Compare commits

...

11 Commits

Author SHA1 Message Date
Istvan Kiss
12d7b43317 Fix compatibility list 2025-05-13 16:02:55 +02:00
Istvan Kiss
ea1072b11d JAX compatibility page upate (#4727) 2025-05-08 19:31:13 +02:00
Peter Park
90a651d2b6 Merge pull request #4725 from peterjunpark/docs/quark-model-quantization
Add quark in model-quantization.rst
2025-05-08 10:34:39 -04:00
Daniel Su
16978a382b Ex CI: separate ROCgdb build and test jobs (#4715) 2025-05-08 09:57:58 -04:00
Daniel Su
dc23bb09c2 Ex CI: add AOMP to RVS (#4718) 2025-05-08 09:57:35 -04:00
Peter Park
bb7af3351a Fix incorrect throughput benchmark command in inference/vllm-benchmark.rst (#4723)
* update inference index to include pyt inference

* fix incorrect command in throughput benchmark

* wording
2025-05-08 09:24:51 -04:00
Pratik Basyal
8ef1bb0139 rocSHMEM component added to ROCm 6.4.0 documentation (#4719)
* rocSHMEM added to ROCm 640

* Space removed

* link fixed
2025-05-07 15:31:38 -04:00
Daniel Su
1610837a95 Ex CI: fix copyHIP incorrectly packaging symlinked files (#4687) 2025-05-06 14:56:41 -04:00
Daniel Su
b7ce573c66 Ex CI: disable rocm-examples rocfft_callback test (#4699) 2025-05-06 14:55:43 -04:00
Peter Park
186c281aba fix links in pytorch-inference-benchmark.rst (#4713) 2025-05-06 13:34:55 -04:00
Peter Park
d44ea40a0d Add MPT-30B + LLM Foundry doc (#4704)
* add mpt-30b doc

* add tunableop note

* update MPT doc

* add section

* update wordlist

* fix flash attention version

* update "applies to"

* address review feedback

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* update docker details to pytorch-training-v25.5

* update

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-05-02 12:13:20 -04:00
22 changed files with 528 additions and 268 deletions

View File

@@ -15,6 +15,7 @@ parameters:
type: object
default:
- bison
- cmake
- dejagnu
- flex
- libbabeltrace-dev
@@ -39,17 +40,69 @@ parameters:
- name: jobMatrix
type: object
default:
buildTestJobs:
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
jobs:
- ${{ each job in parameters.jobMatrix.buildTestJobs }}:
- job: ROCgdb_build_test_${{ job.target }}
- job: ROCgdb
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: PKG_CONFIG_PATH
value: $(Agent.BuildDirectory)/rocm/share/pkgconfig
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-autotools.yml
parameters:
configureFlags: >-
--program-prefix=roc
--enable-64-bit-bfd
--enable-targets="x86_64-linux-gnu,amdgcn-amd-amdhsa"
--disable-ld
--disable-gas
--disable-gdbserver
--disable-sim
--enable-tui
--disable-gdbtk
--disable-shared
--disable-gprofng
--with-expat
--with-system-zlib
--without-guile
--with-babeltrace
--with-lzma
--with-python=python3
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ROCgdb_test_${{ job.target }}
dependsOn: ROCgdb
condition:
and(
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
@@ -99,8 +152,6 @@ jobs:
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- task: Bash@3
displayName: Setup test environment
inputs:
@@ -109,7 +160,6 @@ jobs:
# Assuming that /opt is no longer persistent across runs, test environments are fully ephemeral
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
echo "##vso[task.prependpath]/opt/rocm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: check-gdb

