dataset
datasets
dataspace
datatemplate
datatype
datatypes
dbgapi
@@ -576,7 +575,6 @@ el
embeddings
enablement
encodings
endfor
endpgm
enqueue
env
@@ -697,7 +695,6 @@ pageable
pallas
parallelization
parallelizing
param
parameterization
passthrough
perfcounter
@@ -815,7 +812,6 @@ supercomputing
symlink
symlinks
sys
tabindex
td
tensorfloat
th
@@ -861,7 +857,6 @@ vectorizes
virtualize
virtualized
vjxb
vllm
voxel
walkthrough
walkthroughs

View File

@@ -66,10 +66,11 @@ project-specific steps. Refer to each repository's PR process for any additional
during our release cycle, as coordinated by the maintainer
* We'll inform you once your change is committed
> [!IMPORTANT]
> By creating a PR, you agree to allow your contribution to be licensed under the
> terms of the LICENSE.txt file in the corresponding repository. Different repositories may use different
> licenses.
:::{important}
By creating a PR, you agree to allow your contribution to be licensed under the
terms of the LICENSE.txt file in the corresponding repository. Different repositories may use different
licenses.
:::
You can look up each license on the [ROCm licensing](https://rocm.docs.amd.com/en/latest/about/license.html) page.

View File

@@ -116,7 +116,7 @@ bash install-prerequisites.sh
# For ubuntu22.04 system
cd ROCm/tools/rocm-build/docker/ubuntu22
cp * /tmp && cd /tmp
bash install-prerequisites.sh
bash install-prerequisities.sh
# For ubuntu24.04 system
cd ROCm/tools/rocm-build/docker/ubuntu24
cp * /tmp && cd /tmp

View File

@@ -4,8 +4,6 @@
:description: JAX compatibility
:keywords: GPU, JAX compatibility
.. version-set:: rocm_version latest
*******************************************************************************
JAX compatibility
*******************************************************************************
@@ -121,8 +119,7 @@ Critical ROCm libraries for JAX
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
@@ -132,7 +129,7 @@ are available in ROCm :version:`rocm_version`.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
@@ -141,7 +138,7 @@ are available in ROCm :version:`rocm_version`.
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- 0.10.0
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
@@ -150,7 +147,7 @@ are available in ROCm :version:`rocm_version`.
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
@@ -158,23 +155,23 @@ are available in ROCm :version:`rocm_version`.
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
@@ -182,28 +179,28 @@ are available in ROCm :version:`rocm_version`.
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- 3.3.0
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- 2.21.5
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for

View File

@@ -4,8 +4,6 @@
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
.. version-set:: rocm_version latest
********************************************************************************
PyTorch compatibility
********************************************************************************
@@ -202,8 +200,7 @@ Critical ROCm libraries for PyTorch
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
@@ -213,28 +210,28 @@ are available in ROCm :version:`rocm_version`.
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- :version-ref:`"Composable Kernel" rocm_version`
- 1.1.0
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- 0.10.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
@@ -242,93 +239,93 @@ are available in ROCm :version:`rocm_version`.
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- :version-ref:`hipTensor rocm_version`
- 1.4.0
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- 3.3.0
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- :version-ref:`MIGraphX rocm_version`
- 2.11.0
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- :version-ref:`MIVisionX rocm_version`
- 3.1.0
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- :version-ref:`rocAL rocm_version`
- 2.1.0
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- :version-ref:`rocDecode rocm_version`
- 0.8.0
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- :version-ref:`rocJPEG rocm_version`
- 0.6.0
- Provides hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- :version-ref:`RPP rocm_version`
- 1.9.1
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- :version-ref:`rocWMMA rocm_version`
- 1.6.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.

View File

@@ -4,8 +4,6 @@
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow compatibility
.. version-set:: rocm_version latest
*******************************************************************************
TensorFlow compatibility
*******************************************************************************
@@ -72,7 +70,7 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
@@ -81,7 +79,7 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
@@ -90,7 +88,7 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
@@ -99,7 +97,7 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
@@ -108,7 +106,7 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
@@ -119,8 +117,7 @@ Critical ROCm libraries for TensorFlow
TensorFlow depends on multiple components and the supported features of those
components can affect the TensorFlow ROCm supported feature set. The versions
in the following table refer to the first TensorFlow version where the ROCm
library was introduced as a dependency. The versions described
are available in ROCm :version:`rocm_version`.
library was introduced as a dependency.
.. list-table::
:widths: 25, 10, 35, 30
@@ -131,43 +128,43 @@ are available in ROCm :version:`rocm_version`.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Accelerates operations like ``tf.matmul``, ``tf.linalg.matmul``, and
other matrix multiplications commonly used in neural network layers.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- 0.10.0
- Extends hipBLAS with additional optimizations like fused kernels and
integer tensor cores.
- Optimizes matrix multiplications and linear algebra operations used in
layers like dense, convolutional, and RNNs in TensorFlow.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``tf.reduce_sum``, ``tf.cumsum``, ``tf.sort``
and other tensor operations in TensorFlow, especially those involving
scanning, sorting, and filtering.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- 1.0.17
- Accelerates Fast Fourier Transforms (FFT) for signal processing tasks.
- Used for operations like signal processing, image filtering, and
certain types of neural networks requiring FFT-based transformations.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- 2.3.0
- Provides GPU-accelerated direct linear solvers for dense and sparse
systems.
- Optimizes linear algebra functions such as solving systems of linear
equations, often used in optimization and training tasks.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- 3.1.2
- Optimizes sparse matrix operations for efficient computations on sparse
data.
- Accelerates sparse matrix operations in models with sparse weight
matrices or activations, commonly used in neural networks.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- 3.3.0
- Provides optimized deep learning primitives such as convolutions,
pooling,
normalization, and activation functions.
@@ -175,13 +172,13 @@ are available in ROCm :version:`rocm_version`.
in TensorFlow for layers like ``tf.nn.conv2d``, ``tf.nn.relu``, and
``tf.nn.lstm_cell``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``tf.distribute.MirroredStrategy``).
Handles communication in multi-GPU setups.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``tf.reduce_sum``, ``tf.cumsum`` for computing