View File

@@ -27,6 +27,7 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -43,6 +44,7 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -108,6 +110,7 @@ jobs:
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/clang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/llvm/include
-DCPACK_PACKAGING_INSTALL_PREFIX=$(Build.BinariesDirectory)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -26,9 +26,11 @@ jobs:
parameters:
componentName: HIP
pipelineId: $(HIP_PIPELINE_ID)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:
sourceDir: $(Agent.BuildDirectory)/rocm
- task: Bash@3
displayName: Copy HIP artifacts
inputs:
targetType: inline
script: cp -a $(Agent.BuildDirectory)/rocm/* $(Build.BinariesDirectory)/
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -183,6 +183,7 @@ jobs:
parameters:
componentName: rocm-examples
testDir: $(Build.SourcesDirectory)/build
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex "rocfft_callback"'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -463,7 +463,7 @@ steps:
displayName: 'List downloaded ROCm files'
inputs:
targetType: inline
script: ls -1R $(Agent.BuildDirectory)/rocm
script: ls -la1R $(Agent.BuildDirectory)/rocm
- ${{ if eq(parameters.skipLibraryLinking, false) }}:
- task: Bash@3
displayName: 'Link ROCm shared libraries'

View File

@@ -226,6 +226,7 @@ LM
LSAN
LSan
LTS
LanguageCrossEntropy
LoRA
MEM
MERCHANTABILITY
@@ -243,6 +244,7 @@ MMIOH
MMU
MNIST
MPI
MPT
MSVC
MVAPICH
MVFFR
@@ -259,6 +261,7 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MosaicML
Multicore
Multithreaded
MyEnvironment
@@ -329,6 +332,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretrained
Pretraining
Profiler's
PyPi

View File

@@ -743,6 +743,10 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
#### Added
- Support for VA-API and rocDecode tracing.
- Aggregation of MPI data collected across distributed nodes and ranks. The data is concatenated into a single proto file.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
#### Resolved issues
@@ -753,9 +757,9 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
- Fixed interruption in config file generation.
- Fixed segmentation fault while running rocprof-sys-instrument.
- Fixed an issue where running `rocprof-sys-causal` or using the `-I all` option with `rocprof-sys-sample` caused the system to become non-responsive.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **rocPRIM** (3.4.0)

View File

@@ -253,14 +253,19 @@ Click {fab}`github` to go to the component's source code on GitHub.
</tbody>
<tbody class="rocm-components-libs rocm-components-communication tbody-reverse-zebra">
<tr>
<th rowspan="1"></th>
<th rowspan="1">Communication</th>
<th rowspan="2"></th>
<th rowspan="2">Communication</th>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.4.0/index.html">RCCL</a></td>
<td>2.21.5&nbsp;&Rightarrow;&nbsp;<a href="#rccl-2-22-3">2.22.3</a></td>
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://github.com/ROCm/rocSHMEM">rocSHMEM</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/rocSHMEM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-libs rocm-components-math">
<tbody class="rocm-components-libs rocm-components-math tbody-reverse-zebra">
<tr>
<th rowspan="16"></th>
<th rowspan="16">Math</th>
@@ -344,7 +349,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-libs rocm-components-primitives">
<tbody class="rocm-components-libs rocm-components-primitives tbody-reverse-zebra">
<tr>
<th rowspan="4"></th>
<th rowspan="4">Primitives</th>
@@ -368,7 +373,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-system">
<tbody class="rocm-components-tools rocm-components-system tbody-reverse-zebra">
<tr>
<th rowspan="7">Tools</th>
<th rowspan="7">System management</th>
@@ -397,7 +402,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-perf tbody-reverse-zebra">
<tbody class="rocm-components-tools rocm-components-perf">
<tr>
<th rowspan="6"></th>
<th rowspan="6">Performance</th>
@@ -438,7 +443,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-dev tbody-reverse-zebra">
<tbody class="rocm-components-tools rocm-components-dev">
<tr>
<th rowspan="5"></th>
<th rowspan="5">Development</th>
@@ -474,7 +479,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-compilers">
<tbody class="rocm-components-compilers tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Compilers</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.4.0/index.html">HIPCC</a></td>
@@ -489,7 +494,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-runtimes">
<tbody class="rocm-components-runtimes tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Runtimes</th>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.4.0/index.html">HIP</a></td>
@@ -1247,6 +1252,11 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
#### Added
- Support for VA-API and rocDecode tracing.
- Aggregation of MPI data collected across distributed nodes and ranks. The data is concatenated into a single proto file.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
#### Resolved issues
@@ -1257,9 +1267,9 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
- Fixed interruption in config file generation.
- Fixed segmentation fault while running rocprof-sys-instrument.
- Fixed an issue where running `rocprof-sys-causal` or using the `-I all` option with `rocprof-sys-sample` caused the system to become non-responsive.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **rocPRIM** (3.4.0)