View File

@@ -0,0 +1,916 @@
.. meta::
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
********************************************************************************
PyTorch compatibility
********************************************************************************
`PyTorch <https://pytorch.org/>`_ is an open-source tensor library designed for
deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
version.
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
- Official PyTorch release:
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
.. _pytorch-docker-compat:
Docker image compatibility
================================================================================
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
- OFED
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3918/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Critical ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is shaped by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
and ``torch.topk``. Operations on sparse tensors or tensors with
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 1.4.0
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- Add graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.1.0
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 2.1.0
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- Provide hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- Provide hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- Speed up data augmentation, transformation, and other preprocessing step.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 1.6.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Linear layers (``torch.nn.Linear``), convolutional layers
(``torch.nn.Conv2d``), attention layers, general tensor operations that
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported and unsupported features
================================================================================
The following section maps GPU-accelerated PyTorch features to their supported
ROCm and PyTorch versions.
torch
--------------------------------------------------------------------------------
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types, along with various
other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
- 5.5
* - ``torch.float8_e5m2``
- 8-bit floating point, e5m2
- 2.3
- 5.5
* - ``torch.float16`` or ``torch.half``
- 16-bit floating point
- 0.1.6
- 2.0
* - ``torch.bfloat16``
- 16-bit floating point
- 1.6
- 2.6
* - ``torch.float32`` or ``torch.float``
- 32-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.float64`` or ``torch.double``
- 64-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.complex32`` or ``torch.chalf``
- PyTorch provides native support for 32-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex64`` or ``torch.cfloat``
- PyTorch provides native support for 64-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex128`` or ``torch.cdouble``
- PyTorch provides native support for 128-bit complex numbers
- 1.6
- 2.0
* - ``torch.uint8``
- 8-bit integer (unsigned)
- 0.1.12_2
- 2.0
* - ``torch.uint16``
- 16-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint32``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint64``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.int8``
- 8-bit integer (signed)
- 1.12
- 5.0
* - ``torch.int16`` or ``torch.short``
- 16-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int32`` or ``torch.int``
- 32-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int64`` or ``torch.long``
- 64-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.bool``
- Boolean
- 1.2
- 2.0
* - ``torch.quint8``
- Quantized 8-bit integer (unsigned)
- 1.8
- 5.0
* - ``torch.qint8``
- Quantized 8-bit integer (signed)
- 1.8
- 5.0
* - ``torch.qint32``
- Quantized 32-bit integer (signed)
- 1.8
- 5.0
* - ``torch.quint4x2``
- Quantized 4-bit integer (unsigned)
- 1.8
- 5.0
.. note::
Unsigned types aside from ``uint8`` are currently only have limited support in
eager mode (they primarily exist to assist usage with ``torch.compile``).
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
collected the native HW support of different data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
computations, memory management, and efficient execution of tensor operations,
leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Perform tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance, events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
- Functions to manage and inspect memory usage like
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Return a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- A set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
* - ``torch.cuda.CUDAGraph``
- Graphs capture sequences of GPU operations to minimize kernel launch
overhead and improve performance.
- 1.10.0
- 5.3
* - TunableOp
- A mechanism that allows certain operations to be more flexible and
optimized for performance. It enables automatic tuning of kernel
configurations and other settings to achieve the best possible
performance based on the specific hardware (GPU) and workload.
- 2.0
- 5.4
* - NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.8.0
- ❌
* - Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.13.0
- ❌
* - Jiterator (beta)
- Jiterator allows asynchronous data streaming into computation streams
during training loops.
- 1.13.0
- 5.2
.. Need to validate and extend.
torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of CUDA or ROCm operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the CUDA or ROCm environment.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
- 5.0
* - ``matmul.allow_tf32``
- Enables or disables the use of TensorFloat-32 (TF32) precision for
faster matrix multiplications on GPUs with Tensor Cores.
- 1.10.0
- ❌
* - ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions (e.g., with fp16 accumulation type) are
allowed with fp16 GEMMs.
- 2.0
- ❌
* - ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
- ❌
* - ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
- ❌
* - ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
- ❌
* - ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
- ❌
* - ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
- ❌
.. Need to validate and extend.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported ``torch`` options:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
- 1.12.0
- ❌
* - ``deterministic``
- A bool that, if True, causes cuDNN to only use deterministic
convolution algorithms.
- 1.12.0
- 6.0
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch that automates the process of using both 16-bit (half-precision,
float16) and 32-bit (single-precision, float32) floating-point types in model
training and inference.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Autocasting
- Instances of autocast serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss(es) by a scale factor and invokes a backward pass on the scaled
loss(es). Gradients flowing backward through the network are then
scaled by the same factor. In other words, gradient values have a
larger magnitude, so they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
- These ops always go through autocasting whether they are invoked as part
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
functions are exposed in multiple namespaces, they go through
autocasting regardless of the namespace.
- 1.9
- 2.5
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
The Distributed Library feature in PyTorch provides tools and APIs for building
and running distributed machine learning workflows. It allows training models
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - TensorPipe
- TensorPipe is a point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
- 1.8
- 5.4
* - Gloo
- Gloo is designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
- 1.0
- 2.0
torch.compiler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
enables acceleration of both forwards and backwards pass using
``TorchInductor``.
- 2.0
- 5.3
* - ``torch.compiler`` (TorchInductor)
- The default ``torch.compile`` deep learning compiler that generates fast
code for multiple accelerators and backends. You need to use a backend
compiler to make speedups through ``torch.compile`` possible. For AMD,
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
- 2.0
- 5.3
torchaudio
--------------------------------------------------------------------------------
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchaudio version
- Since ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generate the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
- Extract of MFCC features.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resample a signal from one frequency to another
- 0.9.0
- 4.5
torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provide datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchvision version
- Since ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
- 0.2.0
- 4.0
* - ``torchvision.ops``
- GPU-accelerated operations for object detection and segmentation tasks.
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
``box_convert``.
- 0.6.0
- 3.3
* - ``torchvision.models`` with ``.to('cuda')``
- ``torchvision`` provides several pre-trained models (ResNet, Faster
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
training.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3
torchtext
--------------------------------------------------------------------------------
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
utilities for processing and working with text data in PyTorch, including
tokenization, vocabulary management, and text embeddings. torchtext supports
preprocessing pipelines and integration with PyTorch models, simplifying the
implementation of natural language processing (NLP) tasks.
To leverage GPU acceleration in torchtext, you need to move tensors
explicitly to the GPU using ``.to('cuda')``.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchtune
--------------------------------------------------------------------------------
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
torchserve
--------------------------------------------------------------------------------
The `torchserve <https://pytorch.org/torchserve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchrec
--------------------------------------------------------------------------------
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
----------------------------
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
.. list-table::
:widths: 30, 60, 10
:header-rows: 1
* - Data type
- Description
- Since PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
- A bool that controls whether TensorFloat-32 tensor cores may be used in
matrix multiplications.
- 1.7
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.7.0
* - ``torch.cuda`` / Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.8.0
* - ``torch-tensorrt``
- Integrate TensorRT library for optimizing and deploying PyTorch models.
ROCm does not have equialent library for TensorRT.
- 1.9.0
* - ``torch.backends`` / ``cudnn.allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
- 1.10.0
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions with fp16 accumulation type are
allowed with fp16 GEMMs.
- 2.0
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
- Flash attention backend for SDPA to accelerate attention computation in
transformer-based models.
- 2.0
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
* - Dynamic parallelism
- PyTorch itself does not directly expose dynamic parallelism as a core
feature. Dynamic parallelism allow GPU threads to launch additional
threads which can be reached using custom operations via the
``torch.utils.cpp_extension`` module.
- Not a core feature
* - Unified memory support in PyTorch
- Unified Memory is not directly exposed in PyTorch's core API, it can be
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/train-a-model>` provides
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
for optimizing training workflows on AMD GPUs using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/llm-fine-tuning-optimization/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
machine learning models, particularly large language models (LLMs), on systems with a single AMD
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
executing fine-tuning and inference workflows in such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/llm-fine-tuning-optimization/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning models on systems
with multi MI300X accelerators.
* The :doc:`Instinct MI300X workload optimization guide </how-to/tuning-guides/mi300x/workload>` provides detailed
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_

View File

@@ -6,8 +6,6 @@
import os
import shutil
import sys
from pathlib import Path
shutil.copy2("../RELEASE.md", "./about/release-notes.md")
@@ -52,8 +50,8 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -68,7 +66,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-quantization", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries", "os": ["linux"]},
@@ -91,16 +89,11 @@ article_pages = [
external_toc_path = "./sphinx/_toc.yml"
# Add the _extensions directory to Python's search path
sys.path.append(str(Path(__file__).parent / 'extension'))
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref"]
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap"]
external_projects_current_project = "rocm"
# Uncomment if facing rate limit exceed issue with local build
# Uncomment if facing rate limit exceed issue with local build
# external_projects_remote_repository = ""
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
@@ -111,9 +104,8 @@ if os.environ.get("READTHEDOCS", "") == "True":
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
html_static_path = ["sphinx/static/css", "extension/how-to/rocm-for-ai/inference"]
html_css_files = ["rocm_custom.css", "rocm_rn.css", "vllm-benchmark.css"]
html_js_files = ["vllm-benchmark.js"]
html_static_path = ["sphinx/static/css"]
html_css_files = ["rocm_custom.css", "rocm_rn.css"]
html_title = "ROCm Documentation"

View File

@@ -1,153 +0,0 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9
rocm_version: 6.3.1
vllm_version: 0.6.6
pytorch_version: 2.7.0 (2.7.0a0+git3a58512)
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -1,212 +0,0 @@
function ready(proc) {
// Check if page is loaded. If so, init.
if (document.readyState !== "loading") {
proc();
} else {
// Otherwise, wait for DOMContentLoaded event.
document.addEventListener("DOMContentLoaded", proc);
}
}
ready(() => {
const ModelPicker = {
// Selector strings for DOM elements
SELECTORS: {
CONTAINER: "#vllm-benchmark-ud-params-picker",
MODEL_GROUP_BTN: 'div[data-param-k="model-group"][data-param-v]',
MODEL_PARAM_BTN: 'div[data-param-k="model"][data-param-v]',
MODEL_DOC: "div.model-doc",
},
CSS_CLASSES: {
HIDDEN: "hidden",
},
ATTRIBUTES: {
PARAM_KEY: "data-param-k", // URL search parameter key (i.e., "model")
PARAM_VALUE: "data-param-v", // URL search param value (e.g., "pyt_vllm_llama-3.1-8b", "pyt_vllm_llama-3.1-70b") -- these are MAD model tags
PARAM_GROUP: "data-param-group", // Model group (e.g., "llama", "mistral")
PARAM_STATE: "data-param-state", // Selection state
},
// Cache DOM elements
elements: {
container: null,
modelGroups: null,
modelParams: null,
modelDocs: null,
},
data: {
availableModels: new Set(),
modelsByGroup: new Map(),
modelToGroupMap: new Map(),
formattedModelClassMap: new Map(), //TODO
},
init() {
this.elements.container = document.querySelector(
this.SELECTORS.CONTAINER,
);
if (!this.elements.container) return;
this.cacheDOMElements();
if (!this.validateElements()) return;
this.buildModelData();
this.bindEvents();
this.initializeState();
},
cacheDOMElements() {
const { CONTAINER, MODEL_GROUP_BTN, MODEL_PARAM_BTN, MODEL_DOC } =
this.SELECTORS;
this.elements = {
container: document.querySelector(CONTAINER),
modelGroups: document.querySelectorAll(MODEL_GROUP_BTN),
modelParams: document.querySelectorAll(MODEL_PARAM_BTN),
modelDocs: document.querySelectorAll(MODEL_DOC),
};
},
validateElements() {
const { modelGroups, modelParams } = this.elements;
if (!modelGroups.length || !modelParams.length) {
console.warn("Model picker is missing required elements");
return false;
}
return true;
},
buildModelData() {
const { PARAM_VALUE, PARAM_GROUP } = this.ATTRIBUTES;
this.elements.modelParams.forEach((model) => {
const modelTag = model.getAttribute(PARAM_VALUE);
const groupTag = model.getAttribute(PARAM_GROUP);
if (!modelTag || !groupTag) return;
this.data.availableModels.add(modelTag);
this.data.modelToGroupMap.set(modelTag, groupTag);
// FIXME: this is because Sphinx auto-formats class names to use dashes
this.data.formattedModelClassMap.set(
modelTag,
modelTag.replace(/[^a-zA-Z0-9]/g, "-"),
);
if (!this.data.modelsByGroup.has(groupTag)) {
this.data.modelsByGroup.set(groupTag, []);
}
this.data.modelsByGroup.get(groupTag).push(modelTag);
});
},
// Event listeners for user interactions
bindEvents() {
const handleInteraction = (event) => {
const target = event.target.closest(`[${this.ATTRIBUTES.PARAM_KEY}]`);
if (!target) return;
const paramType = target.getAttribute(this.ATTRIBUTES.PARAM_KEY);
const paramValue = target.getAttribute(this.ATTRIBUTES.PARAM_VALUE);
if (paramType === "model") {
const groupTag = target.getAttribute(this.ATTRIBUTES.PARAM_GROUP);
if (groupTag) this.updateUI(paramValue, groupTag);
} else if (paramType === "model-group") {
const firstModelInGroup = this.data.modelsByGroup.get(paramValue)
?.[0];
if (firstModelInGroup) this.updateUI(firstModelInGroup, paramValue);
}
};
this.elements.container.addEventListener("click", handleInteraction);
this.elements.container.addEventListener("keydown", (event) => {
if (event.key === "Enter" || event.key === " ") {
event.preventDefault();
handleInteraction(event);
}
});
},
// Update the page based on the selected model
updateUI(modelTag, groupTag) {
const validModel = this.setModelSearchParam(modelTag);
// Update model group buttons
this.elements.modelGroups.forEach((group) => {
const isSelected =
group.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === groupTag;
group.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelected ? "selected" : "",
);
group.setAttribute("aria-selected", isSelected.toString());
});
// Update model buttons
this.elements.modelParams.forEach((model) => {
const isInSelectedGroup =
model.getAttribute(this.ATTRIBUTES.PARAM_GROUP) === groupTag;
const isSelectedModel =
model.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === validModel;
model.classList.toggle(this.CSS_CLASSES.HIDDEN, !isInSelectedGroup);
model.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelectedModel ? "selected" : "",
);
model.setAttribute("aria-selected", isSelectedModel.toString());
});
// Update visibility of doc sections
const formattedClass = this.data.formattedModelClassMap.get(validModel);
if (formattedClass) {
this.elements.modelDocs.forEach((doc) => {
doc.classList.toggle(
this.CSS_CLASSES.HIDDEN,
!doc.classList.contains(formattedClass),
);
});
}
},
// Get the current model from the URL search parameters.
getModelSearchParam() {
return new URLSearchParams(location.search).get("model");
},
// Set the model in the URL search parameters, or fallback to the first available one.
setModelSearchParam(modelTag) {
const defaultModel = [...this.data.availableModels][0];
const model = this.data.availableModels.has(modelTag)
? modelTag
: defaultModel;
const searchParams = new URLSearchParams(location.search);
searchParams.set("model", model);
history.replaceState(
{},
"",
`${location.pathname}?${searchParams.toString()}`,
);
return model;
},
// Initialize the UI state based on the current URL search parameter or default values.
initializeState() {
const currentModel = this.getModelSearchParam();
const validModel = this.setModelSearchParam(currentModel);
const initialGroup = this.data.modelToGroupMap.get(validModel) ??
[...this.data.modelsByGroup.keys()][0];
if (initialGroup) {
this.updateUI(validModel, initialGroup);
}
},
};
ModelPicker.init();
});