View File

@@ -81,6 +81,7 @@ additional licenses. Please review individual repositories for more information.
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [rocSHMEM](https://github.com/ROCm/rocSHMEM/) | [MIT](https://github.com/ROCm/rocSHMEM/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |

View File

@@ -27,7 +27,6 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
@@ -53,6 +52,7 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
1 ROCm Version 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.2 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30
31 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
32 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
52
53 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
54 :doc:`RCCL <rccl:index>` 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
55 `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
56
57 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
58 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0

View File

@@ -77,6 +77,7 @@ compatibility and system requirements.
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.20.5
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,N/A,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0

View File

@@ -14,17 +14,18 @@ JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
JAX uses composable transformations of Python and NumPy through just-in-time (JIT) compilation,
automatic vectorization, and parallelization. To learn about JAX, including profiling and
optimizations, see the official `JAX documentation
JAX uses composable transformations of Python and NumPy through just-in-time
(JIT) compilation, automatic vectorization, and parallelization. To learn about
JAX, including profiling and optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
ROCm support for JAX is upstreamed and users can build the official source code with ROCm
support:
ROCm support for JAX is upstreamed, and users can build the official source code
with ROCm support:
- ROCm JAX release:
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>` with ROCm and JAX pre-installed.
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>`
with ROCm and JAX preinstalled.
- ROCm JAX repository: `ROCm/jax <https://github.com/ROCm/jax>`_
@@ -36,8 +37,8 @@ support:
- Official JAX repository: `jax-ml/jax <https://github.com/jax-ml/jax>`_
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in the JAX
documentation.
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in
the JAX documentation.
.. note::
@@ -46,6 +47,44 @@ support:
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys JAX-based
nanoGPT. Comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in JAX and JAX, also highlights
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.
.. _jax-docker-compat:
Docker image compatibility
@@ -57,7 +96,7 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
@@ -121,13 +160,12 @@ associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Critical ROCm libraries for JAX
Key ROCm libraries for JAX
================================================================================
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
JAX functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
.. list-table::
:header-rows: 1
@@ -215,10 +253,10 @@ are available in ROCm :version:`rocm_version`.
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
Supported and unsupported features
Supported features
===============================================================================
The following table maps GPU-accelerated JAX modules to their supported
The following table maps the public JAX API modules to their supported
ROCm and JAX versions.
.. list-table::
@@ -226,8 +264,8 @@ ROCm and JAX versions.
* - Module
- Description
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
@@ -255,21 +293,11 @@ ROCm and JAX versions.
devices.
- 0.3.20
- 5.1.0
* - ``jax.dlpack``
- For exchanging tensor data between JAX and other libraries that support the
DLPack standard.
- 0.1.57
- 5.0.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.dtypes``
- Provides utilities for working with and managing data types in JAX
arrays and computations.
- 0.1.66
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
@@ -283,27 +311,10 @@ ROCm and JAX versions.
array.
- 0.1.57
- 5.0.0
* - ``jax.profiler``
- Contains JAXs tracing and time profiling features.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.tree``
- Provides utilities for working with tree-like container data structures.
- 0.4.26
- 5.6.0
* - ``jax.tree_util``
- Provides utilities for working with nested data structures, or
``pytrees``.
- 0.1.65
- 5.0.0
* - ``jax.typing``
- Provides JAX-specific static type annotations.
- 0.3.18
- 5.1.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
@@ -339,8 +350,8 @@ A SciPy-like API for scientific computing.
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
@@ -385,8 +396,8 @@ jax.scipy.stats module
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
@@ -469,8 +480,8 @@ Modules for JAX extensions.
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
@@ -484,190 +495,25 @@ Modules for JAX extensions.
- 0.4.15
- 5.5.0
jax.experimental module
-------------------------------------------------------------------------------
Experimental modules and APIs.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.checkify``
- 0.1.75
- 5.0.0
* - ``jax.experimental.compilation_cache.compilation_cache``
- 0.1.68
- 5.0.0
* - ``jax.experimental.custom_partitioning``
- 0.4.0
- 5.3.0
* - ``jax.experimental.jet``
- 0.1.56
- 5.0.0
* - ``jax.experimental.key_reuse``
- 0.4.26
- 5.6.0
* - ``jax.experimental.mesh_utils``
- 0.1.76
- 5.0.0
* - ``jax.experimental.multihost_utils``
- 0.3.2
- 5.0.0
* - ``jax.experimental.pallas``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pjit``
- 0.1.61
- 5.0.0
* - ``jax.experimental.serialize_executable``
- 0.4.0
- 5.3.0
* - ``jax.experimental.shard_map``
- 0.4.3
- 5.3.0
* - ``jax.experimental.sparse``
- 0.1.75
- 5.0.0
.. list-table::
:header-rows: 1
* - API
- Since JAX
- Since ROCm
* - ``jax.experimental.enable_x64``
- 0.1.60
- 5.0.0
* - ``jax.experimental.disable_x64``
- 0.1.60
- 5.0.0
jax.experimental.pallas module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Module for Pallas, a JAX extension for custom kernels.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.pallas.mosaic_gpu``
- 0.4.31
- 6.1.3
* - ``jax.experimental.pallas.tpu``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pallas.triton``
- 0.4.32
- 6.1.3
jax.experimental.sparse module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Experimental support for sparse matrix operations.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.linalg``
- 0.3.15
- 5.2.0
* - ``jax.experimental.sparse.sparsify``
- 0.3.25
- ❌
.. list-table::
:header-rows: 1
* - ``sparse`` data structure API
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.BCOO``
- 0.1.72
- 5.0.0
* - ``jax.experimental.sparse.BCSR``
- 0.3.20
- 5.1.0
* - ``jax.experimental.sparse.CSR``
- 0.1.75
- 5.0.0
* - ``jax.experimental.sparse.NM``
- 0.4.27
- 5.6.0
* - ``jax.experimental.sparse.COO``
- 0.1.75
- 5.0.0
Unsupported JAX features
------------------------
--------------------------------------------------------------------------------
The following are GPU-accelerated JAX features not currently supported by
ROCm.
The following GPU-accelerated JAX features are not supported by ROCm for
the listed supported JAX versions.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since JAX
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
- 0.2.25
* - RNN support
- Currently only LSTM with double bias is supported with float32 input
and weight.
- 0.3.25
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
- 0.4.0
* - ``jax.experimental.sparsify``
- Converts a dense matrix to a sparse matrix representation.
- Experimental
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys PyTorch-based
nanoGPT. By comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in PyTorch and JAX, also highlight
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.
* - MOSAIC (GPU)
- Mosaic is a library of kernel-building abstractions for JAX's Pallas system