View File

@@ -1,266 +0,0 @@
from docutils import nodes
from docutils.parsers.rst import Directive
from sphinx.util import logging
import csv
from io import StringIO
import re
import shlex
logger = logging.getLogger(__name__)
class VersionReference(nodes.Inline, nodes.TextElement):
"""Represents an inline version reference."""
pass
class VersionSetDirective(Directive):
"""Directive for setting version references within a page scope."""
required_arguments = 2 # name and value
optional_arguments = 0
def run(self):
env = self.state.document.settings.env
if not hasattr(env, 'doc_version_refs'):
env.doc_version_refs = {}
current_doc = env.docname
if current_doc not in env.doc_version_refs:
env.doc_version_refs[current_doc] = {}
name, value = self.arguments
if name.lower() == 'latest':
logger.warning('Cannot override the "latest" keyword with version-set')
return []
# Handle 'latest' value by getting the actual version
if value.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if data:
latest_version = get_latest_rocm_version(data)
if latest_version:
value = latest_version
env.doc_version_refs[current_doc][name] = value
return []
def clean_library_name(name):
"""Extract library name from RST formatting."""
# Handle :doc: format
doc_match = re.search(r':doc:`([^<]+)(?:\s+<[^>]+>)?`', name)
if doc_match:
return doc_match.group(1).strip()
# Handle other link formats
link_match = re.search(r'`([^<]+)(?:\s+<[^>]+>)?`_?', name)
if link_match:
return link_match.group(1).strip()
return name.strip()
def get_latest_rocm_version(data):
"""Get the latest ROCm version from the matrix headers."""
if not data or len(data) == 0:
return None
# Get all column names except 'ROCm Version'
columns = [col for col in data[0].keys() if col != 'ROCm Version']
# Return the first column name (assumed to be the latest version)
return columns[0] if columns else None
def version_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function to print version value.
Usage: :version:`version_name`
"""
try:
version_name = text.strip()
env = inliner.document.settings.env
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if version_name in doc_refs:
version = doc_refs[version_name]
node = nodes.Text(version)
return [node], []
msg = inliner.reporter.warning(
f'No version defined for name {version_name}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def version_ref_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function for version references.
Usage: :version-ref:`library_name release`
:version-ref:`"library name" release`
:version-ref:`library_name latest`
:version-ref:`rocm latest`
"""
try:
# Parse the text - handle both quoted and unquoted formats
if '"' in text:
parts = shlex.split(text)
else:
parts = text.split()
if len(parts) != 2:
msg = inliner.reporter.error(
'Version reference must be in format "library_name release" or "\\"library name\\" release"',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
library_name, release = parts
env = inliner.document.settings.env
# Check if release is a version reference in current document
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if release in doc_refs:
release = doc_refs[release]
# Handle special case for "rocm latest"
if library_name.lower() == 'rocm' and release.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
latest_version = get_latest_rocm_version(data)
if latest_version:
node = VersionReference()
node += nodes.Text(latest_version)
return [node], []
else:
msg = inliner.reporter.warning(
'No ROCm versions found in compatibility matrix',
line=lineno
)
return [], [msg]
version = lookup_version(inliner, library_name, release)
if version:
node = VersionReference()
node += nodes.Text(version)
return [node], []
else:
msg = inliner.reporter.warning(
f'No version found for library {library_name} in release {release}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def lookup_version(inliner, library_name, release):
"""Look up the version in the compatibility matrix."""
env = inliner.document.settings.env
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
# Handle the 'latest' keyword
if release.lower() == 'latest':
latest_version = get_latest_rocm_version(data)
if not latest_version:
return None
release = latest_version
# For ROCm, check if the version exists in column headers
if library_name.lower() == 'rocm':
columns = [col for col in data[0].keys() if col != 'ROCm Version']
if release in columns:
return release
return None
# Find the library version
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name == library_name:
# Get the version, removing any whitespace
version = row.get(release, '').strip()
if version:
return version
# If not found, try a case-insensitive search
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name.lower() == library_name.lower():
version = row.get(release, '').strip()
if version:
return version
return None
def visit_version_reference(self, node):
self.body.append(f'<span class="version-reference">')
def depart_version_reference(self, node):
self.body.append('</span>')
def load_compatibility_matrix(app):
"""Load the compatibility matrix content from CSV."""
if not app.config.compatibility_matrix_file:
logger.warning('No compatibility matrix file configured')
return
try:
with open(app.config.compatibility_matrix_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
app.env.compatibility_matrix = list(reader)
logger.info('Successfully loaded compatibility matrix')
# Debug: print first few rows with their library names
for row in list(app.env.compatibility_matrix)[:5]:
if 'ROCm Version' in row:
lib_name = clean_library_name(row['ROCm Version'])
logger.debug(f"Loaded library: {lib_name}")
except Exception as e:
logger.error(f'Error loading compatibility matrix: {str(e)}')
def purge_version_refs(app, env, docname):
"""Remove version references for a document when it is purged"""
if hasattr(env, 'doc_version_refs'):
if docname in env.doc_version_refs:
del env.doc_version_refs[docname]
def setup(app):
app.add_node(VersionReference,
html=(visit_version_reference, depart_version_reference))
app.add_role('version-ref', version_ref_role)
app.add_role('version', version_role)
app.add_directive('version-set', VersionSetDirective)
# Add a config value for the compatibility matrix file path
app.add_config_value('compatibility_matrix_file', None, 'env')
# Connect to the builder-inited event to load the matrix
app.connect('builder-inited', load_compatibility_matrix)
# Connect to env-purge-doc event to clean up document-specific version refs
app.connect('env-purge-doc', purge_version_refs)
return {
'parallel_read_safe': True,
'parallel_write_safe': True,
}