View File

@@ -57,6 +57,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

View File

@@ -1,15 +1,178 @@
.. meta::
:description: How to use model quantization techniques to speed up inference.
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, GPTQ, transformers, bitsandbytes
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, Quark, GPTQ, transformers, bitsandbytes
*****************************
Model quantization techniques
*****************************
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using GPTQ
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
and bitsandbytes on AMD Instinct hardware.
.. _quantize-llms-quark:
AMD Quark
=========
`AMD Quark <https://quark.docs.amd.com/latest/>`_ offers the leading efficient and scalable quantization solution tailored to AMD Instinct GPUs. It supports ``FP8`` and ``INT8`` quantization for activations, weights, and KV cache,
including ``FP8`` attention. For very large models, it employs a two-level ``INT4-FP8`` scheme—storing weights in ``INT4`` while computing with ``FP8``—for nearly 4× compression without sacrificing accuracy.
Quark scales efficiently across multiple GPUs, efficiently handling ultra-large models like Llama-3.1-405B. Quantized ``FP8`` models like Llama, Mixtral, and Grok-1 are available under the `AMD organization on Hugging Face <https://huggingface.co/collections/amd/quark-quantized-ocp-fp8-models-66db7936d18fcbaf95d4405c>`_, and can be deployed directly via `vLLM <https://github.com/vllm-project/vllm/tree/main/vllm>`_.
Installing Quark
-------------------
The latest release of Quark can be installed with pip
.. code-block:: shell
pip install amd-quark
For detailed installation instructions, refer to the `Quark documentation <https://quark.docs.amd.com/latest/install.html>`_.
Using Quark for quantization
-----------------------------
#. First, load the pre-trained model and its corresponding tokenizer using the Hugging Face ``transformers`` library.
.. code-block:: python
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
MAX_SEQ_LEN = 512
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
tokenizer.pad_token = tokenizer.eos_token
#. Prepare the calibration DataLoader (static quantization requires calibration data).
.. code-block:: python
from datasets import load_dataset
from torch.utils.data import DataLoader
BATCH_SIZE = 1
NUM_CALIBRATION_DATA = 512
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
tokenized_outputs = tokenizer(
text_data, return_tensors="pt", padding=True, truncation=True, max_length=MAX_SEQ_LEN
)
calib_dataloader = DataLoader(
tokenized_outputs['input_ids'], batch_size=BATCH_SIZE, drop_last=True
)
#. Define the quantization configuration. See the comments in the following code snippet for descriptions of each configuration option.
.. code-block:: python
from quark.torch.quantization import (Config, QuantizationConfig,
FP8E4M3PerTensorSpec)
# Define fp8/per-tensor/static spec.
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
is_dynamic=False).to_quantization_spec()
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
weight=FP8_PER_TENSOR_SPEC)
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
kv_cache_quant_config = {name :
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
weight=global_quant_config.weight,
output_tensors=KV_CACHE_SPEC)
for name in kv_cache_layer_names_for_llama}
layer_quant_config = kv_cache_quant_config.copy()
EXCLUDE_LAYERS = ["lm_head"]
quant_config = Config(
global_quant_config=global_quant_config,
layer_quant_config=layer_quant_config,
kv_cache_quant_config=kv_cache_quant_config,
exclude=EXCLUDE_LAYERS)
#. Quantize the model and export
.. code-block:: python
import torch