View File

@@ -9,266 +9,422 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
.. _vllm-benchmark-vllm:
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. note::
.. _vllm-benchmark-available-models:
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Available models
================
Getting started
===============
.. raw:: html
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
.. _vllm-benchmark-get-started:
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
1. Disable NUMA auto-balancing.
.. _vllm-benchmark-vllm:
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. code-block:: shell
.. container:: model-doc {{model.mad_tag}}
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. note::
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
Use the following command to pull the Docker image from Docker Hub.
{% endfor %}
{% endfor %}
.. code-block:: shell
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
.. note::
Once the setup is complete, choose between two options to reproduce the
benchmark results:
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
Getting started
===============
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-mad:
.. _vllm-benchmark-get-started:
MAD-integrated benchmarking
===========================
1. Disable NUMA auto-balancing.
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. code-block:: shell
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
.. code-block:: shell
Use the following command to pull the Docker image from Docker Hub.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
.. code-block:: shell
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
docker pull {{ unified_docker.pull_tag }}
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Benchmarking
============
.. _vllm-benchmark-mad-models:
Once the setup is complete, choose between two options to reproduce the
benchmark results:
Available models
----------------
.. _vllm-benchmark-mad:
.. list-table::
:header-rows: 1
:widths: 2, 3
{% for model_group in model_groups %}
{% for model in model_group.models %}
* - Model name
- Tag
.. container:: model-doc {{model.mad_tag}}
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
.. tab-set::
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
.. tab-item:: MAD-integrated benchmarking
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
.. code-block:: shell
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
.. code-block:: shell
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
.. tab-item:: Standalone benchmarking
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
Run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
.. code-block::
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
.. code-block::
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
To start the benchmark, use the following command with the appropriate options.
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
.. code-block::
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
.. list-table::
:header-rows: 1
:align: center
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - Name
- Options
- Description
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - ``$test_option``
- latency
- Measure decoding token latency
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
* -
- throughput
- Measure token generation throughput
.. _vllm-benchmark-standalone:
* -
- all
- Measure both throughput and latency
Standalone benchmarking
=======================
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
You can run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. code-block::
.. note::
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. note::
.. code-block::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
.. code-block::
Command
-------
OSError: You are trying to access a gated repo.
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. code-block:: shell
Here are some examples of running the benchmark with various options.
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
* Latency benchmark
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. note::
.. code-block::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
.. note::
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
* Throughput benchmark
.. code-block:: shell
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
OSError: You are trying to access a gated repo.
.. code-block:: shell
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
.. _vllm-benchmark-standalone-options:
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
Options and available models
----------------------------
.. raw:: html
.. list-table::
:header-rows: 1
:align: center
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
* - Name
- Options
- Description
.. note::
* - ``$test_option``
- latency
- Measure decoding token latency
Throughput is calculated as:
* -
- throughput
- Measure token generation throughput
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
* -
- all
- Measure both throughput and latency
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
* - ``$model_repo``
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
@@ -290,3 +446,33 @@ Further reading
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -1,4 +1,3 @@
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -1,13 +1,15 @@
#
# This file is autogenerated by pip-compile with Python 3.10
# This file is autogenerated by pip-compile with Python 3.11
# by the following command:
#
# pip-compile docs/sphinx/requirements.in
# pip-compile requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
alabaster==1.0.0
# via sphinx
appnope==0.1.4
# via ipykernel
asttokens==3.0.0
# via stack-data
attrs==25.1.0
@@ -23,7 +25,7 @@ beautifulsoup4==4.12.3
# via pydata-sphinx-theme
breathe==4.35.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2024.12.14
# via requests
cffi==1.17.1
# via
@@ -37,14 +39,12 @@ click==8.1.7
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==44.0.1
cryptography==44.0.0
# via pyjwt
debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
# via pygithub
docutils==0.21.2
@@ -53,11 +53,9 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.20.0
fastjsonschema==2.21.1
# via
# nbformat
# rocm-docs-core
@@ -65,8 +63,6 @@ gitdb==4.0.11
# via gitpython
gitpython==3.1.43
# via rocm-docs-core
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
@@ -77,13 +73,13 @@ importlib-metadata==8.6.1
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.31.0
ipython==8.32.0
# via
# ipykernel
# myst-nb
jedi==0.19.2
# via ipython
jinja2==3.1.5
jinja2==3.1.4
# via
# myst-parser
# sphinx
@@ -117,7 +113,7 @@ mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.1.2
myst-nb==1.2.0
# via rocm-docs-core
myst-parser==4.0.0
# via myst-nb
@@ -144,7 +140,7 @@ platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.50
# via ipython
psutil==6.1.1
psutil==7.0.0
# via ipykernel
ptyprocess==0.7.0
# via pexpect
@@ -152,7 +148,7 @@ pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
@@ -164,7 +160,7 @@ pygments==2.18.0
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -177,8 +173,7 @@ pyyaml==6.0.2
# myst-parser
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.2.0
pyzmq==26.2.1
# via
# ipykernel
# jupyter-client
@@ -218,8 +213,6 @@ sphinx==8.1.3
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
# via rocm-docs-core
sphinx-copybutton==0.5.2
@@ -231,13 +224,11 @@ sphinx-external-toc==1.0.1
sphinx-notfound-page==1.0.4
# via rocm-docs-core
sphinx-reredirects==0.1.5
# via -r docs/sphinx/requirements.in
# via -r requirements.in
sphinx-sitemap==2.6.0
# via -r docs/sphinx/requirements.in
# via -r requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
sphinxcontrib-datatemplates==0.11.0
# via -r docs/sphinx/requirements.in
sphinxcontrib-devhelp==2.0.0
# via sphinx
sphinxcontrib-htmlhelp==2.1.0
@@ -246,18 +237,14 @@ sphinxcontrib-jsmath==1.0.1
# via sphinx
sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
sqlalchemy==2.0.38
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
# via sphinx
tornado==6.4.2
# via
# ipykernel

View File

@@ -1,102 +0,0 @@
/* ------------------ Compatibility options grid ------------------ */
html {
--compat-border-radius: 2px;
--compat-accent-color: var(--pst-color-primary);
--compat-bg-color: var(--pst-color-on-background);
--compat-fg-color: var(--pst-color-primary-text);
--compat-head-color: var(--pst-color-surface);
--compat-param-hover-color: var(--pst-color-link-hover);
--compat-param-selected-color: var(--pst-color-primary);
}
html[data-theme="light"] {
--compat-border-color: var(--pst-gray-500);
--compat-param-disabled-color: var(--pst-gray-300);
}
html[data-theme="dark"] {
--compat-border-color: var(--pst-gray-600);
--compat-param-disabled-color: var(--pst-gray-600);
}
div#vllm-benchmark-ud-params-picker.container-fluid {
padding: 0 0 1rem 0;
}
div[data-param-k="model"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
div[data-param-k="model-group"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model-group"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model-group"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
.model-param-head {
background-color: var(--compat-head-color);
padding: 0.15rem 0.15rem 0.15rem 0.67rem;
/* margin: 2px; */
border-right: solid 2px var(--compat-accent-color);
font-weight: 600;
}
.model-param {
/* padding: 2px; */
/* margin: 0 2px 0 2px; */
/* margin: 2px; */
border: solid 1px var(--compat-border-color);
font-weight: 500;
}
.hidden {
display: none !important;
}

View File

@@ -68,85 +68,6 @@ set_address_sanitizer_off() {
export LDFLAGS=""
}
build_miopen_ckProf() {
ENABLE_ADDRESS_SANITIZER=false
echo "Start Building Composable Kernel Profiler"
if [ "${ENABLE_ADDRESS_SANITIZER}" == "true" ]; then
set_asan_env_vars
set_address_sanitizer_on
else
unset_asan_env_vars
set_address_sanitizer_off
fi
cd $COMPONENT_SRC
cd "$BUILD_DIR"
rm -rf *
architectures='gfx10 gfx11 gfx90 gfx94'
if [ -n "$GPU_ARCHS" ]; then
architectures=$(echo ${GPU_ARCHS} | awk -F';' '{for(i=1;i<=NF;i++) a[substr($i,1,5)]} END{for(i in a) printf i" "}')
fi
for arch in ${architectures}
do
if [ "${ASAN_CMAKE_PARAMS}" == "true" ] ; then
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}/lib/cmake;${ROCM_PATH%-*}/$ASAN_LIBDIR;${ROCM_PATH%-*}/llvm;${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE:-'RelWithDebInfo'} \
-DCMAKE_SHARED_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_LIB_RPATH" \
-DCMAKE_EXE_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_EXE_RPATH" \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DENABLE_ASAN_PACKAGING=true \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
else
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_SHARED_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN' \
-DCMAKE_EXE_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN/../lib' \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
fi
cmake --build . -- -j${PROC} package
cp ./*ckprofiler*.${PKGTYPE} $PACKAGE_DIR
rm -rf *
done
rm -rf _CPack_Packages/ && find -name '*.o' -delete
echo "Finished building Composable Kernel"
show_build_cache_stats
}
clean_miopen_ck() {
echo "Cleaning MIOpen-CK build directory: ${BUILD_DIR} ${PACKAGE_DIR}"
rm -rf "$BUILD_DIR" "$PACKAGE_DIR"