from quark.torch import ModelQuantizer, ModelExporter
from quark.torch.export import ExporterConfig, JsonExporterConfig
# Apply quantization.
quantizer = ModelQuantizer(quant_config)
quant_model = quantizer.quantize_model(model, calib_dataloader)
# Freeze quantized model to export.
freezed_model = quantizer.freeze(model)
# Define export config.
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor"
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
with torch.no_grad():
exporter.export_safetensors_model(freezed_model,
quant_config=quant_config, tokenizer=tokenizer)
Evaluating the quantized model with vLLM
----------------------------------------
The exported Quark-quantized model can be loaded directly by vLLM for inference. You need to specify the model path and inform vLLM about the quantization method (``quantization='quark'``) and the KV cache data type (``kv_cache_dtype='fp8'``).
Use the ``LLM`` interface to load the model:
.. code-block:: python
from vllm import LLM, SamplingParamsinterface
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor",
kv_cache_dtype='fp8',quantization='quark')
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
You can also evaluate the quantized model's accuracy on standard benchmarks using the `lm-evaluation-harness <https://github.com/EleutherAI/lm-evaluation-harness>`_. Pass the necessary vLLM arguments to ``lm_eval`` via ``--model_args``.
.. code-block:: shell
lm_eval --model vllm \
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor,kv_cache_dtype='fp8',quantization='quark' \
--tasks gsm8k
This provides a standardized way to measure the performance impact of quantization.
.. _fine-tune-llms-gptq:
GPTQ
@@ -33,7 +196,7 @@ The AutoGPTQ library implements the GPTQ algorithm.
.. code-block:: shell
# This will install pre-built wheel for a specific ROCm version.
pip install auto-gptq --no-build-isolation --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm573/
Or, install AutoGPTQ from source for the appropriate ROCm version (for example, ROCm 6.1).
@@ -43,10 +206,10 @@ The AutoGPTQ library implements the GPTQ algorithm.
# Clone the source code.
git clone https://github.com/AutoGPTQ/AutoGPTQ.git
cd AutoGPTQ
# Speed up the compilation by specifying PYTORCH_ROCM_ARCH to target device.
PYTORCH_ROCM_ARCH=gfx942 ROCM_VERSION=6.1 pip install .
# Show the package after the installation
#. Run ``pip show auto-gptq`` to print information for the installed ``auto-gptq`` package. Its output should look like
@@ -112,7 +275,7 @@ Using GPTQ with Hugging Face Transformers
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
base_model_name = " NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer)
@@ -212,10 +375,10 @@ To get started with bitsandbytes primitives, use the following code as reference
.. code-block:: python
import bitsandbytes as bnb
# Use Int8 Matrix Multiplication
bnb.matmul(..., threshold=6.0)
# Use bitsandbytes 8-bit Optimizers
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995))
@@ -227,14 +390,14 @@ To load a Transformers model in 4-bit, set ``load_in_4bit=true`` in ``BitsAndByt
.. code-block:: python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
bnb_model_4bit = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=quantization_config)
# Check the memory footprint with get_memory_footprint method
print(bnb_model_4bit.get_memory_footprint())
@@ -243,9 +406,9 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
@@ -253,7 +416,7 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
base_model_name,
device_map="auto",
quantization_config=quantization_config)
prompt = "What is a large language model?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)