View File

@@ -42,7 +42,6 @@ DEB_PATH="$(getDebPath $PROJ_NAME)"
RPM_PATH="$(getRpmPath $PROJ_NAME)"
INSTALL_PATH="${ROCM_INSTALL_PATH}/lib/llvm"
LLVM_ROOT_LCL="${LLVM_ROOT}"
ROCM_WHEEL_DIR="${BUILD_PATH}/_wheel"
TARGET="all"
MAKEOPTS="$DASH_JAY"
@@ -150,7 +149,6 @@ ENABLE_RUNTIMES="$ENABLE_RUNTIMES;libcxx;libcxxabi"
BOOTSTRAPPING_BUILD_LIBCXX=1
clean_lightning() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_PATH"
rm -rf "$DEB_PATH"
rm -rf "$RPM_PATH"
@@ -332,15 +330,6 @@ build_lightning() {
echo "End Workaround for race condition"
cmake --build . -- $MAKEOPTS
case "$DISTRO_ID" in
(rhel*|centos*)
RHEL_BUILD=1
;;
(*)
RHEL_BUILD=0
;;
esac
if [ $SKIP_LIT_TESTS -eq 0 ]; then
if [ $RHEL_BUILD -eq 1 ]; then
cmake --build . -- $MAKEOPTS check-lld check-mlir
@@ -1158,9 +1147,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,171 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omniperf.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omniperf"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
ROCM_WHEEL_DIR="${BUILD_DIR}/_wheel"
BUILD_TYPE="Debug"
MAKE_OPTS="$DASH_JAY -C $BUILD_DIR"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0;
MAKETARGET="deb"
PKGTYPE="deb"
WHEEL_PACKAGE=false
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,static,address_sanitizer,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
-h | --help)
printUsage ; exit 0;;
-c | --clean)
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
-r | --release)
BUILD_TYPE="Release" ; shift ;;
-a | --address_sanitizer)
set_asan_env_vars
set_address_sanitizer_on ; shift ;;
-s | --static)
SHARED_LIBS="OFF" ; shift ;;
-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
-p | --package)
MAKETARGET="$2" ; shift 2 ;;
-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
--) shift; break;; # end delimiter
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
RET_CONFLICT=1
check_conflicting_options "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
if [ $RET_CONFLICT -ge 30 ]; then
print_vars "$API_NAME" "$TARGET" "$BUILD_TYPE" "$SHARED_LIBS" "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = centos-7 ]; then
echo "Skip make and uploading packages for Omniperf on Centos7 distro, due to python dependency"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
pushd "$BUILD_DIR" || exit
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
print_lib_type $SHARED_LIBS
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DCHECK_PYTHON_DEPS=NO \
-DPYTHON_DEPS=${BUILD_DIR}/python-libs \
-DMOD_INSTALL_PATH=${BUILD_DIR}/modulefiles \
"$OMNIPERF_ROOT"
fi
make $MAKE_OPTS
make $MAKE_OPTS install
make $MAKE_OPTS package
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
create_wheel_package() {
echo "Creating Omniperf wheel package"
# Copy the setup.py generator to build folder
mkdir -p "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/generate_setup_py.py "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/repackage_wheel.sh "$ROCM_WHEEL_DIR"
cd "$ROCM_WHEEL_DIR" || exit
# Currently only supports python3.6
./repackage_wheel.sh "$BUILD_DIR"/*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo "${PACKAGE_DEB}";;
("rpm")
echo "${PACKAGE_RPM}";;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
(clean) clean ;;
(build) build ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,191 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omnitrace.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omnitrace"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
BUILD_TYPE="Debug"
MAKE_OPTS="-j 8"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0
MAKETARGET="deb"
PKGTYPE="deb"
ASAN=0
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,address_sanitizer,static,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true; do
case "$1" in
-h | --help)
printUsage
exit 0
;;
-c | --clean)
TARGET="clean"
((CLEAN_OR_OUT |= 1))
shift
;;
-r | --release)
BUILD_TYPE="RelWithDebInfo"
shift
;;
-a | --address_sanitizer)
ack_and_ignore_asan
ASAN=1
shift
;;
-s | --static)
SHARED_LIBS="OFF"
shift
;;
-o | --outdir)
TARGET="outdir"
PKGTYPE=$2
((CLEAN_OR_OUT |= 2))
shift 2
;;
-p | --package)
MAKETARGET="$2"
shift 2
;;
-w | --wheel)
echo "omnitrace: wheel build option accepted and ignored"
shift
;;
--)
shift
break
;;
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] " >&2
exit 20
;;
esac
done
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $API_NAME $TARGET $BUILD_TYPE $SHARED_LIBS $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build_omnitrace() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = "mariner-2.0" ] || [ "$DISTRO_ID" = "ubuntu-24.04" ] || [ "$DISTRO_ID" = "azurelinux-3.0" ]; then
echo "Skip make and uploading packages for Omnitrace on \"${DISTRO_ID}\" distro"
exit 0
fi
if [ $ASAN == 1 ]; then
echo "Skip make and uploading packages for Omnitrace on ASAN build"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
echo "Created build directory: $BUILD_DIR"
fi
echo "Build directory: $BUILD_DIR"
pushd "$BUILD_DIR" || exit
print_lib_type $SHARED_LIBS
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
if [ $ASAN == 1 ]; then
echo "Address Sanitizer path"
else
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DOMNITRACE_BUILD_{LIBUNWIND,DYNINST}=ON \
-DDYNINST_BUILD_{TBB,BOOST,ELFUTILS,LIBIBERTY}=ON \
"$OMNITRACE_ROOT"
fi
popd || exit
echo "Make Options: $MAKE_OPTS"
cmake --build "$BUILD_DIR" --target all -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target install -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target package -- $MAKE_OPTS
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
print_output_directory() {
case ${PKGTYPE} in
"deb")
echo "${PACKAGE_DEB}"
;;
"rpm")
echo "${PACKAGE_RPM}"
;;
*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2
exit 1
;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
clean) clean ;;
build) build_omnitrace ;;
outdir) print_output_directory ;;
*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -1,141 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
PROJ_NAME=OpenCL-ICD-Loader
TARGET="build"
MAKEOPTS="$DASH_JAY"
BUILD_TYPE="Debug"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_DEB="$PACKAGE_ROOT/deb/${PROJ_NAME,,}"
PACKAGE_RPM="$PACKAGE_ROOT/rpm/${PROJ_NAME,,}"
CLEAN_OR_OUT=0;
PKGTYPE="deb"
MAKETARGET="deb"
API_NAME="rocm-opencl-icd-loader"
printUsage() {
echo
echo "Usage: $(basename "${BASH_SOURCE}") [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -h, --help Prints this help"
echo " -o, --outdir Print path of output directory containing packages"
echo " -s, --static Component/Build does not support static builds just accepting this param & ignore. No effect of the param on this build"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $TARGET $BUILD_TYPE $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean_opencl_icd_loader() {
echo "Cleaning $PROJ_NAME"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME,,}"
}
copy_pkg_files_to_rocm() {
local comp_folder=$1
local comp_pkg_name=$2
cd "${OUT_DIR}/${PKGTYPE}/${comp_folder}"|| exit 2
if [ "${PKGTYPE}" = 'deb' ]; then
dpkg-deb -x ${comp_pkg_name}_*.deb pkg/
else
mkdir pkg && pushd pkg/ || exit 2
if [[ "${comp_pkg_name}" != *-dev* ]]; then
rpm2cpio ../${comp_pkg_name}-*.rpm | cpio -idmv
else
rpm2cpio ../${comp_pkg_name}el-*.rpm | cpio -idmv
fi
popd || exit 2
fi
ls ./pkg -alt
cp -r ./pkg/*/rocm*/* "${ROCM_PATH}" || exit 2
rm -rf pkg/
}
build_opencl_icd_loader() {
echo "Downloading $PROJ_NAME" package
if [ "$DISTRO_NAME" = ubuntu ]; then
mkdir -p "$PACKAGE_DEB"
local rocm_ver=${ROCM_VERSION}
if [ ${ROCM_VERSION##*.} = 0 ]; then
rocm_ver=${ROCM_VERSION%.*}
fi
local url="https://repo.radeon.com/rocm/apt/${rocm_ver}/pool/main/r/${API_NAME}/"
local package
package=$(curl -s "$url" | grep -Po 'href="\K[^"]*' | grep "${DISTRO_RELEASE}" | head -n 1)
if [ -z "$package" ]; then
echo "No package found for Ubuntu version $DISTRO_RELEASE"
exit 1
fi
wget -t3 -P "$PACKAGE_DEB" "${url}${package}"
copy_pkg_files_to_rocm ${PROJ_NAME,,} ${API_NAME}
else
echo "$DISTRO_ID is not supported..."
exit 2
fi
echo "Installing $PROJ_NAME" package
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo ${PACKAGE_DEB};;
("rpm")
echo ${PACKAGE_RPM};;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
VALID_STR=`getopt -o hcraswlo:p: --long help,clean,release,outdir:,package: -- "$@"`
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
(-c | --clean )
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
(-r | --release )
BUILD_TYPE="RelWithDebInfo" ; shift ;;
(-h | --help )
printUsage ; exit 0 ;;
(-a | --address_sanitizer)
ack_and_ignore_asan ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
MAKETARGET="$2" ; shift 2;;
(-s | --static)
echo "-s parameter accepted but ignored" ; shift ;;
--) shift; break;;
(*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
case $TARGET in
(clean) clean_opencl_icd_loader ;;
(build) build_opencl_icd_loader ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -32,7 +32,6 @@ ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_PACKAGE_DEB="$(getPackageRoot)/deb/rocm-cmake"
ROCM_CMAKE_PACKAGE_RPM="$(getPackageRoot)/rpm/rocm-cmake"
ROCM_WHEEL_DIR="${ROCM_CMAKE_BUILD_DIR}/_wheel"
ROCM_CMAKE_BUILD_TYPE="debug"
BUILD_TYPE="Debug"
SHARED_LIBS="ON"
@@ -56,8 +55,6 @@ do
ack_and_ignore_asan ; shift ;;
(-s | --static)
SHARED_LIBS="OFF" ; shift ;;
(-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
@@ -78,7 +75,6 @@ fi
clean_rocm_cmake() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf $ROCM_CMAKE_BUILD_DIR
rm -rf $ROCM_CMAKE_PACKAGE_DEB
rm -rf $ROCM_CMAKE_PACKAGE_RPM
@@ -106,19 +102,6 @@ build_rocm_cmake() {
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$ROCM_CMAKE_PACKAGE_RPM" $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm
}
create_wheel_package() {
echo "Creating rocm-cmake wheel package"
# Copy the setup.py generator to build folder
mkdir -p $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/generate_setup_py.py $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/repackage_wheel.sh $ROCM_WHEEL_DIR
cd $ROCM_WHEEL_DIR
# Currently only supports python3.6
./repackage_wheel.sh $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$ROCM_CMAKE_PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
@@ -138,9 +121,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils
@@ -121,11 +120,9 @@ python3-yaml
python3.8-dev
re2c
redis-tools
# Eventually we should be able to remove rpm for debian builds.
rpm
rsync
ssh
# This makes life more pleasent inside the container
strace
sudo
systemtap-sdt-dev

View File

@@ -1,285 +0,0 @@
#! /usr/bin/bash
set -x
apt-get -y update
DEBIAN_FRONTEND=noninteractive DEBCONF_NONINTERACTIVE_SEEN=true apt-get install --no-install-recommends -y $(sed 's/#.*//' /tmp/packages)
apt-get clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* /etc/apt/apt.conf.d/01proxy
#Install 2.17.1 version of git as we are seeing issues with 2.25 , where it was not allowing to add git submodules if the user is different for parent git directory
curl -o git.tar.gz https://cdn.kernel.org/pub/software/scm/git/git-2.17.1.tar.gz
tar -zxf git.tar.gz
cd git-*
make prefix=/usr/local all
make prefix=/usr/local install
git --version
#install argparse and CppHeaderParser python modules for roctracer and rocprofiler
#install rocm-docs-core for the docs-as-code project. Only needed on one OS
# CppHeader needs setuptools. setuptools needs wheel.
# Looks like I need them as seperate commands
# Sigh, install both python2 and python 3 version
pip3 install --no-cache-dir setuptools wheel tox
pip3 install --no-cache-dir CppHeaderParser argparse requests lxml barectf recommonmark jinja2==3.0.0 websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas myst-parser
# Allow sudo for everyone user
echo 'ALL ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/everyone
# Install OCaml packages to build LLVM's OCaml bindings to be used in lightning compiler test pipeline
wget -nv https://sourceforge.net/projects/opam.mirror/files/2.1.4/opam-2.1.4-x86_64-linux -O /usr/local/bin/opam
chmod +x /usr/local/bin/opam
opam init --yes --disable-sandboxing
opam install ctypes --yes
# Install and modify git-repo (#!/usr/bin/env python -> #!/usr/bin/env python3)
curl https://storage.googleapis.com/git-repo-downloads/repo > /usr/bin/repo
chmod a+x /usr/bin/repo
# Build ccache from the source
cd /tmp
git clone https://github.com/ccache/ccache -b v4.7.5
cd ccache
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
make install
cd /tmp
rm -rf ccache
# Install sharp from MLNX_OFED_LINUX as dependency for rccl-rdma-sharp-plugins
cd /var/tmp
mkdir mlnx
wget -O mlnx/tar.tgz https://content.mellanox.com/ofed/MLNX_OFED-24.01-0.3.3.1/MLNX_OFED_LINUX-24.01-0.3.3.1-ubuntu22.04-x86_64.tgz
tar -xz -C mlnx -f mlnx/tar.tgz
apt-key add mlnx/*/RPM-GPG-KEY-Mellanox
echo "deb [arch=amd64] file:$(echo $PWD/mlnx/*/DEBS) ./" > /etc/apt/sources.list.d/sharp.list
apt update
apt install -y sharp
apt clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* mlnx /etc/apt/sources.list.d/sharp.list
apt update
apt -y install libunwind-dev
apt -y install libgoogle-glog-dev
# Install python3.8 from source
curl -LO https://www.python.org/ftp/python/3.8.13/Python-3.8.13.tar.xz
tar -xvf Python-3.8.13.tar.xz
pwd
ls /var/tmp/
ls Python-3.8.13
mv Python-3.8.13 /opt/
apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev pkg-config make -y
cd /opt/Python-3.8.13/
./configure --enable-optimizations --enable-shared
make
make -j 6
make altinstall
ldconfig /opt/Python3.8.13
python3.8 --version
# roctracer and rocprofiler needs this python3.8
python3.8 -m pip install setuptools wheel
python3.8 -m pip install CppHeaderParser argparse requests lxml PyYAML joblib
#Install older version of hwloc-devel package for rocrtst
curl -lO https://download.open-mpi.org/release/hwloc/v1.11/hwloc-1.11.13.tar.bz2
tar -xvf hwloc-1.11.13.tar.bz2
cd hwloc-1.11.13
./configure
make
make install
cp /usr/local/lib/libhwloc.so.5 /usr/lib
hwloc-info --version
# Install gtest
mkdir -p /tmp/gtest
cd /tmp/gtest
wget https://github.com/google/googletest/archive/refs/tags/v1.14.0.zip -O googletest.zip
unzip googletest.zip
cd googletest-1.14.0/
mkdir build
cd build
cmake ..
make -j$(nproc)
make install
rm -rf /tmp/gtest
## Install gRPC from source
## RDC Pre-requisites
GRPC_ARCHIVE=grpc-1.61.0.tar.gz
mkdir /tmp/grpc
mkdir /usr/grpc
cd /tmp
git clone --recurse-submodules -b v1.61.0 https://github.com/grpc/grpc
cd grpc
mkdir -p build
cd build
cmake -DgRPC_INSTALL=ON -DBUILD_SHARED_LIBS=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/usr/grpc -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=14 -DCMAKE_SHARED_LINKER_FLAGS_INIT=-Wl,--enable-new-dtags,--build-id=sha1,--rpath,'$ORIGIN' ..
make -j $(nproc) install
rm -rf /tmp/grpc
## rocBLAS Pre-requisites
## Download prebuilt AMD multithreaded blis (2.0)
## Reference : https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/install.sh#L403
mkdir -p /tmp/blis
cd /tmp/blis
wget -O - https://github.com/amd/blis/releases/download/2.0/aocl-blis-mt-ubuntu-2.0.tar.gz | tar xfz -
mv amd-blis-mt /usr/blis
cd /
rm -rf /tmp/blis
## rocBLAS Pre-requisites(SWDEV-404612)
## Download aocl-linux-gcc-4.2.0_1_amd64.deb
mkdir -p /tmp/aocl
cd /tmp/aocl
wget -nv https://download.amd.com/developer/eula/aocl/aocl-4-2/aocl-linux-gcc-4.2.0_1_amd64.deb
apt install ./aocl-linux-gcc-4.2.0_1_amd64.deb
rm -rf /tmp/aocl
## hipBLAS Pre-requisites
## lapack(3.9.1v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L174
lapack_version=3.9.1
lapack_srcdir=lapack-$lapack_version
lapack_blddir=lapack-$lapack_version-bld
mkdir -p /tmp/lapack
cd /tmp/lapack
rm -rf "$lapack_srcdir" "$lapack_blddir"
wget -O - https://github.com/Reference-LAPACK/lapack/archive/refs/tags/v3.9.1.tar.gz | tar xzf -