View File

@@ -20,6 +20,8 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`LLM inference frameworks <llm-inference-frameworks>`
- :doc:`Performance testing <vllm-benchmark>`
- :doc:`vLLM inference performance testing <vllm-benchmark>`
- :doc:`PyTorch inference performance testing <pytorch-inference-benchmark>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -86,7 +86,7 @@ PyTorch inference performance testing
.. container:: model-doc pyt_chai1_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
.. code-block:: shell
@@ -98,7 +98,7 @@ PyTorch inference performance testing
.. container:: model-doc pyt_clip_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
.. code-block:: shell

View File

@@ -276,7 +276,7 @@ vLLM inference performance testing
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
@@ -286,11 +286,11 @@ vLLM inference performance testing
* Throughput benchmark
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.

View File

@@ -0,0 +1,168 @@
.. meta::
:description: How to train a model using LLM Foundry for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
******************************************
Training MPT-30B with LLM Foundry and ROCm
******************************************
MPT-30B is a 30-billion parameter decoder-style transformer-based model from
the Mosaic Pretrained Transformer (MPT) family -- learn more about it in
MosaicML's research blog `MPT-30B: Raising the bar for open-source foundation
models <https://www.databricks.com/blog/mpt-30b>`_.
ROCm and `<https://github.com/ROCm/MAD>`__ provide a pre-configured training
environment for the MPT-30B model using the ``rocm/pytorch-training:v25.5``
base `Docker image <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
and the `LLM Foundry <https://github.com/mosaicml/llm-foundry>`_ framework.
This environment packages the following software components to train
on AMD Instinct MI300X series accelerators:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git6374332 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0.post1 |
+--------------------------+--------------------------------+
Using this image, you can build, run, and test the training process
for MPT-30B with access to detailed logs and performance metrics.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Getting started
===============
The following procedures help you set up the training environment in a
reproducible Docker container. This training environment is tailored for
training MPT-30B using LLM Foundry and the specific model configurations outlined.
Other configurations and run conditions outside those described in this
document are not validated.
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
On your host machine, clone the ROCm Model Automation and Dashboarding
(`<https://github.com/ROCm/MAD>`__) repository to a local directory and
install the required packages.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to initiate the MPT-30B training benchmark.
.. code-block:: shell
python3 tools/run_models.py --tags pyt_mpt30b_training --keep-model-dir --live-output --clean-docker-cache
.. tip::
If you experience data download failures, set the
``MAD_SECRETS_HFTOKEN`` variable to your Hugging Face access token. See
`User access tokens <https://huggingface.co/docs/hub/security-tokens>`_
for details.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
.. note::
For improved performance (training throughput), consider enabling TunableOp.
By default, ``pyt_mpt30b_training`` runs with TunableOp disabled. To enable it,
run ``tools/run_models.py`` with the ``--tunableop on`` argument or edit the
``models.json`` configuration before running training.
Although this might increase the initial training time, it can result in a performance gain.
.. tab-item:: Standalone benchmarking
To set up the training environment, clone the
`<https://github.com/ROCm/MAD>`__ repo and build the Docker image. In
this snippet, the image is named ``mosaic_mpt30_image``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
docker build --build-arg MAD_SYSTEM_GPU_ARCHITECTURE=gfx942 -f docker/pyt_mpt30b_training.ubuntu.amd.Dockerfile -t mosaic_mpt30_image .
Start a ``mosaic_mpt30_image`` container using the following command.
.. code-block:: shell
docker run -it --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --shm-size=8G mosaic_mpt30_image
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory at
``/workspace/MAD/scripts/pyt_mpt30b_training``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pyt_mpt30b_training
To initiate the training process, use the following command. This script uses the hyperparameters defined in
``mpt-30b-instruct.yaml``.
.. code-block:: shell
source run.sh
.. note::
For improved performance (training throughput), consider enabling TunableOp.
To enable it, add the ``--tunableop on`` flag.
.. code-block:: shell
source run.sh --tunableop on
Although this might increase the initial training time, it can result in a performance gain.
Interpreting the output
=======================
The training output will be displayed in the terminal and simultaneously saved
to the ``output.txt`` file in the current directory. Key performance metrics will
also be extracted and appended to the ``perf_pyt_mpt30b_training.csv`` file.
Key performance metrics include:
- Training logs: Real-time display of loss metrics, accuracy, and training progress.
- Model checkpoints: Periodically saved model snapshots for potential resume or evaluation.
- Performance metrics: Detailed summaries of training speed and training loss metrics.
- Performance (throughput/samples_per_sec)
Overall throughput, measuring the total samples processed per second. Higher values indicate better hardware utilization.
- Performance per device (throughput/samples_per_sec)
Throughput on a per-device basis, showing how each GPU or CPU is performing.
- Language Cross Entropy (metrics/train/LanguageCrossEntropy)
Measures prediction accuracy. Lower cross entropy suggests the models output is closer to the expected distribution.
- Training loss (loss/train/total)
Overall training loss. A decreasing trend indicates the model is learning effectively.

View File

@@ -45,6 +45,7 @@
(communication-libraries)=
* {doc}`RCCL <rccl:index>`
* [rocSHMEM](https://github.com/ROCm/rocSHMEM)
:::
:::{grid-item-card} Math

View File

@@ -46,6 +46,8 @@ subtrees:
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext
title: Train a model with JAX MaxText
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
title: Train a model with LLM Foundry
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training

View File

@@ -10,7 +10,7 @@ ROCm is a software stack, composed primarily of open-source software, that
provides the tools for programming AMD Graphics Processing Units (GPUs), from
low-level kernels to high-level end-user applications.
.. image:: data/rocm-software-stack-6_3_2.jpg
.. image:: data/rocm-software-stack-6_4_0.jpg
:width: 800
:alt: AMD's ROCm software stack and enabling technologies.
:align: center
@@ -52,6 +52,7 @@ Communication
:header: "Component", "Description"
":doc:`RCCL <rccl:index>`", "Standalone library that provides multi-GPU and multi-node collective communication primitives"
"`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_", "Runtime that provides GPU-centric networking through an OpenSHMEM-like interface. This intra-kernel networking library simplifies application code complexity and enables more fine-grained communication/computation overlap than traditional host-driven networking"
Math
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^