cmake -H$lapack_srcdir -B$lapack_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_Fortran_FLAGS=-fno-optimize-sibling-calls -DBUILD_TESTING=OFF -DCBLAS=ON -DLAPACKE=OFF
make -j$(nproc) -C "$lapack_blddir"
make -C "$lapack_blddir" install
cd $lapack_blddir
cp -r ./include/* /usr/local/include/
cp -r ./lib/* /usr/local/lib
cd /
rm -rf /tmp/lapack
## rocSOLVER Pre-requisites
## FMT(7.1.3v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L152
fmt_version=7.1.3
fmt_srcdir=fmt-$fmt_version
fmt_blddir=fmt-$fmt_version-bld
mkdir -p /tmp/fmt
cd /tmp/fmt
rm -rf "$fmt_srcdir" "$fmt_blddir"
wget -O - https://github.com/fmtlib/fmt/archive/refs/tags/7.1.3.tar.gz | tar xzf -
cmake -H$fmt_srcdir -B$fmt_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=OFF -DCMAKE_CXX_STANDARD_REQUIRED=ON -DFMT_DOC=OFF -DFMT_TEST=OFF
make -j$(nproc) -C "$fmt_blddir"
make -C "$fmt_blddir" install
# Build and install libjpeg-turbo
mkdir -p /tmp/libjpeg-turbo
cd /tmp/libjpeg-turbo
wget -nv https://github.com/rrawther/libjpeg-turbo/archive/refs/heads/2.0.6.2.zip -O libjpeg-turbo-2.0.6.2.zip
unzip libjpeg-turbo-2.0.6.2.zip
cd libjpeg-turbo-2.0.6.2
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=RELEASE -DENABLE_STATIC=FALSE -DCMAKE_INSTALL_DEFAULT_LIBDIR=lib ..
make -j$(nproc) install
rm -rf /tmp/libjpeg-turbo
# Get released ninja from source
mkdir -p /tmp/ninja
cd /tmp/ninja
wget -nv https://codeload.github.com/Kitware/ninja/zip/refs/tags/v1.11.1.g95dee.kitware.jobserver-1 -O ninja.zip
unzip ninja.zip
cd ninja-1.11.1.g95dee.kitware.jobserver-1
./configure.py --bootstrap
cp ninja /usr/local/bin/
rm -rf /tmp/ninja
# Install FFmpeg and dependencies
# Build NASM
mkdir -p /tmp/nasm-2.15.05
cd /tmp
wget -qO- "https://distfiles.macports.org/nasm/nasm-2.15.05.tar.bz2" | tar -xvj
cd nasm-2.15.05
./autogen.sh
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/nasm-2.15.05
# Build YASM
mkdir -p /tmp/yasm-1.3.0
cd /tmp
wget -qO- "http://www.tortall.net/projects/yasm/releases/yasm-1.3.0.tar.gz" | tar -xvz
cd yasm-1.3.0
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/yasm-1.3.0
# Build x264
mkdir -p /tmp/x264-snapshot-20191217-2245-stable
cd /tmp
wget -qO- "https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-20191217-2245-stable.tar.bz2" | tar -xvj
cd /tmp/x264-snapshot-20191217-2245-stable
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig" ./configure --prefix="/usr/local" --enable-shared
make -j$(nproc) install
rm -rf /tmp/x264-snapshot-20191217-2245-stable
# Build x265
mkdir -p /tmp/x265_2.7
cd /tmp
wget -qO- "https://get.videolan.org/x265/x265_2.7.tar.gz" | tar -xvz
cd /tmp/x265_2.7/build/linux
cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX="/usr/local" -DENABLE_SHARED:bool=on ../../source
make -j$(nproc) install
rm -rf /tmp/x265_2.7
# Build fdk-aac
mkdir -p /tmp/fdk-aac-2.0.2
cd /tmp
wget -qO- "https://sourceforge.net/projects/opencore-amr/files/fdk-aac/fdk-aac-2.0.2.tar.gz" | tar -xvz
cd /tmp/fdk-aac-2.0.2
autoreconf -fiv
./configure --prefix="/usr/local" --enable-shared --disable-static
make -j$(nproc) install
rm -rf /tmp/fdk-aac-2.0.2
# Build FFmpeg
cd /tmp
git clone -b release/4.4 https://git.ffmpeg.org/ffmpeg.git ffmpeg
cd ffmpeg
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig"
./configure --prefix="/usr/local" --extra-cflags="-I/usr/local/include" --extra-ldflags="-L/usr/local/lib" --extra-libs=-lpthread --extra-libs=-lm --enable-shared --disable-static --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-gpl --enable-nonfree
make -j$(nproc) install
rm -rf /tmp/ffmpeg
cp /tmp/local-pin-600 /etc/apt/preferences.d
command -v lbzip2
ln -sf $(command -v lbzip2) /usr/local/bin/compressor || ln -sf $(command -v bzip2) /usr/local/bin/compressor
# Install Google Benchmark
mkdir -p /tmp/Gbenchmark
cd /tmp/Gbenchmark
wget -qO- https://github.com/google/benchmark/archive/refs/tags/v1.6.1.tar.gz | tar xz
cmake -Sbenchmark-1.6.1 -Bbuild -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DBENCHMARK_ENABLE_TESTING=OFF -DCMAKE_CXX_STANDARD=14
make -j -C build
cd /tmp/Gbenchmark/build
make install
# Build boost-1.85.0 from source for RPP
# Installing in a non-standard location since the test packages of hipFFT and rocFFT pick up the version of
# the installed Boost library and declare a package dependency on that specific version of Boost.
# For example, if this was installed in the standard location it would declare a dependency on libboost-dev(el)1.85.0
# which is not available as a package in any distro.
# Once this is fixed, we can remove the Boost package from the requirements list and install this
# in the standard location
mkdir -p /tmp/boost-1.85.0
cd /tmp/boost-1.85.0
wget -nv https://sourceforge.net/projects/boost/files/boost/1.85.0/boost_1_85_0.tar.bz2 -O ./boost_1_85_0.tar.bz2
tar -xf boost_1_85_0.tar.bz2 --use-compress-program="/usr/local/bin/compressor"
cd boost_1_85_0
./bootstrap.sh --prefix=${RPP_DEPS_LOCATION} --with-python=python3
./b2 stage -j$(nproc) threading=multi link=shared cxxflags="-std=c++11"
./b2 install threading=multi link=shared --with-system --with-filesystem
./b2 stage -j$(nproc) threading=multi link=static cxxflags="-std=c++11 -fpic" cflags="-fpic"
./b2 install threading=multi link=static --with-system --with-filesystem
rm -rf /tmp/boost-1.85.0

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils