Compare commits

...

134 Commits

Author SHA1 Message Date
Istvan Kiss
ab74da0ed2 Update ROCm docs core to 1.23 2025-10-02 08:34:17 +02:00
Peter Park
5eb0ddb767 Fix documented VRAM for Radeon AI Pro R9700 (#5203) (#5206)
(cherry picked from commit c154b7e0a3)
2025-08-18 10:19:44 -04:00
anisha-amd
628653a6dd [Docs] 6.4.1: compatibility matrix frameworks support update (#5188) 2025-08-12 14:26:03 -04:00
anisha-amd
911baa84f7 Updates to compatibility matrix for 6.4.1 docs (#5144) 2025-08-01 13:18:07 -04:00
Pratik Basyal
006ef42c81 ROCm Software Stack image for 6.4.0 updated (#5112) (#5115) 2025-07-29 09:45:52 -04:00
Peter Park
a095acc77f Use madengine instead of tools/run_models.py in docs (#5095)
(cherry picked from commit 14249f24d8)
2025-07-24 15:52:08 -04:00
Pratik Basyal
966ffed65b AMDGPU installer link updated to 6.4.1 (#5092) 2025-07-23 14:32:17 -04:00
anisha-amd
3f03d95920 Sphinx warning for ROCm fixed (#5077) (#5081)
* Sphinx warning for DGL fixed

* Update dgl-compatibility.rst

removed benchmark line and updated link

---------

Co-authored-by: Pratik Basyal <prbasyal@amd.com>
2025-07-22 10:32:57 -04:00
Peter Park
6988b31a3a Update Megatron-LM training benchmark doc for v25.6 release (#5064) (#5068)
(cherry picked from commit 5bcf3b0847)
2025-07-18 16:03:05 -04:00
Peter Park
74f284c2fb fix path to data file in vllm-0.9.1-20250702.rst
(cherry picked from commit 6118e9ffac)
2025-07-18 14:19:23 -04:00
Peter Park
7202fe464d Merge pull request #5063 from peterjunpark/docs/6.4.1
[docs/6.4.1] Update vLLM inference benchmark doc for 0715 release (#5058)
2025-07-17 15:05:07 -04:00
Peter Park
48a758d86d Update vLLM inference benchmark doc for 0715 release (#5058)
(cherry picked from commit b437a625b3)
2025-07-17 15:02:04 -04:00
anisha-amd
613bb9fb0d added dgl and megatron to csv (#5057) (#5060)
Co-authored-by: spolifroni-amd <Sandra.Polifroni@amd.com>
2025-07-16 15:52:16 -04:00
anisha-amd
3cbf31f26b link fix (#5055) 2025-07-16 14:00:52 -04:00
spolifroni-amd
226a8b900d verl added to the csv and version format change for megatron (#5053)
* verl added to the csv and version format change for megatron

* Update compatibility-matrix.rst
2025-07-16 13:30:36 -04:00
anisha-amd
0ac97e1c59 Merge Verl, DGL, Megatron changes. (#5047) (#5049)
* Verl compatibility

* verl compatibility

* add Supported features



* updated and edited verl compat doc

* added links to verl

* add future release for sglang and megatron inference eng.



* fix lint



* fixed a typo and a table

* Spolifroni amd/add to compat matrix (#430)

* added verl to compatibility matrix

* small change

* fixed an error in csv

* edited the verl compat based on leo's recommendations

* updated compat matrix (#435)

* Added a hardcoded link to the verl install

This is a link to an RTD build and MUST be removed before publishing.

* Update verl-compatibility.rst

* Added a hardcoded link to the verl install

This link is to an RTD build and it WILL break at publishing. It MUST be changed before publishing.

* Added version support note (#448)

* small fixes

* Update verl-compatibility.rst

* Update verl-compatibility.rst

---------




(cherry picked from commit f9bd22626b)

* Stanford Megatron-LM Compatibility

* Create stanford-megatron-lm-compatibility.rst

* toc and wordlist

* Update deep-learning-rocm.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* fixes and adding to main compat matrix

* formatting fix

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst



* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst



* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst



* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

---------


(cherry picked from commit f4f096b44e)

* Framework: DGL Compatability

* Introducing new file for DGL Compatability

* Update dgl-compatibility.rst

* Update .wordlist.txt

* Update .wordlist.txt

* Update deep-learning-rocm.rst

* compatibility fixes

* Update docs/compatibility/ml-compatibility/dgl-compatibility.rst



* Update docs/compatibility/ml-compatibility/dgl-compatibility.rst



* Update docs/compatibility/ml-compatibility/dgl-compatibility.rst



* Update docs/compatibility/ml-compatibility/dgl-compatibility.rst



* Update dgl-compatibility.rst

* Update dgl-compatibility.rst

* Update dgl-compatibility.rst

* Update dgl-compatibility.rst

* additions to use-cases and system support

* wording and fixes

* Update dgl-compatibility.rst

* Update dgl-compatibility.rst

* remove table heading

* Update compatibility-matrix-historical-6.0.csv

---------



(cherry picked from commit 2a7554c0b9)

* Manually resolve merge conflict

* Further merge conflict adjustments

---------

Signed-off-by: Vicky Tsang <vtsang@amd.com>
Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
Co-authored-by: vickytsang <vtsang@amd.com>
Co-authored-by: spolifroni-amd <sandra.polifroni@amd.com>
Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Mukhil M S <167260682+mukh1l@users.noreply.github.com>
2025-07-15 19:22:23 -04:00
Peter Park
d9d52458ad fix broken image in megatron-lm-v24.12-dev.rst (#5043) (#5044)
(cherry picked from commit 548d31f990)
2025-07-15 15:07:55 -05:00
Peter Park
cb53c779de fix broken image in megatron-lm-v24.12-dev.rst (#5043)
(cherry picked from commit 548d31f990)
2025-07-15 10:57:59 -04:00
Pratik Basyal
5adaeca7ca HIP deprecation notice blog link updated (#5031) 2025-07-10 11:32:10 -07:00
Peter Park
d6328be3bd fix xrefs in vllm-0.9.0.1-20250605.rst (#5017)
(cherry picked from commit 22524eeaa5)
2025-07-09 14:40:34 -04:00
Pratik Basyal
375ca21ad5 ROCm for HPC table update for 6.4.0 (#5015) (#5016)
* 6.4.0 updates synced

* Minor change
2025-07-09 14:25:23 -04:00
Peter Park
a9da708ffa Update vLLM Docker doc for 07/02 (#5014)
(cherry picked from commit d471b04cd5)
2025-07-09 11:45:27 -04:00
Peter Park
f848f3a5c2 Merge pull request #5009 from peterjunpark/docs/6.4.1
Fix xrefs and Sphinx warnings in documentation
2025-07-08 13:29:23 -04:00
Peter Park
d0819f83d5 Fix xrefs and Sphinx warnings in documentation
Fix xrefs and Sphinx warnings in documentation

(cherry picked from commit 3b3fc4894b)
2025-07-08 13:23:27 -04:00
Peter Park
32b52dfd6e Fix Docker run commands in Megatron-LM Docker doc (#4996) (#4997)
* fix megatron-lm docker run commands

* update --shm-size option

(cherry picked from commit 58b3ad0509)
2025-07-02 14:24:23 -04:00
Peter Park
0d07dda2ca Fix Docker run commands in Megatron-LM Docker doc (#4996)
* fix megatron-lm docker run commands

* update --shm-size option

(cherry picked from commit 58b3ad0509)
2025-07-02 14:19:58 -04:00
Peter Park
893bf23e03 Merge pull request #4994 from peterjunpark/docs/6.4.1
Add Wan2.1 to PyTorch inference Docker documentation (#4984)
2025-07-02 10:01:00 -04:00
Peter Park
0f18f263be Add Wan2.1 to PyTorch inference Docker documentation (#4984)
* add wan2.1 to pyt inference models

* update group name

* fix container tag

* fix group name

* change documented data type to bfloat16

* fix col width

(cherry picked from commit d0c8ba0805)
2025-07-02 09:59:12 -04:00
Pratik Basyal
2ec4fd1d63 KMD UMD support footnote update ROCm 640 (#4973) (#4977)
* KMD UMD support footnote update ROCm 640

* Histotical footnote
2025-06-26 15:34:15 -04:00
yugang-amd
919fa7074f Fix broken link for AMDGPU installer (#4975) 2025-06-26 14:47:38 -04:00
Peter Park
c99044d25b Merge pull request #4957 from peterjunpark/docs/6.4.1
Fix pytorch training 25.6 doc (#4956)
2025-06-23 13:49:51 -04:00
Peter Park
63a264caea Fix pytorch training 25.6 doc (#4956)
* fix pytorch-training history

* fix pytorch-training

fix

(cherry picked from commit 2196fc9a2f)
2025-06-23 13:46:35 -04:00
randyh62
9c17ff0ac5 update to HIP 6.4.1 Changelog (#4951) 2025-06-23 09:19:28 -07:00
Peter Park
22d17f8d36 Merge pull request #4953 from peterjunpark/docs/6.4.1
[docs/6.4.1] Update PyTorch training benchmark doc for v25.6 (#4950)
2025-06-23 09:32:25 -04:00
Peter Park
c27dab5e10 Update PyTorch training benchmark doc for v25.6 (#4950)
* update pytorch-training docker details

* add previous version

* add models data

* update models data id

* add models picker

* update data

* update fmt

fmt

* update data yaml

* update template

* update data

* fix

* fix vllm-0.6.4 broken link

* fix vllm history

(cherry picked from commit 91a541f8b9)
2025-06-23 09:27:01 -04:00
Peter Park
8280121b36 Merge pull request #4949 from peterjunpark/docs/6.4.1
[docs/6.4.1] Organize version histories in ROCm for AI benchmark Docker docs (#4948)
2025-06-20 15:06:01 -04:00
Peter Park
6a2e90794b Organize version histories in ROCm for AI benchmark Docker docs (#4948)
* add vllm 0.8.3 20250415

update prev versions table

* add vllm previous versions page

* move index to vllm-history

* add standalone megatron-lm version history

* add pytorch training version history

* fix

* add vllm-0.4.3

* add vllm-0.6.4

* update vllm-history

* add vllm-0.7.3

* add vllm-0.6.6

* add notes

* fix vllm readme links

fix main page link

* add latest version to previous versions list

* add jax-maxtext history

* fix jax-maxtext history

* add pytorch-training history

* add link in jax-maxtext 25.4

* add megatron-lm history

* fix datatemplate path for vllm 0.8.3

* fix jax-maxtext history link

* update note about performance measurements

* add vllm 0.8.5_20250521 previous version

* consistency fixes

(cherry picked from commit 34f8d57ece)
2025-06-20 15:02:36 -04:00
yugang-amd
35b69a0c4a Update for vllm -06/10 (#4944) 2025-06-20 08:41:30 -04:00
yugang-amd
2fb7d023e0 remove broken xref (#4940) 2025-06-18 10:16:06 -04:00
Istvan Kiss
047ee3582f Docs: Pytorch compatibility page update (#4938)
Co-authored-by: Adel Johar <adel.johar@amd.com>
2025-06-18 13:21:26 +02:00
Peter Park
6286090d12 Merge pull request #4925 from peterjunpark/docs/6.4.1
[docs/6.4.1] Fix Sphinx issue in vllm-benchmark 0.8.5-20250513 previous version (#…
2025-06-13 15:15:46 -04:00
Peter Park
53f30c7880 Fix Sphinx issue in vllm-benchmark 0.8.5-20250513 previous version (#4924)
* fix sphinx issue in vllm-benchmark 0.8.5-20250513 previous version

* update article_info in conf.py

* update rocm/vllm

(cherry picked from commit d69037bfcc)
2025-06-13 15:04:54 -04:00
Istvan Kiss
8e0e0b93c6 Docs: Overhaul JAX compatibility page (#4917)
Co-authored-by: Adel Johar <adel.johar@amd.com>
2025-06-12 15:25:28 +02:00
Pratik Basyal
629b9184b4 Link to 6.4.1 updated from internal to public (#4913) (#4914) 2025-06-10 17:19:45 -04:00
Peter Park
b3e8ac32e7 Merge pull request #4911 from peterjunpark/docs/6.4.1
[docs/6.4.1] Add Mochi Video to pytorch-inference-benchmark-models.yaml
2025-06-10 13:18:50 -04:00
Peter Park
419b3a02a2 add mochi video to pytorch-inference-benchmark-models.yaml
fix container tag

fix container tag

update model selector col width in pytorch-inference.rst

model name

(cherry picked from commit 51fc77d7fc)
2025-06-10 13:07:35 -04:00
Alex Xu
304809951f upgrade rocm-docs-core to 1.20.1
(cherry picked from commit 685457834a)
2025-06-09 14:54:01 -04:00
yugang-amd
c9f1c821eb Update for vllm -05/27 (#4886) (#4888)
* Update vLLM inference benchmark Docker page for rocm/vllm 5/27

* update repo for Pytorch
2025-06-05 13:40:56 -04:00
Pratik Basyal
876e11fc8d KMD version updated in compatibility matrix (#4873) (#4879) 2025-06-04 06:43:49 -04:00
Pratik Basyal
1c2513b788 GPU SKU added to ROCm 6.4.1 (#4875) 2025-06-03 16:28:34 -04:00
yugang-amd
7d26eb0e6f Fix broken link (#4867) 2025-06-03 11:01:44 -04:00
randyh62
a62f4a5296 add reference to HIP 7.0 blog for upcoming changes (#4862) 2025-05-30 19:37:06 -07:00
yugang-amd
404e91f2d9 Update compatibility-matrix.rst (#4860) 2025-05-30 17:50:33 -04:00
alexxu-amd
50cfc538ff Change viewer link from latest to mainline in what-is-rocm page (#4856)
* change viewer link from latest to mainline

* correct format

(cherry picked from commit c1919faccd)
2025-05-30 17:18:40 -04:00
Swati Rawat
a9c323e596 Docs: Add rocprof-compute-viewer (#4850)
* Docs: Add rocprof-compute-viewer

* update requirements.txt

---------

Co-authored-by: Alex Xu <alex.xu@amd.com>
(cherry picked from commit 6142df329b)
2025-05-30 15:22:51 -04:00
Peter Park
7a81d10c1d Add RHEL 9.6 to compat matrix (#4839)
* add RHEL 9.6 to compat matrix

* add os support note

(cherry picked from commit 2addcb0bca)
2025-05-30 14:57:24 -04:00
Jeffrey Novotny
43736ef655 Merge pull request #4853 from amd-jnovotny/release-notes-641-docs641
Cherry-pick to docs/6.4.1: Update release notes with RHEL 9.6 (#4848)
2025-05-30 14:54:17 -04:00
Jeffrey Novotny
d4416e2162 Update release notes with RHEL 9.6 (#4848)
(cherry picked from commit 106cecba5e)
2025-05-30 14:50:30 -04:00
yugang-amd
00f74d2d8e Add microsoft/phi-4 vllm-benchmark-models (#4801) (#4847)
* add Phi-4 to vllm-benchmark-models.yaml

fix model_repo

* update model group names

Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-30 09:20:17 -04:00
Peter Park
db9e845844 Add vLLM benchmark and ML framework Docker doc updates to docs/6.4.1 (#4844)
* Add Falcon-180B to vLLM benchmark Docker doc (#4836)

* add Falcon to vllm-benchmark-models.yaml

* update group name

(cherry picked from commit daf2e980d9)

* Update ML framework Docker inventories for 6.4.1 (#4841)

* Update tensorflow Docker compatibility table

* update jax Docker compatibility table

* fix py versions

* update pytorch Docker compatibility table

(cherry picked from commit 93fd0ef1d4)
2025-05-29 18:50:03 -04:00
Peter Park
4963eeab00 Update ML framework Docker inventories for 6.4.1 (#4841)
* Update tensorflow Docker compatibility table

* update jax Docker compatibility table

* fix py versions

* update pytorch Docker compatibility table

(cherry picked from commit 93fd0ef1d4)
2025-05-29 18:34:47 -04:00
Peter Park
7c25ce240b Add Falcon-180B to vLLM benchmark Docker doc (#4836)
* add Falcon to vllm-benchmark-models.yaml

* update group name

(cherry picked from commit daf2e980d9)
2025-05-29 18:34:47 -04:00
Peter Park
bac2d038f7 Merge pull request #4830 from peterjunpark/docs/6.4.1
[docs/6.4.1] Fix typo in Megatron-LM Docker pull tags
2025-05-28 15:18:14 -04:00
Peter Park
fdeaacd3cc fix megatron-lm pull tags 2025-05-28 15:12:50 -04:00
Peter Park
8e61ba4f90 Fix rocm/vllm pull tag
fix
2025-05-28 14:42:35 -04:00
Peter Park
4051e985d4 Merge pull request #4826 from peterjunpark/docs/6.4.1
[6.4.1] Add latest rocm/vllm Docker details in vLLM inference benchmark guide
2025-05-28 14:27:08 -04:00
Peter Park
94ee445a8a Add latest rocm/vllm Docker details in vLLM inference benchmark guide (#4824)
* update rocm/vllm Docker details to latest release

* Add previous vLLM version

* fix 'further reading' xrefs

* improve model grouping names

* fix links

* update model picker text

(cherry picked from commit cebf0f5975)
2025-05-28 14:23:05 -04:00
Peter Park
535859ac9f Add RDNA4 RX 9070 GRE to gpu-arch-specs.rst and RELEASE.md (#4820) (#4821)
(cherry picked from commit 0acb457389)
2025-05-28 10:26:55 -04:00
Peter Park
2e5fe544a0 Add RDNA4 RX 9070 GRE to gpu-arch-specs.rst and RELEASE.md (#4820)
(cherry picked from commit 0acb457389)
2025-05-28 10:21:50 -04:00
yugang-amd
4dae0ba84d Update SGPR for RDNA3 and RDNA2 series (#4815) 2025-05-27 15:13:22 -04:00
yugang-amd
5ddab465c3 Bump up requirement version (#4805)
* bump up requirement version

* update requirements.txt

* Use Python 3.10
2025-05-27 11:08:55 -04:00
yugang-amd
151e563dcb Merge pull request #4792 from yugang-amd/wavefront-size-6-4-1
Update wavefront size
2025-05-26 14:56:38 -04:00
yugang-amd
2098af1456 Merge pull request #4803 from yugang-amd/link-fix-6-4-1
fix broken links
2025-05-26 14:42:39 -04:00
yugang-amd
ae1a330fd7 fix links 2025-05-26 14:35:36 -04:00
yugang-amd
cab805674a update wavefront size
(cherry picked from commit 230b01565f)
2025-05-26 13:56:14 -04:00
yugang-amd
387cfab91f fix typo 2025-05-26 12:53:18 -04:00
yugang-amd
525703a5ab update wavefront size 2025-05-22 17:41:36 -04:00
Peter Park
ce65e6783b Merge pull request #4783 from peterjunpark/docs/6.4.1
Document specs for Radeon RX 9070 + small fix in megatron-lm doc (#4780)
2025-05-22 16:33:33 -04:00
Peter Park
6d2b1595b3 Document specs for Radeon RX 9070 + small fix in megatron-lm doc (#4780)
* Document specs for Radeon RX 9070

* fix wrong version in megatron-lm.rst

(cherry picked from commit 505041d90a)
2025-05-22 16:30:56 -04:00
yugang-amd
31e9013bdc update rocSHMEM xrefs
(cherry picked from commit 7697298f5d)
2025-05-22 15:19:09 -04:00
Peter Park
698ac70662 Merge pull request #4779 from peterjunpark/docs/6.4.1
[6.4.1] Add Megatron-LM benchmark doc 5/2 (#4778)
2025-05-22 14:36:29 -04:00
Peter Park
9b69755b99 Add Megatron-LM benchmark doc 5/2 (#4778)
* reorg files

* add tabs

* update template

* update template

* update wordlist and toc

* add previous version to doc

* add selector paragraph

* update wordlist.txt

(cherry picked from commit 9ed65a81c4)
2025-05-22 14:29:40 -04:00
Peter Park
05773ca41e Merge pull request #4776 from peterjunpark/docs/6.4.1
[docs/6.4.1] fix 9070 XT gfx target in gpu-arch-specs table (#4775)
2025-05-22 12:15:41 -04:00
Peter Park
4f80043312 fix 9070 XT gfx target in gpu-arch-specs table (#4775)
(cherry picked from commit 6d9f430c70)
2025-05-22 12:12:14 -04:00
Peter Park
223fbb8f28 remove HIP upcoming changes reference link (#4771) (#4772)
(cherry picked from commit f1f2b3cac2)
2025-05-21 12:27:07 -07:00
Alex Xu
845b3c4d5a Merge branch 'roc-6.4.x' into docs/6.4.1 2025-05-21 15:04:20 -04:00
Alex Xu
11747aaadc Merge branch 'develop' into roc-6.4.x 2025-05-21 15:04:02 -04:00
alexxu-amd
e265ee53ba Merge pull request #4766 from ROCm/alexxu12/tool-update-641
Update tools & README for 6.4.1
2025-05-21 15:02:27 -04:00
Peter Park
3f56efcb3b Update documented known issues in 6.4.1 rel (#4765)
* add ROCm SMI uninstallation note

* words

* clarify amd-smi note

* add links to gh issues in known issues section

* words
2025-05-21 15:01:35 -04:00
Peter Park
98fde2bff1 Add RDNA4 OS support note in RELEASE.md and compat matrix (#4764)
* fix vllm link in release.md

* add RDNA4 note in compat matrix

* update hipcc github url to specific path in llvm-project repo

* remove non-existant HIP upcoming changes reference

* remove non-existant resolved issues internal link

* fix hip upcoming changes url

* duplicate amd smi known issue
2025-05-21 14:23:48 -04:00
Alex Xu
8e7d43bec2 Merge branch 'roc-6.4.x' into docs/6.4.1 2025-05-21 12:27:43 -04:00
Alex Xu
1088beefe5 Merge branch 'develop' into roc-6.4.x 2025-05-21 12:27:13 -04:00
Peter Park
0e8b745266 Fix toc (#4762) 2025-05-21 12:26:30 -04:00
Alex Xu
b7988925a5 Merge branch 'develop' into roc-6.4.x 2025-05-21 12:25:30 -04:00
alexxu-amd
02a8a6e5df Merge pull request #4760 from ROCm/sync-develop-from-internal
Sync develop from internal for 6.4.1 GA
2025-05-21 12:21:42 -04:00
chiranjeevipattigidi
89dafa6232 Update packages - remove broken packages (#4758)
* Update envsetup.sh HIP_ON_ROCclr_ROOT path to hip and remove

aqlprofiletest

* Update packages - remove broken packages
2025-05-21 09:06:39 -07:00
alexxu-amd
f118318f98 Merge pull request #414 from ROCm/sync-develop-from-external
Sync develop from external
2025-05-21 12:00:22 -04:00
alexxu-amd
47e4ec8b3a Merge branch 'develop' into sync-develop-from-external 2025-05-21 11:17:10 -04:00
Alex Xu
58a62bc00e Merge remote-tracking branch 'external/develop' into sync-develop-from-external 2025-05-21 11:16:31 -04:00
Peter Park
56d258592d Finalize 6.4.1 release notes (#408)
* update URLs for production

* update historical changelog

* remove deep learning compat section from doc highlights

* update changelog.md

* Update CHANGELOG.md

Co-authored-by: yugang-amd <yugang.wang@amd.com>

* Update CHANGELOG.md

Co-authored-by: yugang-amd <yugang.wang@amd.com>

---------

Co-authored-by: yugang-amd <yugang.wang@amd.com>
2025-05-21 11:15:44 -04:00
Peter Park
8dc7016405 Add Radeon AI PRO R9700, Radeon RX 9070 XT, RX 9060 XT to gpu-arch-specs (#411)
* add Radeon AI PRO R7900, Radeon RX 9070 XT, Radeon RX 9060 XT to gpu-arch-specs.rst

* update compat matrices

* fix spacing in historical compat csv file
2025-05-21 11:04:46 -04:00
alexxu-amd
8686bca1b4 Merge pull request #412 from ROCm/alexxu-amd-patch-1
Add 6.4.1 to version list
2025-05-21 11:00:11 -04:00
alexxu-amd
82d15a09f5 Merge branch 'develop' into alexxu-amd-patch-1 2025-05-21 10:58:27 -04:00
Peter Park
42e0c0cfba [6.4.1] Add RDNA4 GPUs to docs (#410)
* add Radeon AI PRO R9700 SD2.1 known issue

* Add hardware support note for R9700, 9070 XT, 9060 XT

* words

* Add links to new 9000-series GPUs
2025-05-21 10:27:43 -04:00
alexxu-amd
ddcad120a2 Update versions.md 2025-05-21 09:52:05 -04:00
alexxu-amd
080b15d261 Sync develop into docs/6.4.1 2025-05-20 21:24:27 -04:00
Peter Park
b8892f2c33 add amd-smi ras --cper known issue (#409) 2025-05-20 16:36:33 -04:00
chiranjeevipattigidi
8054852dad Update envsetup.sh HIP_ON_ROCclr_ROOT path to hip and remove (#4755)
aqlprofiletest
2025-05-20 07:59:07 -07:00
Peter Park
ab384a1b6e [6.4.1] Add RCCL-UnitTests known issue 2025-05-20 07:56:50 -04:00
Peter Park
27db6ef0b3 add rccl known issue to stack known issues (#404)
* add rccl known issue to stack known issue

* remove bullet
2025-05-16 12:32:21 -04:00
Istvan Kiss
707d6c022f Merge pull request #388 from ROCm/rn_precision_sup
Precision support page update release note revert
2025-05-16 11:33:07 +02:00
Istvan Kiss
3bafe307bf Page will be not published 2025-05-16 11:29:26 +02:00
Peter Park
ca5d0d0000 [6.4.1] update llvm-project version and add RCCL known issue (#401)
* update llvm-project version

* add RCCL known issue
2025-05-15 16:20:59 -04:00
randyh62
e35efbae09 Update RELEASE.md (#402)
Update Added entry, add Changed and Optimized entries
2025-05-15 13:14:18 -07:00
Daniel Su
0d7846fbab Ex CI: enable rocPRIM sparse checkout (#4743) 2025-05-15 14:39:28 -04:00
Peter Park
92a9c88fe3 [6.4.1 release notes] Change links to internal for external review (#400)
* change installer links to internal

* change smi changelog links to internal
2025-05-15 11:48:13 -04:00
Peter Park
2a3c2fe5aa Update 6.4.1 release notes (#399)
* remove extra file

* Update wording in RELEASE.md

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* update amdsmi changelog

* install -> installed

t

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-05-14 15:41:12 -04:00
Daniel Su
156917e15d Ex CI: set absolute cmakeSourceDir paths (#4741) 2025-05-14 11:03:57 -04:00
Daniel Su
d7a9280008 Ex CI: set cmakeSourceDir for all components that set cmakeBuildDir (#4738) 2025-05-13 17:15:54 -04:00
Daniel Su
c1825ba41c Ex CI: skip docker creation on gfx942 (#4735) 2025-05-13 17:05:02 -04:00
Peter Park
0a77e7b3a5 docs: Add system health check doc under ROCm for AI (#4736)
* add initial draft

* add to toc and install page

* update wording

* improve documentation structure

* resturcture and expand content

* add to training section

* add to conf.py article_pages

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* update wordlist.txt

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* inference --> AI workloads

* udpate toc

* update article_pages in conf.py

* Update system validation notes in training docs

* fix links in prerequisite-system-validation

* wording

* add note

* consistency

* remove extra files

* fix links

* add links to training index page

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-05-13 15:54:48 -04:00
Daniel Su
a940f3f090 Ex CI: add sparse option to checkout template (#4701)
* Ex CI: add sparse option to checkout template

* replace Pipeline.Workspace with Agent.BuildDirectory for consistency
2025-05-13 14:46:48 -04:00
Daniel Su
95415d5e70 Ex CI: remove firstRenderDeviceAccess demand from all components (#4734) 2025-05-13 13:08:27 -04:00
Istvan Kiss
d1772b9ca3 Fix unsupported section structure on JAX (#4733) 2025-05-13 17:39:25 +02:00
Istvan Kiss
f65e1412df Fix compatibility list (#4731) 2025-05-13 16:26:36 +02:00
Wei Luo
d1debc7e45 [doc]: Add quark in model-quantization.rst (#374)
* Add quark in model-quantization.rst

---------

Co-authored-by: Peter Park <peter.park@amd.com>
Co-authored-by: Peter Park <git@peterjunpark.com>
2025-05-08 14:28:51 +08:00
Pratik Basyal
169f3bbe5e 641 Release notes update post RC2 batch1 (#387)
* Release highlight updated

* TOC updated for internal

* RC3 manifest added

* clarify docker image highlight

* update doc highlights

* RC3 changes added

* RC3 manifest added

* ROCm SMI version update

---------

Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-06 15:07:54 -04:00
Pratik Basyal
e28eac2fe1 License typo fixed (#384) 2025-05-02 12:37:08 -04:00
Pratik Basyal
97ccce10ef Links and refernce text update (#383) 2025-05-01 16:13:39 -04:00
Pratik Basyal
217fb452f8 Initial changes to 6.4.1 RN (#379)
* Initial changes added

* Changelogs for RCCL, hipblaslt, compute profiler, and systems added

* 6.4.0 GA manifest

* 6.4.1 RC1 manifest

* RC2 Manifest added

* Update RELEASE.md

Add CLR Changelog entry for HIP 6.4.1

* Release highlight added

* AMD SMI changelog added

* ROCr runtime changelog added

* RCCL resolved issue added

* Minor change

* Minor fixes

* Quick changes to version

* Offline installer update

* Istallation udpated

* added rocalution to release notes

* Updated changelogs for components

* Changes to changelog

* Update RELEASE.md

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update RELEASE.md

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* rocSHMEM related changes added

* Changelog updated with new changes

* Heading level fixed

* AMD SMI version bumped to 25.4.0

* Reordered

* Table zebra pattern updated

* Consolidated updated

* Zebra patter aligned

* Add ROCm SMI changes to 6.4.1

* Update CHANGELOG.md

Co-authored-by: Pratik Basyal <prbasyal@amd.com>

* update doc highlights

* Link to rocSHMEM

* update

* Minor changes

* Changelog feedback updated

---------

Co-authored-by: randyh62 <42045079+randyh62@users.noreply.github.com>
Co-authored-by: spolifroni-amd <sandra.polifroni@amd.com>
Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-01 13:54:31 -04:00
ammallya
542d7813ce Removing aqlprofiletest 2025-04-14 15:26:24 -07:00
ammallya
bc1ffe4fcb bypass tests 2025-04-14 13:41:34 -07:00
ammallya
09997c68bb Removing kfd test 2025-04-14 12:55:13 -07:00
ammallya
42bc3501ac Merge pull request #4623 from ammallya/roc-6.4.x
Rebasing branch 6.4.x
2025-04-14 11:42:06 -07:00
101 changed files with 11980 additions and 3424 deletions

View File

@@ -77,7 +77,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: 'clr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=amd
@@ -138,7 +139,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: 'clr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=nvidia

View File

@@ -73,6 +73,7 @@ jobs:
parameters:
componentName: upstream-llvm
cmakeBuildDir: $(Pipeline.Workspace)/llvm-project/llvm/build
cmakeSourceDir: $(Pipeline.Workspace)/llvm-project/llvm
installDir: $(Pipeline.Workspace)/llvm
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release

View File

@@ -118,6 +118,7 @@ jobs:
parameters:
componentName: extras
cmakeBuildDir: '$(Build.SourcesDirectory)/aomp-extras/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/aomp-extras'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm
@@ -129,6 +130,7 @@ jobs:
parameters:
componentName: openmp
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/openmp/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/openmp'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"
@@ -155,6 +157,7 @@ jobs:
parameters:
componentName: offload
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/offload/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/offload'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"

View File

@@ -92,7 +92,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: external
cmakeBuildDir: 'deps/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/deps/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/deps'
installDir: '$(Pipeline.Workspace)/deps-install'
extraBuildFlags: >-
-DBUILD_BOOST=OFF

View File

@@ -83,7 +83,8 @@ jobs:
-DROCM_LLVM_BACKWARD_COMPAT_LINK=$(Build.BinariesDirectory)/llvm
-DROCM_LLVM_BACKWARD_COMPAT_LINK_TARGET=./lib/llvm
-GNinja
cmakeBuildDir: 'llvm/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm'
installDir: '$(Build.BinariesDirectory)/llvm'
# use llvm-lit to run unit tests for llvm, clang, and lld
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
@@ -121,7 +122,8 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build"
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: 'amd/device-libs/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/device-libs/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/device-libs'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: comgr
@@ -129,7 +131,8 @@ jobs:
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build;$(Build.SourcesDirectory)/amd/device-libs/build"
-DCOMGR_DISABLE_SPIRV=1
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: 'amd/comgr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/comgr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/comgr'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: comgr
@@ -142,7 +145,8 @@ jobs:
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DHIPCC_BACKWARD_COMPATIBILITY=OFF
cmakeBuildDir: 'amd/hipcc/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/hipcc/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/hipcc'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -105,6 +105,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
extraBuildFlags: >-
-DgRPC_INSTALL=ON

View File

@@ -125,6 +125,7 @@ jobs:
parameters:
componentName: PyBind11
cmakeBuildDir: '$(Build.SourcesDirectory)/pybind11/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/pybind11'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -141,6 +142,7 @@ jobs:
parameters:
componentName: RapidJSON
cmakeBuildDir: '$(Build.SourcesDirectory)/rapidjson/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/rapidjson'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -200,7 +202,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm/include/rocal
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -108,7 +108,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -114,7 +114,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -5,6 +5,12 @@ parameters:
- name: checkoutRef
type: string
default: ''
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -66,6 +72,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckout: ${{ parameters.sparseCheckout }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -168,7 +168,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -105,6 +105,7 @@ jobs:
-DLAPACKE=OFF
-GNinja
cmakeBuildDir: '$(Build.SourcesDirectory)/lapack/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/lapack'
installDir: '$(Pipeline.Workspace)/deps-install'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:

View File

@@ -167,7 +167,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -38,6 +38,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/grpc/build
cmakeSourceDir: $(Agent.BuildDirectory)/grpc
extraBuildFlags: >-
-DgRPC_INSTALL=ON
-DgRPC_BUILD_TESTS=OFF

View File

@@ -38,6 +38,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/googletest/build
cmakeSourceDir: $(Agent.BuildDirectory)/googletest
extraBuildFlags: >-
-DGTEST_FORCE_SHARED_CRT=ON
-DCMAKE_DEBUG_POSTFIX=d

View File

@@ -10,10 +10,10 @@ parameters:
default: ''
- name: cmakeBuildDir
type: string
default: 'build'
default: $(Agent.BuildDirectory)/s/build
- name: cmakeSourceDir
type: string
default: '..'
default: $(Agent.BuildDirectory)/s
- name: customBuildTarget
type: string
default: ''
@@ -46,7 +46,7 @@ steps:
${{ if eq(parameters.customInstallPath, true) }}:
cmakeArgs: -DCMAKE_INSTALL_PREFIX=${{ parameters.installDir }} ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
${{ else }}:
cmakeArgs: ${{ parameters.extraBuildFlags }} ..
cmakeArgs: ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
- ${{ if parameters.printDiskSpace }}:
- script: df -h
displayName: Disk space before build

View File

@@ -4,6 +4,12 @@ parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# submodule download behaviour
# change to 'recursive' for repos with submodules
- name: submoduleBehaviour
@@ -15,3 +21,13 @@ steps:
clean: true
submodules: ${{ parameters.submoduleBehaviour }}
retryCountOnTaskFailure: 3
fetchFilter: blob:none
${{ if eq(parameters.sparseCheckout, true) }}:
sparseCheckoutDirectories: ${{ parameters.sparseCheckoutDir }}
path: sparse
- ${{ if eq(parameters.sparseCheckout, true) }}:
- task: Bash@3
displayName: Symlink sparse checkout
inputs:
targetType: inline
script: ln -s $(Agent.BuildDirectory)/sparse/${{ parameters.sparseCheckoutDir }} $(Agent.BuildDirectory)/s

View File

@@ -106,6 +106,7 @@ parameters:
type: object
default:
- gfx90a
- gfx942
steps:
# these steps should only be run if there was a failure or warning

View File

@@ -6,6 +6,7 @@ ACS
AccVGPR
AccVGPRs
ALU
AllReduce
AMD
AMDGPU
AMDGPUs
@@ -13,6 +14,7 @@ AMDMIGraphX
AMI
AOCC
AOMP
AOT
AOTriton
APBDIS
APIC
@@ -32,8 +34,10 @@ Andrej
Arb
Autocast
BARs
BatchNorm
BLAS
BMC
BabelStream
Blit
Blockwise
Bluefield
@@ -78,10 +82,13 @@ ConnectX
CuPy
da
Dashboarding
Dataloading
DBRX
DDR
DF
DGEMM
DGL
DGLGraph
dGPU
dGPUs
DIMM
@@ -99,6 +106,7 @@ DataFrame
DataLoader
DataParallel
Debian
decompositions
DeepSeek
DeepSpeed
Dependabot
@@ -124,10 +132,12 @@ FX
Filesystem
FindDb
Flang
FlashAttention
FluxBenchmark
Fortran
Fuyu
GALB
GAT
GCC
GCD
GCDs
@@ -138,6 +148,7 @@ GDR
GDS
GEMM
GEMMs
GFLOPS
GFortran
GFXIP
Gemma
@@ -154,6 +165,8 @@ GPT
GPU
GPU's
GPUs
Graphbolt
GraphSage
GRBM
GenAI
GenZ
@@ -166,6 +179,7 @@ HIPCC
HIPExtension
HIPIFY
HIPification
hipification
HIPify
HPC
HPCG
@@ -180,6 +194,7 @@ Higgs
Hyperparameters
Huggingface
ICD
ICT
ICV
IDE
IDEs
@@ -214,6 +229,7 @@ KV
KVM
Karpathy's
KiB
Kineto
Keras
Khronos
LAPACK
@@ -226,6 +242,7 @@ LM
LSAN
LSan
LTS
LSTMs
LanguageCrossEntropy
LoRA
MEM
@@ -262,6 +279,7 @@ Miniconda
MirroredStrategy
Mixtral
MosaicML
Mpops
Multicore
Multithreaded
MyEnvironment
@@ -270,10 +288,12 @@ NBIO
NBIOs
NCCL
NCF
NFS
NIC
NICs
NLI
NLP
NN
NPKit
NPS
NSP
@@ -310,6 +330,7 @@ OpenMPI
OpenSSL
OpenVX
OpenXLA
Optim
Oversubscription
PagedAttention
Pallas
@@ -348,6 +369,7 @@ RDC's
RDMA
RDNA
README
Recomputation
RHEL
RMW
RNN
@@ -380,6 +402,7 @@ Ryzen
SALU
SBIOS
SCA
ScaledGEMM
SDK
SDMA
SDPA
@@ -420,6 +443,8 @@ TCI
TCIU
TCP
TCR
TensorRT
TensorFloat
TF
TFLOPS
TP
@@ -498,6 +523,7 @@ ZenDNN
accuracies
activations
addr
ade
ai
alloc
allocatable
@@ -505,6 +531,7 @@ allocator
allocators
amdgpu
api
aten
atmi
atomics
autogenerated
@@ -513,6 +540,7 @@ avx
awk
backend
backends
bb
benchmarked
benchmarking
bfloat
@@ -536,6 +564,7 @@ cd
centos
centric
changelog
checkpointing
chiplet
cmake
cmd
@@ -576,6 +605,7 @@ de
deallocation
debuggability
debian
deepseek
denoise
denoised
denoises
@@ -599,6 +629,7 @@ embeddings
enablement
encodings
endfor
endif
endpgm
enqueue
env
@@ -641,6 +672,7 @@ hipSPARSELt
hipTensor
hipamd
hipblas
hipcc
hipcub
hipfft
hipfort
@@ -670,6 +702,7 @@ installable
interop
interprocedural
intra
intrinsics
invariants
invocating
ipo
@@ -688,17 +721,20 @@ linearized
linter
linux
llvm
lm
localscratch
logits
lossy
macOS
matchers
megatron
microarchitecture
migraphx
migratable
miopen
miopengemm
mivisionx
mixtral
mjx
mkdir
mlirmiopen
@@ -763,6 +799,7 @@ quantile
quantizer
quasirandom
queueing
qwen
radeon
rccl
rdc
@@ -771,6 +808,7 @@ reStructuredText
redirections
refactorization
reformats
reinforcememt
repo
repos
representativeness
@@ -778,6 +816,7 @@ req
resampling
rescaling
reusability
RLHF
roadmap
roc
rocAL
@@ -815,6 +854,7 @@ roctracer
rst
runtime
runtimes
ResNet
sL
scalability
scalable
@@ -830,6 +870,7 @@ sm
smi
softmax
spack
spmm
src
stochastically
strided
@@ -838,8 +879,10 @@ subdirectory
subexpression
subfolder
subfolders
submatrix
submodule
submodules
subnet
supercomputing
symlink
symlinks
@@ -861,6 +904,7 @@ torchvision
tqdm
tracebacks
txt
TopK
uarch
uncached
uncacheable
@@ -888,6 +932,7 @@ vectorize
vectorized
vectorizer
vectorizes
verl
virtualize
virtualized
vjxb

View File

@@ -4,6 +4,141 @@ This page is a historical overview of changes made to ROCm components. This
consolidated changelog documents key modifications and improvements across
different versions of the ROCm software stack and its components.
## ROCm 6.4.1
See the [ROCm 6.4.1 release notes](https://rocm.docs.amd.com/en/docs-6.4.1/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.4.2)
#### Added
* Dumping CPER entries from RAS tool `amdsmi_get_gpu_cper_entries()` to Python and C APIs.
- Dumping CPER entries consist of `amdsmi_cper_hdr_t`.
- Dumping CPER entries is also enabled in the CLI interface through `sudo amd-smi ras --cper`.
* `amdsmi_get_gpu_busy_percent` to the C API.
#### Changed
* Modified VRAM display for `amd-smi monitor -v`.
#### Optimized
* Improved load times for CLI commands when the GPU has multiple parititons.
#### Resolved issues
* Fixed partition enumeration in `amd-smi list -e`, `amdsmi_get_gpu_enumeration_info()`, `amdsmi_enumeration_info_t`, `drm_card`, and `drm_render` fields.
#### Known issues
* When using the `--follow` flag with `amd-smi ras --cper`, CPER entries are not streamed continuously as intended. This will be fixed in an upcoming ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **HIP** (6.4.1)
#### Added
* New log mask enumeration `LOG_COMGR` enables logging precise code object information.
#### Changed
* HIP runtime uses device bitcode before SPIRV.
* The implementation of preventing `hipLaunchKernel` latency degradation with number of idle streams is reverted/disabled by default.
* Stop using `__AMDGCN_WAVEFRONT_SIZE` and `warpSize` as compile-time constants. The `warpSize` variable is no longer `constexpr`, in order to match the CUDA specification.
See more details of the `warpSize` change within the [ROCm upcoming changes](#rocm-upcoming-changes).
#### Optimized
* Improved kernel logging includes de-mangling shader names.
* Refined implementation in HIP APIs `hipEventRecords` and `hipStreamWaitEvent` for performance improvement.
#### Resolved issues
* Stale state during the graph capture. The return error was fixed, HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Segmentation fault during kernel execution. HIP runtime now allows maximum stack size as per ISA on the GPU device.
### **hipBLASLt** (0.12.1)
#### Resolved issues
* Fixed an accuracy issue for some solutions using an `FP32` or `TF32` data type with a TT transpose.
### **RCCL** (2.22.3)
#### Changed
* MSCCL++ is now disabled by default. To enable it, set `RCCL_MSCCLPP_ENABLE=1`.
#### Resolved issues
* Fixed an issue where early termination, in rare circumstances, could cause the application to stop responding by adding synchronization before destroying a proxy thread.
* Fixed the accuracy issue for the MSCCLPP `allreduce7` kernel in graph mode.
#### Known issues
* When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault. The recommended workaround is to disable MSCCL with `export RCCL_MSCCL_ENABLE=0`.
This issue will be fixed in a future ROCm release.
* Within the RCCL-UnitTests test suite, failures occur in tests ending with the
`.ManagedMem` and `.ManagedMemGraph` suffixes. These failures only affect the
test results and do not affect the RCCL component itself. This issue will be
resolved in a future ROCm release.
### **rocALUTION** (3.2.3)
#### Added
* The `-a` option has been added to the `rmake.py` build script. This option allows you to select specific architectures when building on Microsoft Windows.
#### Resolved issues
* Fixed an issue where the `HIP_PATH` environment variable was being ignored when compiling on Microsoft Windows.
### **ROCm Data Center Tool** (0.3.0)
#### Added
- Support for GPU partitions.
- `RDC_FI_GPU_BUSY_PERCENT` metric.
#### Changed
- Updated `rdc_field` to align with `rdc_bootstrap` for current metrics.
#### Resolved issues
- Fixed [ROCProfiler](https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.4.0/index.html) eval metrics and memory leaks.
### **ROCm SMI** (7.5.0)
#### Resolved issues
- Fixed partition enumeration. It now refers to the correct DRM Render and Card paths.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **ROCm Systems Profiler** (1.0.1)
#### Added
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
#### Resolved issues
* Fixed a build issue with Dyninst on GCC 13.
### **ROCr Runtime** (1.15.0)
#### Resolved issues
* Fixed a rare occurrence issue on AMD Instinct MI25, MI50, and MI100 GPUs, where the `SDMA` copies might start before the dependent Kernel finishes and could cause memory corruption.
## ROCm 6.4.0
See the [ROCm 6.4.0 release notes](https://rocm.docs.amd.com/en/docs-6.4.0/about/release-notes.html)
@@ -761,6 +896,18 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **ROCm Validation Suite** (1.1.0)
#### Added
* Configuration files for MI210.
* Support for OCP fp8 data type.
* GPU index-based CLI execution.
#### Changed
* JSON logging with updated schema.
### **rocPRIM** (3.4.0)
#### Added

View File

@@ -50,7 +50,7 @@ The following example shows how to use the repo tool to download the ROCm source
```bash
mkdir -p ~/ROCm/
cd ~/ROCm/
export ROCM_VERSION=6.4.0
export ROCM_VERSION=6.4.1
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
```
@@ -77,7 +77,7 @@ The Build time will reduce significantly if we limit the GPU Architecture/s agai
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
cd ~/WORKSPACE/
export ROCM_VERSION=6.4.0
export ROCM_VERSION=6.4.1
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
@@ -127,6 +127,7 @@ bash install-prerequisites.sh
export GPU_ARCHS="gfx942" # Example
export GPU_ARCHS="gfx940;gfx941;gfx942" # Example
cd ~/WORKSPACE/
# Pick and run build commands in the docker container:
# Build rocm-dev packages
make -f ROCm/tools/rocm-build/ROCm.mk -j ${NPROC:-$(nproc)} rocm-dev

1489
RELEASE.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.4.0"
<default revision="refs/tags/rocm-6.4.1"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -1,121 +1,129 @@
ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
Thrust,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0.25104,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat]_,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
Thrust,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.6, 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
16 RDNA4 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
17 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3 RDNA2 RDNA3
18 RDNA2 .. _gpu-support-compatibility-matrix-past-60: RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
19 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` .. _gpu-support-compatibility-matrix-past-60: gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
20 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1201 [#RDNA-OS-past-60]_ gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
21 gfx1200 [#RDNA-OS-past-60]_ gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
22 gfx1101 [#RDNA-OS-past-60]_ gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
23 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100 gfx908 gfx1100
24 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
25 FRAMEWORK SUPPORT gfx942 .. _framework-support-compatibility-matrix-past-60: gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
26 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` gfx90a 2.6, 2.5, 2.4, 2.3 gfx90a 2.4, 2.3, 2.2, 1.13 gfx90a 2.4, 2.3, 2.2, 1.13 gfx90a 2.4, 2.3, 2.2, 1.13 gfx90a 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 gfx90a 2.3, 2.2, 2.1, 2.0, 1.13 gfx90a 2.3, 2.2, 2.1, 2.0, 1.13 gfx90a 2.3, 2.2, 2.1, 2.0, 1.13 gfx90a 2.3, 2.2, 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a 2.1, 2.0, 1.13 gfx90a
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` gfx908 2.18.1, 2.17.1, 2.16.2 gfx908 2.17.0, 2.16.2, 2.15.1 gfx908 2.17.0, 2.16.2, 2.15.1 gfx908 2.17.0, 2.16.2, 2.15.1 gfx908 2.17.0, 2.16.2, 2.15.1 gfx908 2.16.1, 2.15.1, 2.14.1 gfx908 2.16.1, 2.15.1, 2.14.1 gfx908 2.16.1, 2.15.1, 2.14.1 gfx908 2.16.1, 2.15.1, 2.14.1 gfx908 2.15.0, 2.14.0, 2.13.1 gfx908 2.15.0, 2.14.0, 2.13.1 gfx908 2.15.0, 2.14.0, 2.13.1 gfx908 2.15.0, 2.14.0, 2.13.1 gfx908 2.14.0, 2.13.1, 2.12.1 gfx908 2.14.0, 2.13.1, 2.12.1 gfx908
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: 1.2 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
31 THIRD PARTY COMMS :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.18.1, 2.17.1, 2.16.2 .. _thirdpartycomms-support-compatibility-matrix-past-60: 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
32 `UCC <https://github.com/ROCm/ucc>`_ :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.35 >=1.3.0 0.4.35 >=1.3.0 0.4.31 >=1.3.0 0.4.31 >=1.3.0 0.4.31 >=1.3.0 0.4.31 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.3.0 0.4.26 >=1.2.0 0.4.26 >=1.2.0 0.4.26
33 `UCX <https://github.com/ROCm/ucx>`_ :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_ N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 N/A >=1.15.0 0.3.0.post0 >=1.14.1 N/A >=1.14.1 N/A >=1.14.1 N/A >=1.14.1 N/A >=1.14.1 N/A >=1.14.1 N/A
34 :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat]_ N/A N/A N/A N/A N/A 85f95ae N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
35 THIRD PARTY ALGORITHM :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_ N/A .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: 2.4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
36 Thrust `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.2 2.5.0 1.2 2.3.2 1.17.3 2.3.2 1.17.3 2.3.2 1.17.3 2.3.2 1.17.3 2.2.0 1.17.3 2.2.0 1.17.3 2.2.0 1.17.3 2.2.0 1.17.3 2.1.0 1.17.3 2.1.0 1.17.3 2.1.0 1.17.3 2.1.0 1.17.3 2.0.1 1.14.1 2.0.1 1.14.1
37 CUB 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
38
39 KMD & USER SPACE [#kfd_support-past-60]_ THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
40 KMD versions `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 6.4.x, 6.3.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x >=1.3.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x >=1.3.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x >=1.2.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x >=1.2.0
41 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
42 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
43 :doc:`Composable Kernel <composable_kernel:index>` THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
44 :doc:`MIGraphX <amdmigraphx:index>` Thrust 2.5.0 2.12.0 2.5.0 2.11.0 2.3.2 2.11.0 2.3.2 2.11.0 2.3.2 2.11.0 2.3.2 2.10.0 2.2.0 2.10.0 2.2.0 2.10.0 2.2.0 2.10.0 2.2.0 2.9.0 2.1.0 2.9.0 2.1.0 2.9.0 2.1.0 2.9.0 2.1.0 2.8.0 2.0.1 2.8.0 2.0.1
45 :doc:`MIOpen <miopen:index>` CUB 2.5.0 3.4.0 2.5.0 3.3.0 2.3.2 3.3.0 2.3.2 3.3.0 2.3.2 3.3.0 2.3.2 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.1.0 2.1.0 3.1.0 2.1.0 3.1.0 2.1.0 3.1.0 2.1.0 3.0.0 2.0.1 3.0.0 2.0.1
46 :doc:`MIVisionX <mivisionx:index>` 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
47 :doc:`rocAL <rocal:index>` KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60: 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0 2.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
48 :doc:`rocDecode <rocdecode:index>` :doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.10.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.8.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.8.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.8.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.8.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 0.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 0.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 0.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x N/A 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x N/A 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
49 :doc:`rocJPEG <rocjpeg:index>` 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
50 :doc:`rocPyDecode <rocpydecode:index>` ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60: 0.3.1 0.2.0 0.2.0 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A N/A
51 :doc:`RPP <rpp:index>` :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.9.10 1.1.0 1.9.1 1.1.0 1.9.1 1.1.0 1.9.1 1.1.0 1.9.1 1.1.0 1.8.0 1.1.0 1.8.0 1.1.0 1.8.0 1.1.0 1.8.0 1.1.0 1.5.0 1.1.0 1.5.0 1.1.0 1.5.0 1.1.0 1.5.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0
52 :doc:`MIGraphX <amdmigraphx:index>` 2.12.0 2.12.0 2.11.0 2.11.0 2.11.0 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
53 COMMUNICATION :doc:`MIOpen <miopen:index>` 3.4.0 .. _commlibs-support-compatibility-matrix-past-60: 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
54 :doc:`RCCL <rccl:index>` :doc:`MIVisionX <mivisionx:index>` 3.2.0 2.22.3 3.2.0 2.21.5 3.1.0 2.21.5 3.1.0 2.21.5 3.1.0 2.21.5 3.1.0 2.20.5 3.0.0 2.20.5 3.0.0 2.20.5 3.0.0 2.20.5 3.0.0 2.18.6 2.5.0 2.18.6 2.5.0 2.18.6 2.5.0 2.18.6 2.5.0 2.18.3 2.5.0 2.18.3 2.5.0
55 `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ :doc:`rocAL <rocal:index>` 2.2.0 2.0.0 2.2.0 N/A 2.1.0 N/A 2.1.0 N/A 2.1.0 N/A 2.1.0 N/A 2.0.0 N/A 2.0.0 N/A 2.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0
56 :doc:`rocDecode <rocdecode:index>` 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
57 MATH LIBS :doc:`rocJPEG <rocjpeg:index>` 0.8.0 .. _mathlibs-support-compatibility-matrix-past-60: 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
58 `half <https://github.com/ROCm/half>`_ :doc:`rocPyDecode <rocpydecode:index>` 0.3.1 1.12.0 0.3.1 1.12.0 0.2.0 1.12.0 0.2.0 1.12.0 0.2.0 1.12.0 0.2.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A
59 :doc:`hipBLAS <hipblas:index>` :doc:`RPP <rpp:index>` 1.9.10 2.4.0 1.9.10 2.3.0 1.9.1 2.3.0 1.9.1 2.3.0 1.9.1 2.3.0 1.9.1 2.2.0 1.8.0 2.2.0 1.8.0 2.2.0 1.8.0 2.2.0 1.8.0 2.1.0 1.5.0 2.1.0 1.5.0 2.1.0 1.5.0 2.1.0 1.5.0 2.0.0 1.4.0 2.0.0 1.4.0
60 :doc:`hipBLASLt <hipblaslt:index>` 0.12.0 0.10.0 0.10.0 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
61 :doc:`hipFFT <hipfft:index>` COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60: 1.0.18 1.0.17 1.0.17 1.0.17 1.0.17 1.0.16 1.0.15 1.0.15 1.0.14 1.0.14 1.0.14 1.0.14 1.0.14 1.0.13 1.0.13
62 :doc:`hipfort <hipfort:index>` :doc:`RCCL <rccl:index>` 2.22.3 0.6.0 2.22.3 0.5.1 2.21.5 0.5.1 2.21.5 0.5.0 2.21.5 0.5.0 2.21.5 0.4.0 2.20.5 0.4.0 2.20.5 0.4.0 2.20.5 0.4.0 2.20.5 0.4.0 2.18.6 0.4.0 2.18.6 0.4.0 2.18.6 0.4.0 2.18.6 0.4.0 2.18.3 0.4.0 2.18.3
63 :doc:`hipRAND <hiprand:index>` :doc:`rocSHMEM <rocshmem:index>` 2.0.0 2.12.0 2.0.0 2.11.1 N/A 2.11.1 N/A 2.11.1 N/A 2.11.0 N/A 2.11.1 N/A 2.11.0 N/A 2.11.0 N/A 2.11.0 N/A 2.10.16 N/A 2.10.16 N/A 2.10.16 N/A 2.10.16 N/A 2.10.16 N/A 2.10.16 N/A
64 :doc:`hipSOLVER <hipsolver:index>` 2.4.0 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.1 2.1.1 2.1.1 2.1.0 2.0.0 2.0.0
65 :doc:`hipSPARSE <hipsparse:index>` MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60: 3.2.0 3.1.2 3.1.2 3.1.2 3.1.2 3.1.1 3.1.1 3.1.1 3.1.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
66 :doc:`hipSPARSELt <hipsparselt:index>` `half <https://github.com/ROCm/half>`_ 1.12.0 0.2.3 1.12.0 0.2.2 1.12.0 0.2.2 1.12.0 0.2.2 1.12.0 0.2.2 1.12.0 0.2.1 1.12.0 0.2.1 1.12.0 0.2.1 1.12.0 0.2.1 1.12.0 0.2.0 1.12.0 0.2.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0 0.1.0 1.12.0
67 :doc:`rocALUTION <rocalution:index>` :doc:`hipBLAS <hipblas:index>` 2.4.0 3.2.2 2.4.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.1.1 2.1.0 3.1.1 2.1.0 3.1.1 2.1.0 3.1.1 2.1.0 3.0.3 2.0.0 3.0.3 2.0.0
68 :doc:`rocBLAS <rocblas:index>` :doc:`hipBLASLt <hipblaslt:index>` 0.12.1 4.4.0 0.12.0 4.3.0 0.10.0 4.3.0 0.10.0 4.3.0 0.10.0 4.3.0 0.10.0 4.2.4 0.8.0 4.2.1 0.8.0 4.2.1 0.8.0 4.2.0 0.8.0 4.1.2 0.7.0 4.1.2 0.7.0 4.1.0 0.7.0 4.1.0 0.7.0 4.0.0 0.6.0 4.0.0 0.6.0
69 :doc:`rocFFT <rocfft:index>` :doc:`hipFFT <hipfft:index>` 1.0.18 1.0.32 1.0.18 1.0.31 1.0.17 1.0.31 1.0.17 1.0.31 1.0.17 1.0.31 1.0.17 1.0.30 1.0.16 1.0.29 1.0.15 1.0.29 1.0.15 1.0.28 1.0.14 1.0.27 1.0.14 1.0.27 1.0.14 1.0.27 1.0.14 1.0.26 1.0.14 1.0.25 1.0.13 1.0.23 1.0.13
70 :doc:`rocRAND <rocrand:index>` :doc:`hipfort <hipfort:index>` 0.6.0 3.3.0 0.6.0 3.2.0 0.5.1 3.2.0 0.5.1 3.2.0 0.5.0 3.2.0 0.5.0 3.1.1 0.4.0 3.1.0 0.4.0 3.1.0 0.4.0 3.1.0 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.0 0.4.0 2.10.17 0.4.0
71 :doc:`rocSOLVER <rocsolver:index>` :doc:`hipRAND <hiprand:index>` 2.12.0 3.28.0 2.12.0 3.27.0 2.11.1 3.27.0 2.11.1 3.27.0 2.11.1 3.27.0 2.11.0 3.26.2 2.11.1 3.26.0 2.11.0 3.26.0 2.11.0 3.26.0 2.11.0 3.25.0 2.10.16 3.25.0 2.10.16 3.25.0 2.10.16 3.25.0 2.10.16 3.24.0 2.10.16 3.24.0 2.10.16
72 :doc:`rocSPARSE <rocsparse:index>` :doc:`hipSOLVER <hipsolver:index>` 2.4.0 3.4.0 2.4.0 3.3.0 2.3.0 3.3.0 2.3.0 3.3.0 2.3.0 3.3.0 2.3.0 3.2.1 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.1.2 2.1.1 3.1.2 2.1.1 3.1.2 2.1.1 3.1.2 2.1.0 3.0.2 2.0.0 3.0.2 2.0.0
73 :doc:`rocWMMA <rocwmma:index>` :doc:`hipSPARSE <hipsparse:index>` 3.2.0 1.7.0 3.2.0 1.6.0 3.1.2 1.6.0 3.1.2 1.6.0 3.1.2 1.6.0 3.1.2 1.5.0 3.1.1 1.5.0 3.1.1 1.5.0 3.1.1 1.5.0 3.1.1 1.4.0 3.0.1 1.4.0 3.0.1 1.4.0 3.0.1 1.4.0 3.0.1 1.3.0 3.0.0 1.3.0 3.0.0
74 :doc:`Tensile <tensile:src/index>` :doc:`hipSPARSELt <hipsparselt:index>` 0.2.3 4.43.0 0.2.3 4.42.0 0.2.2 4.42.0 0.2.2 4.42.0 0.2.2 4.42.0 0.2.2 4.41.0 0.2.1 4.41.0 0.2.1 4.41.0 0.2.1 4.41.0 0.2.1 4.40.0 0.2.0 4.40.0 0.2.0 4.40.0 0.1.0 4.40.0 0.1.0 4.39.0 0.1.0 4.39.0 0.1.0
75 :doc:`rocALUTION <rocalution:index>` 3.2.3 3.2.2 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.0 3.2.0 3.2.0 3.1.1 3.1.1 3.1.1 3.1.1 3.0.3 3.0.3
76 PRIMITIVES :doc:`rocBLAS <rocblas:index>` 4.4.0 .. _primitivelibs-support-compatibility-matrix-past-60: 4.4.0 4.3.0 4.3.0 4.3.0 4.3.0 4.2.4 4.2.1 4.2.1 4.2.0 4.1.2 4.1.2 4.1.0 4.1.0 4.0.0 4.0.0
77 :doc:`hipCUB <hipcub:index>` :doc:`rocFFT <rocfft:index>` 1.0.32 3.4.0 1.0.32 3.3.0 1.0.31 3.3.0 1.0.31 3.3.0 1.0.31 3.3.0 1.0.31 3.2.1 1.0.30 3.2.0 1.0.29 3.2.0 1.0.29 3.2.0 1.0.28 3.1.0 1.0.27 3.1.0 1.0.27 3.1.0 1.0.27 3.1.0 1.0.26 3.0.0 1.0.25 3.0.0 1.0.23
78 :doc:`hipTensor <hiptensor:index>` :doc:`rocRAND <rocrand:index>` 3.3.0 1.5.0 3.3.0 1.4.0 3.2.0 1.4.0 3.2.0 1.4.0 3.2.0 1.4.0 3.2.0 1.3.0 3.1.1 1.3.0 3.1.0 1.3.0 3.1.0 1.3.0 3.1.0 1.2.0 3.0.1 1.2.0 3.0.1 1.2.0 3.0.1 1.2.0 3.0.1 1.1.0 3.0.0 1.1.0 2.10.17
79 :doc:`rocPRIM <rocprim:index>` :doc:`rocSOLVER <rocsolver:index>` 3.28.0 3.4.0 3.28.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.2.2 3.26.2 3.2.0 3.26.0 3.2.0 3.26.0 3.2.0 3.26.0 3.1.0 3.25.0 3.1.0 3.25.0 3.1.0 3.25.0 3.1.0 3.25.0 3.0.0 3.24.0 3.0.0 3.24.0
80 :doc:`rocThrust <rocthrust:index>` :doc:`rocSPARSE <rocsparse:index>` 3.4.0 3.3.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.2.1 3.1.0 3.2.0 3.1.0 3.2.0 3.0.1 3.2.0 3.0.1 3.1.2 3.0.1 3.1.2 3.0.1 3.1.2 3.0.1 3.1.2 3.0.0 3.0.2 3.0.0 3.0.2
81 :doc:`rocWMMA <rocwmma:index>` 1.7.0 1.7.0 1.6.0 1.6.0 1.6.0 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
82 SUPPORT LIBS :doc:`Tensile <tensile:src/index>` 4.43.0 4.43.0 4.42.0 4.42.0 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
83 `hipother <https://github.com/ROCm/hipother>`_ 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
84 `rocm-core <https://github.com/ROCm/rocm-core>`_ PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60: 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
85 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ :doc:`hipCUB <hipcub:index>` 3.4.0 N/A [#ROCT-rocr-past-60]_ 3.4.0 N/A [#ROCT-rocr-past-60]_ 3.3.0 N/A [#ROCT-rocr-past-60]_ 3.3.0 N/A [#ROCT-rocr-past-60]_ 3.3.0 N/A [#ROCT-rocr-past-60]_ 3.3.0 20240607.5.7 3.2.1 20240607.5.7 3.2.0 20240607.4.05 3.2.0 20240607.1.4246 3.2.0 20240125.5.08 3.1.0 20240125.5.08 3.1.0 20240125.5.08 3.1.0 20240125.3.30 3.1.0 20231016.2.245 3.0.0 20231016.2.245 3.0.0
86 :doc:`hipTensor <hiptensor:index>` 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
87 SYSTEM MGMT TOOLS :doc:`rocPRIM <rocprim:index>` 3.4.0 .. _tools-support-compatibility-matrix-past-60: 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
88 :doc:`AMD SMI <amdsmi:index>` :doc:`rocThrust <rocthrust:index>` 3.3.0 25.3.0 3.3.0 24.7.1 3.3.0 24.7.1 3.3.0 24.7.1 3.3.0 24.7.1 3.3.0 24.6.3 3.1.1 24.6.3 3.1.0 24.6.3 3.1.0 24.6.2 3.0.1 24.5.1 3.0.1 24.5.1 3.0.1 24.5.1 3.0.1 24.4.1 3.0.1 23.4.2 3.0.0 23.4.2 3.0.0
89 :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
90 :doc:`rocminfo <rocminfo:index>` SUPPORT LIBS 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
91 :doc:`ROCm SMI <rocm_smi_lib:index>` `hipother <https://github.com/ROCm/hipother>`_ 6.4.43483 7.5.0 6.4.43482 7.4.0 6.3.42134 7.4.0 6.3.42134 7.4.0 6.3.42133 7.4.0 6.3.42131 7.3.0 6.2.41134 7.3.0 6.2.41134 7.3.0 6.2.41134 7.3.0 6.2.41133 7.2.0 6.1.40093 7.2.0 6.1.40093 7.0.0 6.1.40092 7.0.0 6.1.40091 6.0.2 6.1.32831 6.0.0 6.1.32830
92 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.4.1 1.1.0 6.4.0 1.1.0 6.3.3 1.1.0 6.3.2 1.1.0 6.3.1 1.1.0 6.3.0 1.0.60204 6.2.4 1.0.60202 6.2.2 1.0.60201 6.2.1 1.0.60200 6.2.0 1.0.60105 6.1.5 1.0.60102 6.1.2 1.0.60101 6.1.1 1.0.60100 6.1.0 1.0.60002 6.0.2 1.0.60000 6.0.0
93 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
94 PERFORMANCE TOOLS
95 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60: 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
96 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` :doc:`AMD SMI <amdsmi:index>` 25.4.2 3.1.0 25.3.0 3.0.0 24.7.1 3.0.0 24.7.1 3.0.0 24.7.1 3.0.0 24.7.1 2.0.1 24.6.3 2.0.1 24.6.3 2.0.1 24.6.3 2.0.1 24.6.2 N/A 24.5.1 N/A 24.5.1 N/A 24.5.1 N/A 24.4.1 N/A 23.4.2 N/A 23.4.2
97 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 1.0.0 0.3.0 0.1.2 0.3.0 0.1.1 0.3.0 0.1.0 0.3.0 0.1.0 0.3.0 1.11.2 0.3.0 1.11.2 0.3.0 1.11.2 0.3.0 1.11.2 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A 0.3.0
98 :doc:`ROCProfiler <rocprofiler:index>` :doc:`rocminfo <rocminfo:index>` 1.0.0 2.0.60400 1.0.0 2.0.60303 1.0.0 2.0.60302 1.0.0 2.0.60301 1.0.0 2.0.60300 1.0.0 2.0.60204 1.0.0 2.0.60202 1.0.0 2.0.60201 1.0.0 2.0.60200 1.0.0 2.0.60105 1.0.0 2.0.60102 1.0.0 2.0.60101 1.0.0 2.0.60100 1.0.0 2.0.60002 1.0.0 2.0.60000 1.0.0
99 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` :doc:`ROCm SMI <rocm_smi_lib:index>` 7.5.0 0.6.0 7.5.0 0.5.0 7.4.0 0.5.0 7.4.0 0.5.0 7.4.0 0.5.0 7.4.0 0.4.0 7.3.0 0.4.0 7.3.0 0.4.0 7.3.0 0.4.0 7.3.0 N/A 7.2.0 N/A 7.2.0 N/A 7.0.0 N/A 7.0.0 N/A 6.0.2 N/A 6.0.0
100 :doc:`ROCTracer <roctracer:index>` :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 4.1.60400 1.1.0 4.1.60303 1.1.0 4.1.60302 1.1.0 4.1.60301 1.1.0 4.1.60300 1.1.0 4.1.60204 1.0.60204 4.1.60202 1.0.60202 4.1.60201 1.0.60201 4.1.60200 1.0.60200 4.1.60105 1.0.60105 4.1.60102 1.0.60102 4.1.60101 1.0.60101 4.1.60100 1.0.60100 4.1.60002 1.0.60002 4.1.60000 1.0.60000
101
102 DEVELOPMENT TOOLS PERFORMANCE TOOLS
103 :doc:`HIPIFY <hipify:index>` :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 19.0.0.25104 1.4.0 18.0.0.25012 1.4.0 18.0.0.25012 1.4.0 18.0.0.24491 1.4.0 18.0.0.24455 1.4.0 18.0.0.24392 1.4.0 18.0.0.24355 1.4.0 18.0.0.24355 1.4.0 18.0.0.24232 1.4.0 17.0.0.24193 1.4.0 17.0.0.24193 1.4.0 17.0.0.24154 1.4.0 17.0.0.24103 1.4.0 17.0.0.24012 1.4.0 17.0.0.23483 1.4.0
104 :doc:`ROCm CMake <rocmcmakebuildtools:index>` :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.1.0 0.14.0 3.1.0 0.14.0 3.0.0 0.14.0 3.0.0 0.14.0 3.0.0 0.14.0 3.0.0 0.13.0 2.0.1 0.13.0 2.0.1 0.13.0 2.0.1 0.13.0 2.0.1 0.12.0 N/A 0.12.0 N/A 0.12.0 N/A 0.12.0 N/A 0.11.0 N/A 0.11.0 N/A
105 :doc:`ROCdbgapi <rocdbgapi:index>` :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.0.1 0.77.2 1.0.0 0.77.0 0.1.2 0.77.0 0.1.1 0.77.0 0.1.0 0.77.0 0.1.0 0.76.0 1.11.2 0.76.0 1.11.2 0.76.0 1.11.2 0.76.0 1.11.2 0.71.0 N/A 0.71.0 N/A 0.71.0 N/A 0.71.0 N/A 0.71.0 N/A 0.71.0 N/A
106 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` :doc:`ROCProfiler <rocprofiler:index>` 2.0.60401 15.2.0 2.0.60400 15.2.0 2.0.60303 15.2.0 2.0.60302 15.2.0 2.0.60301 15.2.0 2.0.60300 14.2.0 2.0.60204 14.2.0 2.0.60202 14.2.0 2.0.60201 14.2.0 2.0.60200 14.1.0 2.0.60105 14.1.0 2.0.60102 14.1.0 2.0.60101 14.1.0 2.0.60100 13.2.0 2.0.60002 13.2.0 2.0.60000
107 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.6.0 0.4.0 0.6.0 0.4.0 0.5.0 0.4.0 0.5.0 0.4.0 0.5.0 0.4.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A 0.3.0 N/A N/A N/A
108 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` :doc:`ROCTracer <roctracer:index>` 4.1.60401 2.0.4 4.1.60400 2.0.3 4.1.60303 2.0.3 4.1.60302 2.0.3 4.1.60301 2.0.3 4.1.60300 2.0.3 4.1.60204 2.0.3 4.1.60202 2.0.3 4.1.60201 2.0.3 4.1.60200 2.0.3 4.1.60105 2.0.3 4.1.60102 2.0.3 4.1.60101 2.0.3 4.1.60100 2.0.3 4.1.60002 2.0.3 4.1.60000
109
110 COMPILERS DEVELOPMENT TOOLS .. _compilers-support-compatibility-matrix-past-60:
111 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ :doc:`HIPIFY <hipify:index>` 19.0.0 N/A 19.0.0 N/A 18.0.0.25012 N/A 18.0.0.25012 N/A 18.0.0.24491 N/A 18.0.0.24455 N/A 18.0.0.24392 N/A 18.0.0.24355 N/A 18.0.0.24355 N/A 18.0.0.24232 0.5.0 17.0.0.24193 0.5.0 17.0.0.24193 0.5.0 17.0.0.24154 0.5.0 17.0.0.24103 0.5.0 17.0.0.24012 0.5.0 17.0.0.23483
112 :doc:`hipCC <hipcc:index>` :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 1.1.1 0.14.0 1.1.1 0.14.0 1.1.1 0.14.0 1.1.1 0.14.0 1.1.1 0.14.0 1.1.1 0.13.0 1.1.1 0.13.0 1.1.1 0.13.0 1.1.1 0.13.0 1.0.0 0.12.0 1.0.0 0.12.0 1.0.0 0.12.0 1.0.0 0.12.0 1.0.0 0.11.0 1.0.0 0.11.0
113 `Flang <https://github.com/ROCm/flang>`_ :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.2 19.0.0.25133 0.77.2 18.0.0.25012 0.77.0 18.0.0.25012 0.77.0 18.0.0.24491 0.77.0 18.0.0.24455 0.77.0 18.0.0.24392 0.76.0 18.0.0.24355 0.76.0 18.0.0.24355 0.76.0 18.0.0.24232 0.76.0 17.0.0.24193 0.71.0 17.0.0.24193 0.71.0 17.0.0.24154 0.71.0 17.0.0.24103 0.71.0 17.0.0.24012 0.71.0 17.0.0.23483 0.71.0
114 :doc:`llvm-project <llvm-project:index>` :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 19.0.0.25133 15.2.0 18.0.0.25012 15.2.0 18.0.0.25012 15.2.0 18.0.0.24491 15.2.0 18.0.0.24491 15.2.0 18.0.0.24392 14.2.0 18.0.0.24355 14.2.0 18.0.0.24355 14.2.0 18.0.0.24232 14.2.0 17.0.0.24193 14.1.0 17.0.0.24193 14.1.0 17.0.0.24154 14.1.0 17.0.0.24103 14.1.0 17.0.0.24012 13.2.0 17.0.0.23483 13.2.0
115 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.4.0 19.0.0.25133 0.4.0 18.0.0.25012 0.4.0 18.0.0.25012 0.4.0 18.0.0.24491 0.4.0 18.0.0.24491 0.4.0 18.0.0.24392 0.4.0 18.0.0.24355 0.4.0 18.0.0.24355 0.4.0 18.0.0.24232 0.4.0 17.0.0.24193 0.3.0 17.0.0.24193 0.3.0 17.0.0.24154 0.3.0 17.0.0.24103 0.3.0 17.0.0.24012 N/A 17.0.0.23483 N/A
116 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.0.4 2.0.4 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
117 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
118 :doc:`AMD CLR <hip:understand/amd_clr>` COMPILERS .. _compilers-support-compatibility-matrix-past-60: 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
119 :doc:`HIP <hip:index>` `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A 6.4.43482 N/A 6.3.42134 N/A 6.3.42134 N/A 6.3.42133 N/A 6.3.42131 N/A 6.2.41134 N/A 6.2.41134 N/A 6.2.41134 N/A 6.2.41133 N/A 6.1.40093 0.5.0 6.1.40093 0.5.0 6.1.40092 0.5.0 6.1.40091 0.5.0 6.1.32831 0.5.0 6.1.32830 0.5.0
120 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ :doc:`hipCC <hipcc:index>` 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.1.1 2.0.0 1.0.0 2.0.0 1.0.0 2.0.0 1.0.0 2.0.0 1.0.0 2.0.0 1.0.0 2.0.0 1.0.0
121 :doc:`ROCr Runtime <rocr-runtime:index>` `Flang <https://github.com/ROCm/flang>`_ 19.0.0.25184 1.15.0 19.0.0.25133 1.14.0 18.0.0.25012 1.14.0 18.0.0.25012 1.14.0 18.0.0.24491 1.14.0 18.0.0.24455 1.14.0 18.0.0.24392 1.14.0 18.0.0.24355 1.14.0 18.0.0.24355 1.13.0 18.0.0.24232 1.13.0 17.0.0.24193 1.13.0 17.0.0.24193 1.13.0 17.0.0.24154 1.13.0 17.0.0.24103 1.12.0 17.0.0.24012 1.12.0 17.0.0.23483
122 :doc:`llvm-project <llvm-project:index>` 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
123 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
124
125 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
126 :doc:`AMD CLR <hip:understand/amd_clr>` 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
127 :doc:`HIP <hip:index>` 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
128 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
129 :doc:`ROCr Runtime <rocr-runtime:index>` 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -23,127 +23,133 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "6.4.0", "6.3.3", "6.2.0"
:header: "ROCm Version", "6.4.1", "6.4.0", "6.3.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04
,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3"
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
,"SLES 15 SP6","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_","Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA
,RDNA4,,
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS]_,,
,gfx1200 [#RDNA-OS]_,,
,gfx1101 [#RDNA-OS]_,,
,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942 [#mi300_620]_
,gfx942,gfx942,gfx942
,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.20,1.17.3,1.17.3
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.31
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,85f95ae
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>`,N/A,2.4.0,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.17.3
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.5.0,2.3.2,2.2.0
CUB,2.5.0,2.3.2,2.2.0
Thrust,2.5.0,2.5.0,2.3.2
CUB,2.5.0,2.5.0,2.3.2
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x"
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.11.0,2.10.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.3.0,3.2.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.1.0,3.0.0
:doc:`rocAL <rocal:index>`,2.2.0,2.1.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.8.0,0.6.0
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.6.0,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.2.0,0.1.0
:doc:`RPP <rpp:index>`,1.9.10,1.9.1,1.8.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.11.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.3.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.1.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.1.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.8.0
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.6.0
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.2.0
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.1
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.20.5
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,N/A,N/A
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.3.0,2.2.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.0,0.10.0,0.8.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.17,1.0.14
:doc:`hipfort <hipfort:index>`,0.6.0,0.5.1,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.11.1,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.3.0,2.2.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.1.2,3.1.1
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.2,0.2.1
:doc:`rocALUTION <rocalution:index>`,3.2.2,3.2.1,3.2.0
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.3.0,4.2.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.31,1.0.28
:doc:`rocRAND <rocrand:index>`,3.3.0,3.2.0,3.1.0
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.27.0,3.26.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.3.0,3.2.0
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.6.0,1.5.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.42.0,4.41.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.0,0.10.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.17
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.5.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.1.2
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.2
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.2,3.2.1
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.4.0,4.3.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.31
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.28.0,3.27.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.3.0
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.6.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.42.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.3.0,3.2.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.4.0,1.3.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.3.0,3.2.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.0.1
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.3.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.4.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.4.0,3.3.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43482,6.3.42134,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.2.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,20240607.1.4246
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43482,6.3.42131
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.1,6.4.0,6.3.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
:doc:`AMD SMI <amdsmi:index>`,25.3.0,24.7.1,24.6.2
:doc:`AMD SMI <amdsmi:index>`,25.4.2,25.3.0,24.7.1
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.4.0,7.3.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.0.60200
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.5.0,7.4.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0
,,,
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.0.0,2.0.1
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.0,0.1.2,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60200
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.5.0,0.4.0
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60200
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.1.0,3.0.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.1,1.0.0,0.1.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60401,2.0.60400,2.0.60300
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.5.0
:doc:`ROCTracer <roctracer:index>`,4.1.60401,4.1.60400,4.1.60300
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,19.0.0.25133,18.0.0.25012,18.0.0.24232
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.13.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.0,0.76.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,14.2.0
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,18.0.0.24455
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.3,2.0.3
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.3
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25133,18.0.0.25012,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,19.0.0.25133,18.0.0.25012,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25133,18.0.0.25012,18.0.0.24232
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25184,19.0.0.25133,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,19.0.0.25184,19.0.0.25133,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25184,19.0.0.25133,18.0.0.24491
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43482,6.3.42134,6.2.41133
:doc:`HIP <hip:index>`,6.4.43482,6.3.42134,6.2.41133
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42131
:doc:`HIP <hip:index>`,6.4.43483,6.4.43482,6.3.42131
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.14.0,1.13.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.14.0
.. rubric:: Footnotes
@@ -151,8 +157,9 @@ compatibility and system requirements.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
.. _OS-kernel-versions:
@@ -170,7 +177,8 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 GA, 6.8 HWE", 2.35
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.5, 5.14+, 2.34
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14+, 2.34
, 9.5, 5.14+, 2.34
,9.4, 5.14+, 2.34
,9.3, 5.14+, 2.34
,,
@@ -229,5 +237,9 @@ Expand for full historical view of:
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#kfd_support-past-60] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#verl_compat] verl is only supported on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat] Stanford Megatron-LM is only supported on ROCm 6.3.0.
.. [#dgl_compat] DGL is only supported on ROCm 6.4.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.

View File

@@ -0,0 +1,255 @@
:orphan:
.. meta::
:description: Deep Graph Library (DGL) compatibility
:keywords: GPU, DGL compatibility
.. version-set:: rocm_version latest
********************************************************************************
DGL compatibility
********************************************************************************
Deep Graph Library `(DGL) <https://www.dgl.ai/>`_ is an easy-to-use, high-performance and scalable
Python package for deep learning on graphs. DGL is framework agnostic, meaning
if a deep graph model is a component in an end-to-end application, the rest of
the logic is implemented using PyTorch.
* ROCm support for DGL is hosted in the `https://github.com/ROCm/dgl <https://github.com/ROCm/dgl>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/dmlc/dgl <https://github.com/dmlc/dgl>`_ upstream repository.
* Use the prebuilt :ref:`Docker images <dgl-docker-compat>` with DGL, PyTorch, and ROCm preinstalled.
* See the :doc:`ROCm DGL installation guide <rocm-install-on-linux:install/3rd-party/dgl-install>`
to install and get started.
Supported devices
================================================================================
- **Officially Supported**: TF32 with AMD Instinct MI300X (through hipblaslt)
- **Partially Supported**: TF32 with AMD Instinct MI250X
.. _dgl-recommendations:
Use cases and recommendations
================================================================================
DGL can be used for Graph Learning, and building popular graph models like
GAT, GCN and GraphSage. Using these we can support a variety of use-cases such as:
- Recommender systems
- Network Optimization and Analysis
- 1D (Temporal) and 2D (Image) Classification
- Drug Discovery
Multiple use cases of DGL have been tested and verified.
However, a recommended example follows a drug discovery pipeline using the ``SE3Transformer``.
Refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_,
where you can search for DGL examples and best practices to optimize your training workflows on AMD GPUs.
Coverage includes:
- Single-GPU training/inference
- Multi-GPU training
.. _dgl-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `DGL images <https://hub.docker.com/r/rocm/dgl>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
Click the |docker-icon| to view the image on Docker Hub.
.. list-table:: DGL Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- DGL
- PyTorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-8ce2c3bcfaa137ab94a75f9e2ea711894748980f57417739138402a542dd5564"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-cf1683283b8eeda867b690229c8091c5bbf1edb9f52e8fb3da437c49a612ebe4"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-4834f178c3614e2d09e89e32041db8984c456d45dfd20286e377ca8635686554"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-88740a2c8ab4084b42b10c3c6ba984cab33dd3a044f479c6d7618e2b2cb05e69"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Key ROCm libraries for DGL
================================================================================
DGL on ROCm depends on specific libraries that affect its features and performance.
Using the DGL Docker container or building it with the provided docker file or a ROCm base image is recommended.
If you prefer to build it yourself, ensure the following dependencies are installed:
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- :version-ref:`"Composable Kernel" rocm_version`
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- :version-ref:`hipTensor rocm_version`
- Optimizes for high-performance tensor operations, such as contractions.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- :version-ref:`MIGraphX rocm_version`
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- :version-ref:`MIVisionX rocm_version`
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- :version-ref:`rocAL rocm_version`
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- :version-ref:`rocDecode rocm_version`
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- :version-ref:`rocJPEG rocm_version`
- Provides hardware-accelerated JPEG image decoding and encoding.
* - `RPP <https://github.com/ROCm/RPP>`_
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
Supported features
================================================================================
Many functions and methods available in DGL Upstream are also supported in DGL ROCm.
Instead of listing them all, support is grouped into the following categories to provide a general overview.
* DGL Base
* DGL Backend
* DGL Data
* DGL Dataloading
* DGL DGLGraph
* DGL Function
* DGL Ops
* DGL Sampling
* DGL Transforms
* DGL Utils
* DGL Distributed
* DGL Geometry
* DGL Mpops
* DGL NN
* DGL Optim
* DGL Sparse
Unsupported features
================================================================================
* Graphbolt
* Partial TF32 Support (MI250x only)
* Kineto/ ROCTracer integration
Unsupported functions
================================================================================
* ``more_nnz``
* ``format``
* ``multiprocess_sparse_adam_state_dict``
* ``record_stream_ndarray``
* ``half_spmm``
* ``segment_mm``
* ``gather_mm_idx_b``
* ``pgexplainer``
* ``sample_labors_prob``
* ``sample_labors_noprob``

View File

@@ -53,7 +53,7 @@ Use cases and recommendations
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys JAX-based
nanoGPT. Comparing how essential GPT components—such as self-attention
nanoGPT. Comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in JAX and JAX, also highlights
JAXs unique features.
@@ -97,7 +97,7 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
@@ -110,19 +110,19 @@ icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.12/images/sha256-4069398229078f3311128b6d276c6af377c7e97d3363d020b0bf7154fae619ca"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.12/images/sha256-7a0745a2a2758bdf86397750bac00e9086cbf67d170cfdbb08af73f7c7d18a6a"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.10/images/sha256-a137f901f91ce6c13b424c40a6cf535248d4d20fd36d5daf5eee0570190a4a11"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.10/images/sha256-5f9e8d6e6e69fdc9a1a3f2ba3b1234c3f46c53b7468538c07fd18b00899da54f"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
@@ -160,12 +160,14 @@ associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
.. _key_rocm_libraries:
Key ROCm libraries for JAX
================================================================================
JAX functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
The following ROCm libraries represent potential targets that could be utilized
by JAX on ROCm for various computational tasks. The actual libraries used will
depend on the specific implementation and operations performed.
.. list-table::
:header-rows: 1
@@ -173,345 +175,140 @@ feature set available to developers.
* - ROCm library
- Version
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
``jax.lax.dot_general``, operations like ``jax.numpy.dot``, which
involve vector and matrix computations and batch matrix multiplications
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- Matrix multiplication in ``jax.numpy.matmul`` or ``jax.lax.dot``, and
the XLA (Accelerated Linear Algebra) use hipBLASLt for optimized matrix
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
``jax.numpy.prod``, ``jax.numpy.max`` and ``jax.numpy.min``), prefix sum
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
Supported features
.. note::
This table shows ROCm libraries that could potentially be utilized by JAX. Not
all libraries may be used in every configuration, and the actual library usage
will depend on the specific operations and implementation details.
Supported data types and modules
===============================================================================
The following table maps the public JAX API modules to their supported
ROCm and JAX versions.
The following tables lists the supported public JAX API data types and modules.
.. list-table::
:header-rows: 1
* - Module
- Description
- As of JAX
- As of ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
- 5.0.0
* - ``jax.scipy``
- Provides GPU-accelerated and differentiable implementations of many
functions from the SciPy library, leveraging JAX's transformations
(e.g., ``grad``, ``jit``, ``vmap``).
- 0.1.56
- 5.0.0
* - ``jax.lax``
- A library of primitives operations that underpins libraries such as
``jax.numpy.`` Transformation rules, such as Jacobian-vector product
(JVP) and batching rules, are typically defined as transformations on
``jax.lax`` primitives.
- 0.1.57
- 5.0.0
* - ``jax.random``
- Provides a number of routines for deterministic generation of sequences
of pseudorandom numbers.
- 0.1.58
- 5.0.0
* - ``jax.sharding``
- Allows to define partitioning and distributing arrays across multiple
devices.
- 0.3.20
- 5.1.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
- 5.0.0
* - ``jax.nn``
- Contains common functions for neural network libraries.
- 0.1.56
- 5.0.0
* - ``jax.ops``
- Computes the minimum, maximum, sum or product within segments of an
array.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
components.
- 0.4.15
- 5.5.0
* - ``jax.example_libraries``
- Serves as a collection of example code and libraries that demonstrate
various capabilities of JAX.
- 0.1.74
- 5.0.0
* - ``jax.experimental``
- Namespace for experimental features and APIs that are in development or
are not yet fully stable for production use.
- 0.1.56
- 5.0.0
* - ``jax.lib``
- Set of internal tools and types for bridging between JAXs Python
frontend and its XLA backend.
- 0.4.6
- 5.3.0
* - ``jax_triton``
- Library that integrates the Triton deep learning compiler with JAX.
- jax_triton 0.2.0
- 6.2.4
jax.scipy module
-------------------------------------------------------------------------------
A SciPy-like API for scientific computing.
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
* - ``jax.scipy.fft``
- 0.1.71
- 5.0.0
* - ``jax.scipy.integrate``
- 0.4.15
- 5.5.0
* - ``jax.scipy.interpolate``
- 0.1.76
- 5.0.0
* - ``jax.scipy.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.ndimage``
- 0.1.56
- 5.0.0
* - ``jax.scipy.optimize``
- 0.1.57
- 5.0.0
* - ``jax.scipy.signal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.spatial.transform``
- 0.4.12
- 5.4.0
* - ``jax.scipy.sparse.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.special``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats``
- 0.1.56
- 5.0.0
jax.scipy.stats module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.beta``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.betabinom``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.binom``
- 0.4.14
- 5.4.0
* - ``jax.scipy.stats.cauchy``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.chi2``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.dirichlet``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.expon``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gamma``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gennorm``
- 0.3.15
- 5.2.0
* - ``jax.scipy.stats.geom``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.laplace``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.logistic``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.multinomial``
- 0.3.18
- 5.1.0
* - ``jax.scipy.stats.multivariate_normal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.nbinom``
- 0.1.72
- 5.0.0
* - ``jax.scipy.stats.norm``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.pareto``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.poisson``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.t``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.truncnorm``
- 0.4.0
- 5.3.0
* - ``jax.scipy.stats.uniform``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.vonmises``
- 0.4.2
- 5.3.0
* - ``jax.scipy.stats.wrapcauchy``
- 0.4.20
- 5.6.0
jax.extend module
-------------------------------------------------------------------------------
Modules for JAX extensions.
.. list-table::
:header-rows: 1
* - Module
- As of JAX
- As of ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
* - ``jax.extend.linear_util``
- 0.4.17
- 5.6.0
* - ``jax.extend.mlir``
- 0.4.26
- 5.6.0
* - ``jax.extend.random``
- 0.4.15
- 5.5.0
Unsupported JAX features
Supported data types
--------------------------------------------------------------------------------
The following GPU-accelerated JAX features are not supported by ROCm for
the listed supported JAX versions.
ROCm supports all the JAX data types of `jax.dtypes <https://docs.jax.dev/en/latest/jax.dtypes.html>`_
module, `jax.numpy.dtype <https://docs.jax.dev/en/latest/_autosummary/jax.numpy.dtype.html>`_
and `default_dtype <https://docs.jax.dev/en/latest/default_dtypes.html>`_ .
The ROCm supported data types in JAX are collected in the following table.
.. list-table::
:header-rows: 1
* - Feature
* - Data type
- Description
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
* - MOSAIC (GPU)
- Mosaic is a library of kernel-building abstractions for JAX's Pallas system
- Not Supported
* - ``bfloat16``
- 16-bit bfloat (brain floating point).
* - ``bool``
- Boolean.
* - ``complex128``
- 128-bit complex.
* - ``complex64``
- 64-bit complex.
* - ``float16``
- 16-bit (half precision) floating-point.
* - ``float32``
- 32-bit (single precision) floating-point.
* - ``float64``
- 64-bit (double precision) floating-point.
* - ``half``
- 16-bit (half precision) floating-point.
* - ``int16``
- Signed 16-bit integer.
* - ``int32``
- Signed 32-bit integer.
* - ``int64``
- Signed 64-bit integer.
* - ``int8``
- Signed 8-bit integer.
* - ``uint16``
- Unsigned 16-bit (word) integer.
* - ``uint32``
- Unsigned 32-bit (dword) integer.
* - ``uint64``
- Unsigned 64-bit (qword) integer.
* - ``uint8``
- Unsigned 8-bit (byte) integer.
.. note::
JAX data type support is effected by the :ref:`key_rocm_libraries` and it's
collected on :doc:`ROCm data types and precision support <rocm:reference/precision-support>`
page.
Supported modules
--------------------------------------------------------------------------------
For a complete and up-to-date list of JAX public modules (for example, ``jax.numpy``,
``jax.scipy``, ``jax.lax``), their descriptions, and usage, please refer directly to the
`official JAX API documentation <https://jax.readthedocs.io/en/latest/jax.html>`_.
.. note::
Since version 0.1.56, JAX has full support for ROCm, and the
:ref:`Known issues and important notes <jax_comp_known_issues>` section
contains details about limitations specific to the ROCm backend. The list of
JAX API modules is maintained by the JAX project and is subject to change.
Refer to the official Jax documentation for the most up-to-date information.

View File

@@ -95,7 +95,7 @@ Docker image compatibility
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
inventories were tested on `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -116,137 +116,122 @@ Click |docker-icon| to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-c76af9bfb1c25b0f40d4c29e8652105c57250bf018d23ff595b06bd79666fdd7"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-130536fdfceb374626a7bcb8d00b9d796ddfc3115677d51229e5b852d96b5ef4"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-f9d226135d51831c810dcb1251636ec61f85c65fcdda03e188c053a5d4f6585b"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-20a2e24b4738dc1f1a44a04f23827918b56c99f7e697e6fccb90e9c4fae8ca9b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-3490e74d4f43dcdb3351dd334108d1ccd47e5a687c0523a2424ac1bcdd3dd6dd"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-f09cb8ca39cc39222fb554060711f5c19130f7b4047aaf41fad4ba3ec470ca03"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-26c5dfffb4a54625884abca83166940f17dd27bc75f1b24f6e80fbcb7d4e9afb"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.11.9 <https://www.python.org/downloads/release/python-3119/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-a91c100d1fe608dae3eb7f60a751630363d4027ac3d077d428e92945204c338e"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-66a89ce6485bb887af74bb9bd76bb613ab9834a6b1374649ea7ae379883454a4"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-f378a24561fa6efc178b6dc93fc7d82e5b93653ecd59c89d4476674d29e1284d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-c716cf167e6e49893f11de03606ed37044153aca089e74ca615065c06877f86b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-2308dbd0e650b7bf8d548575cbb6e2bdc021f9386384ce570da16d58ee684d22"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-0434cbc9b07b2c26e39480d7447f676f9057a1054dcff00e0050c25a6eddbd3c"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-eefd2ab019728f91f94c5e6a9463cb0ea900b3011458d18fe5d88e50c0b57d86"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-688b1c0073092615fb98778d78b16191e506097ee116a2d3d2628b264d5d367b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-473643226ab0e93a04720b256ed772619878abf9c42b9f84828cefed522696fd"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Key ROCm libraries for PyTorch
@@ -387,24 +372,15 @@ feature set available to developers.
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported features
Supported modules and data types
================================================================================
This section maps GPU-accelerated PyTorch features to their supported ROCm and
PyTorch versions.
The following section outlines the supported data types, modules, and domain libraries available in PyTorch on ROCm.
torch
Supported data types
--------------------------------------------------------------------------------
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types and other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The tensor data type is specified using the ``dtype`` attribute or argument.
The tensor data type is specified using the ``dtype`` attribute or argument.
PyTorch supports many data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_
@@ -415,539 +391,154 @@ single data types:
* - Data type
- Description
- As of PyTorch
- As of ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
- 5.5
* - ``torch.float8_e5m2``
- 8-bit floating point, e5m2
- 2.3
- 5.5
* - ``torch.float16`` or ``torch.half``
- 16-bit floating point
- 0.1.6
- 2.0
* - ``torch.bfloat16``
- 16-bit floating point
- 1.6
- 2.6
* - ``torch.float32`` or ``torch.float``
- 32-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.float64`` or ``torch.double``
- 64-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.complex32`` or ``torch.chalf``
- PyTorch provides native support for 32-bit complex numbers
- 1.6
- 2.0
- 32-bit complex numbers
* - ``torch.complex64`` or ``torch.cfloat``
- PyTorch provides native support for 64-bit complex numbers
- 1.6
- 2.0
- 64-bit complex numbers
* - ``torch.complex128`` or ``torch.cdouble``
- PyTorch provides native support for 128-bit complex numbers
- 1.6
- 2.0
- 128-bit complex numbers
* - ``torch.uint8``
- 8-bit integer (unsigned)
- 0.1.12_2
- 2.0
* - ``torch.uint16``
- 16-bit integer (unsigned)
- 2.3
- Not natively supported
- 16-bit integer (unsigned);
Not natively supported in ROCm
* - ``torch.uint32``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
- 32-bit integer (unsigned);
Not natively supported in ROCm
* - ``torch.uint64``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
- 64-bit integer (unsigned);
Not natively supported in ROCm
* - ``torch.int8``
- 8-bit integer (signed)
- 1.12
- 5.0
* - ``torch.int16`` or ``torch.short``
- 16-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int32`` or ``torch.int``
- 32-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int64`` or ``torch.long``
- 64-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.bool``
- Boolean
- 1.2
- 2.0
* - ``torch.quint8``
- Quantized 8-bit integer (unsigned)
- 1.8
- 5.0
* - ``torch.qint8``
- Quantized 8-bit integer (signed)
- 1.8
- 5.0
* - ``torch.qint32``
- Quantized 32-bit integer (signed)
- 1.8
- 5.0
* - ``torch.quint4x2``
- Quantized 4-bit integer (unsigned)
- 1.8
- 5.0
.. note::
Unsigned types except ``uint8`` have limited support in eager mode. They
Unsigned types, except ``uint8``, have limited support in eager mode. They
primarily exist to assist usage with ``torch.compile``.
See :doc:`ROCm precision support <rocm:reference/precision-support>` for the
native hardware support of data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
computations, memory management, and efficient execution of tensor operations,
leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Performs tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance. Events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
- Functions to manage and inspect memory usage like
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Returns a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- Set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
* - ``torch.cuda.CUDAGraph``
- Graphs capture sequences of GPU operations to minimize kernel launch
overhead and improve performance.
- 1.10.0
- 5.3
* - TunableOp
- A mechanism that allows certain operations to be more flexible and
optimized for performance. It enables automatic tuning of kernel
configurations and other settings to achieve the best possible
performance based on the specific hardware (GPU) and workload.
- 2.0
- 5.4
* - NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.8.0
- ❌
* - Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.13.0
- ❌
* - Jiterator (beta)
- Jiterator allows asynchronous data streaming into computation streams
during training loops.
- 1.13.0
- 5.2
.. Need to validate and extend.
torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of ROCm or CUDA operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the ROCm or CUDA environment.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
- 5.0
* - ``matmul.allow_tf32``
- Enables or disables the use of TensorFloat-32 (TF32) precision for
faster matrix multiplications on GPUs with Tensor Cores.
- 1.10.0
- ❌
* - ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions (e.g., with fp16 accumulation type) are
allowed with fp16 GEMMs.
- 2.0
- ❌
* - ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
- ❌
* - ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
- ❌
* - ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
- ❌
* - ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
- ❌
* - ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
- ❌
.. Need to validate and extend.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported ``torch`` options include:
.. list-table::
:header-rows: 1
* - Option
- Description
- As of PyTorch
- As of ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
- 1.12.0
- ❌
* - ``deterministic``
- A bool that, if True, causes cuDNN to only use deterministic
convolution algorithms.
- 1.12.0
- 6.0
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch automates the process of using both 16-bit (half-precision, float16) and
32-bit (single-precision, float32) floating-point types in model training and
inference.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - Autocasting
- Autocast instances serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss by a scale factor and invokes a backward pass on the scaled
loss. The same factor then scales gradients flowing backward through
the network. In other words, gradient values have a larger magnitude so
that they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
- These ops always go through autocasting whether they are invoked as part
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
functions are exposed in multiple namespaces, they go through
autocasting regardless of the namespace.
- 1.9
- 2.5
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
The Distributed Library feature in PyTorch provides tools and APIs for building
and running distributed machine learning workflows. It allows training models
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - TensorPipe
- A point-to-point communication library integrated into
PyTorch for distributed training. It handles tensor data transfers
efficiently between different processes or devices, including those on
separate machines.
- 1.8
- 5.4
* - Gloo
- Designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
- 1.0
- 2.0
torch.compiler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
enables acceleration of both forwards and backwards pass using
``TorchInductor``.
- 2.0
- 5.3
* - ``torch.compiler`` (TorchInductor)
- The default ``torch.compile`` deep learning compiler that generates fast
code for multiple accelerators and backends. You need to use a backend
compiler to make speedups through ``torch.compile`` possible. For AMD,
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
- 2.0
- 5.3
torchaudio
Supported modules
--------------------------------------------------------------------------------
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
For a complete and up-to-date list of PyTorch core modules (for example., ``torch``,
``torch.nn``, ``torch.cuda``, ``torch.backends.cuda`` and
``torch.backends.cudnn``), their descriptions, and usage, please refer directly
to the `official PyTorch documentation <https://pytorch.org/docs/stable/index.html>`_.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to
explicitly move audio data (waveform tensor) to GPU using ``.to('cuda')``.
Core PyTorch functionality on ROCm includes tensor operations, neural network
layers, automatic differentiation, distributed training, mixed-precision
training, compilation features, and domain-specific libraries for audio, vision,
text processing, and more.
The following ``torchaudio`` features are GPU-accelerated.
Supported domain libraries
--------------------------------------------------------------------------------
PyTorch offers specialized `domain libraries <https://pytorch.org/domains/>`_ with
GPU acceleration that build on its core features to support specific application
areas. The table below lists the PyTorch domain libraries that are compatible
with ROCm.
.. list-table::
:header-rows: 1
* - Feature
* - Library
- Description
- As of torchaudio version
- As of ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate a spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generates the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
- Extract of MFCC features.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resamples a signal from one frequency to another.
- 0.9.0
- 4.5
torchvision
--------------------------------------------------------------------------------
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
- Audio and signal processing library for PyTorch. Provides utilities for
audio I/O, signal and data processing functions, datasets, model
implementations, and application components for audio and speech
processing tasks.
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provides datasets, model architectures, and common image transformations for
computer vision.
**Note:** To ensure GPU-acceleration with ``torchaudio.transforms``,
you need to explicitly move audio data (waveform tensor) to GPU using
``.to('cuda')``.
The following ``torchvision`` features are GPU-accelerated.
* - `torchtune <https://docs.pytorch.org/torchtune/stable/index.html>`_
- PyTorch-native library designed for fine-tuning large language models
(LLMs). Provides supports the full fine-tuning workflow and offers
compatibility with popular production inference systems.
.. list-table::
:header-rows: 1
**Note:** Only official release exists.
* - Feature
- Description
- As of torchvision version
- As of ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
- 0.2.0
- 4.0
* - ``torchvision.ops``
- GPU-accelerated operations for object detection and segmentation tasks.
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
``box_convert``.
- 0.6.0
- 3.3
* - ``torchvision.models`` with ``.to('cuda')``
- ``torchvision`` provides several pre-trained models (ResNet, Faster
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
training.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Enables video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3
* - `torchvision <https://docs.pytorch.org/vision/stable/index.html>`_
- Computer vision library that is part of the PyTorch project. Provides
popular datasets, model architectures, and common image transformations
for computer vision applications.
torchtext
--------------------------------------------------------------------------------
* - `torchtext <https://docs.pytorch.org/text/stable/index.html>`_
- Text processing library for PyTorch. Provides data processing utilities
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
utilities for processing and working with text data in PyTorch, including
tokenization, vocabulary management, and text embeddings. torchtext supports
preprocessing pipelines and integration with PyTorch models, simplifying the
implementation of natural language processing (NLP) tasks.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
To leverage GPU acceleration in torchtext, you need to move tensors
explicitly to the GPU using ``.to('cuda')``.
* - `torchdata <https://docs.pytorch.org/data/beta/index.html>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* - `torchrec <https://docs.pytorch.org/torchrec/>`_
- PyTorch domain library for common sparsity and parallelism primitives
needed for large-scale recommender systems, enabling authors to train
models with large embedding tables shared across many GPUs.
* Only official release exists.
**Note:** ``torchrec`` does not implement ROCm-specific kernels. ROCm
acceleration is provided through the underlying PyTorch framework and
ROCm library integration.
torchtune
--------------------------------------------------------------------------------
* - `torchserve <https://docs.pytorch.org/serve/>`_
- Performant, flexible and easy-to-use tool for serving PyTorch models in
production, providing features for model management, batch processing,
and scalable deployment.
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
**Note:** `torchserve <https://docs.pytorch.org/serve/>`_ is no longer
actively maintained. Last official release is sent out with PyTorch 2.4.
* Usage: Enabling developers to fine-tune ROCm PyTorch solutions.
* - `torchrl <https://docs.pytorch.org/rl/stable/index.html>`_
- Open-source, Python-first Reinforcement Learning library for PyTorch
with a focus on high modularity and good runtime performance, providing
low and high-level RL abstractions and reusable functionals for cost
functions, returns, and data processing.
* Only official release exists.
**Note:** Only official release exists.
torchserve
--------------------------------------------------------------------------------
* - `tensordict <https://docs.pytorch.org/tensordict/stable/index.html>`_
- Dictionary-like class that simplifies operations on batches of tensors,
enhancing code readability, compactness, and modularity by abstracting
tailored operations and reducing errors through automatic operation
dispatching.
The `torchserve <https://pytorch.org/serve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
torchrec
--------------------------------------------------------------------------------
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
================================================================================
The following GPU-accelerated PyTorch features are not supported by ROCm for
the listed supported PyTorch versions.
.. list-table::
:widths: 30, 60, 10
:header-rows: 1
* - Feature
- Description
- As of PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
- A bool that controls whether TensorFloat-32 tensor cores may be used in
matrix multiplications.
- 1.7
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.7.0
* - ``torch.cuda`` / Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.8.0
* - ``torch-tensorrt``
- Integrate TensorRT library for optimizing and deploying PyTorch models.
ROCm does not have equialent library for TensorRT.
- 1.9.0
* - ``torch.backends`` / ``cudnn.allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
- 1.10.0
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions with fp16 accumulation type are
allowed with fp16 GEMMs.
- 2.0
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
- Flash attention backend for SDPA to accelerate attention computation in
transformer-based models.
- 2.0
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
* - Dynamic parallelism
- PyTorch itself does not directly expose dynamic parallelism as a core
feature. Dynamic parallelism allow GPU threads to launch additional
threads which can be reached using custom operations via the
``torch.utils.cpp_extension`` module.
- Not a core feature
* - Unified memory support in PyTorch
- Unified Memory is not directly exposed in PyTorch's core API, it can be
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
**Note:** Only official release exists.

View File

@@ -0,0 +1,100 @@
:orphan:
.. meta::
:description: Stanford Megatron-LM compatibility
:keywords: Stanford, Megatron-LM, compatibility
.. version-set:: rocm_version latest
********************************************************************************
Stanford Megatron-LM compatibility
********************************************************************************
Stanford Megatron-LM is a large-scale language model training framework developed by NVIDIA `https://github.com/NVIDIA/Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_. It is
designed to train massive transformer-based language models efficiently by model and data parallelism.
* ROCm support for Stanford Megatron-LM is hosted in the official `https://github.com/ROCm/Stanford-Megatron-LM <https://github.com/ROCm/Stanford-Megatron-LM>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <megatron-lm-docker-compat>` with ROCm, PyTorch, and Megatron-LM preinstalled.
* See the :doc:`ROCm Stanford Megatron-LM installation guide <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>` to install and get started.
.. note::
Stanford Megatron-LM is supported on ROCm 6.3.0.
Supported Devices
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210X
Supported models and features
================================================================================
This section details models & features that are supported by the ROCm version on Stanford Megatron-LM.
Models:
* Bert
* GPT
* T5
* ICT
Features:
* Distributed Pre-training
* Activation Checkpointing and Recomputation
* Distributed Optimizer
* Mixture-of-Experts
.. _megatron-lm-recommendations:
Use cases and recommendations
================================================================================
See the `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs blog <https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`_ post
to leverage the ROCm platform for pre-training by using the Stanford Megatron-LM framework of pre-processing datasets on AMD GPUs.
Coverage includes:
* Single-GPU pre-training
* Multi-GPU pre-training
.. _megatron-lm-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `Stanford Megatron-LM images <https://hub.docker.com/r/rocm/megatron-lm>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Megatron-LM version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- Stanford Megatron-LM
- PyTorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/stanford-megatron-lm/stanford-megatron-lm85f95ae_rocm6.3.0_ubuntu24.04_py3.12_pytorch2.4.0/images/sha256-070556f078be10888a1421a2cb4f48c29f28b02bfeddae02588d1f7fc02a96a6"><i class="fab fa-docker fa-lg"></i></a>
- `85f95ae <https://github.com/stanford-futuredata/Megatron-LM/commit/85f95aef3b648075fe6f291c86714fdcbd9cd1f5>`_
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click
validated for `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -73,82 +73,122 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-dev/images/sha256-fa9cf5fa6c6079a7118727531ccd0056c6e3224a42c3d6e78a49e7781daafff4"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-runtime/images/sha256-14addca4b92a47c806b83ebaeed593fc6672cd99f0017ed8dad759fe72ed0309"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.18-runtime/images/sha256-d14d8c4989e7c9a60f4e72461b9e349de72347c6162dcd6897e6f4f80ffbb440"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-dev/images/sha256-f5e151060df04ff5fb59f5604b49cd371931bbe75b06aec9fe7781397c4be0ce"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-dev/images/sha256-081e5bd6615a5dc17247ebd2ccc26895c3feeff086720400fa39b477e60a77c0"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-runtime/images/sha256-5cd4c03fdb1036570c0d4929da60a65c4466998dc80f1dc8a5a0b173eae017fb"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-runtime/images/sha256-bf369637378264f4af6ddad5ca8b8611d3e372ffbea9ab7a06f1e122f0a0867b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-dev/images/sha256-b3add80e374a2db2d1088d746e740afa89d439aca02cacba959ad298f5cd2b3f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-dev/images/sha256-5a502008c50d0b6508e6027f911bdff070a7493700ae064bed74e1d22b91ed50"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-runtime/images/sha256-3a244f026c32177eff7958ffbad390de85b438b2b48b455cc39f15d70fa1270d"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-runtime/images/sha256-1ee5dfffceb71ac66617ada33de3a10de0cb74199cc4b82441192e5e92fa2ddf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.10 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-dev/images/sha256-e0cecdfacb59169335049983cdab6da578c209bb9f4d08aad97e184ae59171a6"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-dev/images/sha256-109218ad92bfae83bbd2710475f7502166e1ed54ca0b9748a9cbc3f5a1d75af1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-runtime/images/sha256-6f43de12f7eb202791b698ac51d28b72098de90034dbcd48486629b0125f7707"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-runtime/images/sha256-5d78bd5918d394f92263daa2990e88d695d27200dd90ed83ec64d20c7661c9c1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-dev/images/sha256-b09b1ad921c09c687b7c916141051e9fcf15539a5686e5aa67c689195a522719"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-runtime/images/sha256-20dbd824e85558abfe33fc9283cc547d88cde3c623fe95322743a5082f883a64"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377>`__
- dev
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-runtime/images/sha256-a94150ffb81365234ebfa34e764db5474bc6ab7d141b56495eac349778dafcf3"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
Critical ROCm libraries for TensorFlow
===============================================================================

View File

@@ -0,0 +1,85 @@
:orphan:
.. meta::
:description: verl compatibility
:keywords: GPU, verl compatibility
.. version-set:: rocm_version latest
*******************************************************************************
verl compatibility
*******************************************************************************
Volcano Engine Reinforcement Learning for LLMs (verl) is a reinforcement learning framework designed for large language models (LLMs).
verl offers a scalable, open-source fine-tuning solution optimized for AMD Instinct GPUs with full ROCm support.
* See the `verl documentation <https://verl.readthedocs.io/en/latest/>`_ for more information about verl.
* The official verl GitHub repository is `https://github.com/volcengine/verl <https://github.com/volcengine/verl>`_.
* Use the AMD-validated :ref:`Docker images <verl-docker-compat>` with ROCm and verl preinstalled.
* See the :doc:`ROCm verl installation guide <rocm-install-on-linux:install/3rd-party/verl-install>` to get started.
.. note::
verl is supported on ROCm 6.2.0.
.. _verl-recommendations:
Use cases and recommendations
================================================================================
The benefits of verl in large-scale reinforcement leaning from human feedback (RLHF) are discussed in the `Reinforcement Learning from Human Feedback on AMD GPUs with verl and ROCm Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`_ blog.
.. _verl-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm verl Docker images <https://hub.docker.com/r/rocm/verl>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated inventories represent the latest verl version from the official Docker Hub. The Docker images have been validated for `ROCm 6.2.0 <https://repo.radeon.com/rocm/apt/6.2/>`_.
.. list-table::
:header-rows: 1
* - Docker image
- verl
- Linux
- Pytorch
- Python
- vllm
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/verl/verl-0.3.0.post0_rocm6.2_vllm0.6.3/images/sha256-cbe423803fd7850448b22444176bee06f4dcf22cd3c94c27732752d3a39b04b2"><i class="fab fa-docker fa-lg"></i> rocm/verl</a>
- `0.3.0post0 <https://github.com/volcengine/verl/releases/tag/v0.3.0.post0>`_
- Ubuntu 20.04
- `2.5.0 <https://download.pytorch.org/whl/cu118/torch-2.5.0%2Bcu118-cp39-cp39-linux_x86_64.whl#sha256=1ee24b267418c37b297529ede875b961e382c1c365482f4142af2398b92ed127>`_
- `3.9.19 <https://www.python.org/downloads/release/python-3919/>`_
- `0.6.4 <https://github.com/vllm-project/vllm/releases/tag/v0.6.4>`_
Supported features
===============================================================================
The following table shows verl and ROCm support for GPU-accelerated modules.
.. list-table::
:header-rows: 1
* - Module
- Description
- verl version
- ROCm version
* - ``FSDP``
- Training engine
- 0.3.0.post0
- 6.2
* - ``vllm``
- Inference engine
- 0.3.0.post0
- 6.2

View File

@@ -8,7 +8,7 @@ MI300 and MI200 series performance counters and metrics
This document lists and describes the hardware performance counters and derived metrics available
for the AMD Instinct™ MI300 and MI200 GPU. You can also access this information using the
:doc:`ROCProfiler tool <rocprofiler:rocprofv1>`.
:doc:`ROCprofiler-SDK <rocprofiler-sdk:how-to/using-rocprofv3>`.
MI300 and MI200 series performance counters
===============================================================

View File

@@ -34,15 +34,15 @@ project = "ROCm Documentation"
project_path = os.path.abspath(".").replace("\\", "/")
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "6.4.0"
release = "6.4.0"
version = "6.4.1"
release = "6.4.1"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-04-11"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-05-07"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -51,14 +51,28 @@ article_pages = [
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v24.12-dev", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.3", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.3", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/overview", "os": ["linux"]},
@@ -67,11 +81,20 @@ article_pages = [
{"file": "how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/pytorch-inference-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/vllm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.4.3", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.6.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.6.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.7.3-20250325", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.3-20250415", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.5-20250513", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.5-20250521", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.0.1-20250605", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.0.1-20250702", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
@@ -127,6 +150,7 @@ html_theme_options = {"link_main_doc": False}
redirects = {"reference/openmp/openmp": "../../about/compatibility/openmp.html"}
numfig = False
suppress_warnings = ["autosectionlabel.*"]
html_context = {
"project_path" : {project_path},

View File

@@ -0,0 +1,159 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.7.3_20250325
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640
rocm_version: 6.3.1
vllm_version: 0.7.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,152 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,152 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250513
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4
rocm_version: 6.3.1
vllm_version: 0.8.5
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -0,0 +1,167 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250521
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11
rocm_version: 6.3.1
vllm_version: 0.8.5 (0.8.6.dev315+g91a560098.rocm631)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -0,0 +1,162 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.0.1_20250605
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.0.1_20250605/images/sha256-f48beeb3d72663a93c77211eb45273d564451447c097e060befa713d565fa36c
rocm_version: 6.4.1
vllm_version: 0.9.0.1 (0.9.0.2.dev108+g71faa1880.rocm641)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -0,0 +1,163 @@
vllm_benchmark:
unified_docker:
latest:
# TODO: update me
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.1_20250702
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250702/images/sha256-45068a2079cb8df554ed777141bf0c67d6627c470a897256e60c9f262677faab
rocm_version: 6.4.1
vllm_version: 0.9.1 (0.9.2.dev206+gb335519f2.rocm641)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -23,3 +23,19 @@ pytorch_inference_benchmark:
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/chaidiscovery/chai-1
precision: float16
- group: Mochi Video
tag: mochi
models:
- model: Mochi 1
mad_tag: pyt_mochi_video_inference
model_repo: genmo/mochi-1-preview
url: https://huggingface.co/genmo/mochi-1-preview
precision: float16
- group: Wan2.1
tag: wan
models:
- model: Wan2.1
mad_tag: pyt_wan2.1_inference
model_repo: Wan-AI/Wan2.1-T2V-14B
url: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
precision: bfloat16

View File

@@ -1,14 +1,15 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
# TODO: update me
pull_tag: rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250715/images/sha256-4a429705fa95a58f6d20aceab43b1b76fa769d57f32d5d28bd3f4e030e2a78ea
rocm_version: 6.4.1
vllm_version: 0.9.1 (0.9.2.dev364+gb432b7a28.rocm641)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Llama
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
@@ -26,11 +27,6 @@ vllm_benchmark:
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
@@ -56,7 +52,7 @@ vllm_benchmark:
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
@@ -108,7 +104,7 @@ vllm_benchmark:
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
@@ -121,7 +117,7 @@ vllm_benchmark:
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
@@ -150,3 +146,18 @@ vllm_benchmark:
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

View File

@@ -0,0 +1,60 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.6_py312
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.6_py312/images/sha256-482ff906532285bceabdf2bda629bd32cb6174d2d07f4243a736378001b28df0
components:
ROCm: 6.4.1
PyTorch: 2.8.0a0+git7d205b2
Python: 3.12
Transformer Engine: 2.1.0.dev0+8c4a512
hipBLASLt: 393e413
Triton: 3.3.0
RCCL: 2.23.4.7a84c5d
doc_name: Ubuntu 24.04 + Python 3.12
- pull_tag: rocm/megatron-lm:v25.6_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.6_py310/images/sha256-9627bd9378684fe26cb1a10c7dd817868f553b33402e49b058355b0f095568d6
components:
ROCm: 6.4.1
PyTorch: 2.8.0a0+git7d205b2
Python: "3.10"
Transformer Engine: 2.1.0.dev0+8c4a512
hipBLASLt: 393e413
Triton: 3.3.0
RCCL: 2.23.4.7a84c5d
doc_name: Ubuntu 22.04 + Python 3.10
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,29 @@
megatron-lm_benchmark:
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy

View File

@@ -0,0 +1,120 @@
unified_docker:
latest:
pull_tag: rocm/pytorch-training:v25.6
docker_hub_url: https://hub.docker.com/r/rocm/pytorch-training/tags
rocm_version: 6.4.1
pytorch_version: 2.8.0a0+git7d205b2
python_version: 3.10.17
transformer_engine_version: 1.14.0+2f85f5f2
flash_attention_version: 3.0.0.post1
hipblaslt_version: 0.15.0-8c6919d
triton_version: 3.3.0
model_groups:
- group: Pre-training
tag: pre-training
models:
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain]
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]
- group: Fine-tuning
tag: fine-tuning
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora, HF_finetune_lora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora, HF_finetune_lora]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@@ -17,6 +17,9 @@ features for these ROCm-enabled deep learning frameworks.
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
* :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
* :doc:`verl compatibility <../compatibility/ml-compatibility/verl-compatibility>`
* :doc:`Stanford Megatron-LM compatibility <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`
* :doc:`DGL compatibility <../compatibility/ml-compatibility/dgl-compatibility>`
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
@@ -29,6 +32,9 @@ See the installation instructions to get started.
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
* :doc:`verl for ROCm <rocm-install-on-linux:install/3rd-party/verl-install>`
* :doc:`Stanford Megatron-LM for ROCm <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>`
* :doc:`DGL for ROCm <rocm-install-on-linux:install/3rd-party/dgl-install>`
.. note::

View File

@@ -7,21 +7,21 @@ AMD Instinct MI300X performance guides
**************************************
The following performance guides provide essential guidance on the necessary
steps to properly :doc:`configure your system for AMD Instinct™ MI300X
accelerators <../system-optimization/mi300x>`. They include detailed
instructions on system settings and application :doc:`workload tuning
<../rocm-for-ai/inference-optimization/workload>` to help you
leverage the maximum capabilities of these accelerators and achieve superior
performance.
steps to properly `configure your system for AMD Instinct™ MI300X accelerators
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
They include detailed instructions on system settings and application
:doc:`workload tuning </how-to/rocm-for-ai/inference-optimization/workload>` to
help you leverage the maximum capabilities of these accelerators and achieve
superior performance.
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__
covers essential system settings and system management practices to configure
your AMD Instinct MI300X system for performance.
* :doc:`../rocm-for-ai/inference-optimization/workload` covers steps to
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload` covers steps to
optimize the performance of AMD Instinct MI300X series accelerators for HPC
and deep learning operations.
* :doc:`../rocm-for-ai/inference/vllm-benchmark` introduces a preconfigured
* :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm` introduces a preconfigured
environment for LLM inference, designed to help you test performance with
popular models on AMD Instinct MI300X series accelerators.

View File

@@ -24,5 +24,3 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`Fine-tuning and inference <fine-tuning-and-inference>` using a
:doc:`single-accelerator <single-gpu-fine-tuning-and-inference>` or
:doc:`multi-accelerator <multi-gpu-fine-tuning-and-inference>` system.

View File

@@ -6,7 +6,7 @@
Use ROCm for AI
**************************
ROCm is an open-source software platform that enables high-performance computing and machine learning applications. It features the ability to accelerate training, fine-tuning, and inference for AI application development. With ROCm, you can access the full power of AMD GPUs, which can significantly improve the performance and efficiency of AI workloads.
ROCm is an open-source software platform that enables high-performance computing and machine learning applications. It features the ability to accelerate training, fine-tuning, and inference for AI application development. With ROCm, you can access the full power of AMD GPUs, which can significantly improve the performance and efficiency of AI workloads.
You can use ROCm to perform distributed training, which enables you to train models across multiple GPUs or nodes simultaneously. Additionally, ROCm supports mixed-precision training, which can help reduce the memory and compute requirements of training workloads. For fine-tuning, ROCm provides access to various algorithms and optimization techniques. In terms of inference, ROCm provides several techniques that can help you optimize your models for deployment, such as quantization, GEMM tuning, and optimization with composable kernel.

View File

@@ -151,8 +151,8 @@ desired effect. Continuous iteration helps refine the performance gains and
address any new bottlenecks that may emerge.
ROCm provides a prebuilt optimized Docker image that has everything required to implement
the tips in this section. It includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see :doc:`../inference/vllm-benchmark`.
the LLM inference tips in this section. It includes ROCm, PyTorch, and vLLM.
For more information, see :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-profiling-tools:
@@ -343,9 +343,10 @@ The following performance tips are not *specific* to vLLM -- they are general
but relevant in this context. You can tune the following vLLM parameters to
achieve optimal request latency and throughput performance.
* As described in :ref:`mi300x-env-vars`, the environment
variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM performance. Set it to
``export HIP_FORCE_DEV_KERNARG=1``.
* As described in `Environment variables (MI300X)
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#environment-variables>`_,
the environment variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM
performance. Set it to ``export HIP_FORCE_DEV_KERNARG=1``.
* Set the :ref:`RCCL environment variable <mi300x-rccl>` ``NCCL_MIN_NCHANNELS``
to ``112`` to increase the number of channels on MI300X to potentially improve
@@ -410,9 +411,9 @@ for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on the MI300X accelerator. The Docker image includes
ROCm, vLLM, PyTorch, and tuning files in the CSV format. For more information,
see :doc:`../inference/vllm-benchmark`.
of LLM inference with vLLM on MI300X series accelerators. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-vllm-throughput-measurement:
@@ -678,7 +679,7 @@ To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md>`__
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and
@@ -1477,8 +1478,9 @@ following command: ``cat /proc/sys/kernel/numa_balancing`` and
checking whether the output is ``0``.
If the output is ``1``, you can disable NUMA auto-balancing by running the
following command: ``sudo sysctl kernel.numa_balancing=0``. For more
details, see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
following command: ``sudo sysctl kernel.numa_balancing=0``. For more details,
see `AMD Instinct MI300X system optimization
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#disable-numa-auto-balancing>`_.
.. _mi300x-rccl-disable-acs:

View File

@@ -0,0 +1,346 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
* `ROCm 6.2.0 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.4.3 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.4.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and
serving. It deploys the PagedAttention algorithm, which reduces memory
consumption and increases throughput by leveraging dynamic key and value
allocation in GPU memory. vLLM also incorporates many LLM acceleration
and quantization algorithms. In addition, AMD implements high-performance
custom kernels and modules in vLLM to enhance performance further. See
:ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for more
information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``
Although the following eight models are pre-configured to collect latency and
throughput performance data, users can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Available models
----------------
.. hlist::
:columns: 3
* ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_mistral-7b``
* ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_jais-13b``
* ``pyt_vllm_jais-30b``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name unified_docker_vllm rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Multiprocessing distributed executor
--------------------------------------
To optimize vLLM performance, add the multiprocessing API server argument ``--distributed-executor-backend mp``.
Command
^^^^^^^^^^^^^^^^^^^^^^^^^
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options
^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Latency benchmark example
^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` data type.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
Find the latency report at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
Throughput benchmark example
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,416 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Available models
----------------
.. hlist::
:columns: 3
* ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_mistral-7b``
* ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_jais-13b``
* ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* ``pyt_vllm_llama-3.1-70b_fp8``
* ``pyt_vllm_llama-3.1-405b_fp8``
* ``pyt_vllm_mixtral-8x7b_fp8``
* ``pyt_vllm_mixtral-8x22b_fp8``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Command
-------
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options
-------
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,461 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
***********************************************************
LLM inference performance validation on AMD Instinct MI300X
***********************************************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
.. _vllm-benchmark-mad-models:
Available models
----------------
.. list-table::
:header-rows: 1
:widths: 2, 3
* - Model name
- Tag
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Command
-------
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options and available models
----------------------------
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,329 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.7.3_20250325-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Available models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/25070a1841df0dca585b7ddcb967c42aaec4b7c5/docs/dev-docker>`__.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block:: shell
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,345 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.3_20250415-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/7a9f58aae0e7215a5f3dccde60e35072c41656c2/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,354 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250513-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/16d2b92ebcf90fe55cf73fa0b9329a6c9d3dede8/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -1,3 +1,5 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
@@ -7,9 +9,14 @@
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250521-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
@@ -24,7 +31,7 @@ vLLM inference performance testing
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
@@ -37,11 +44,15 @@ vLLM inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
@@ -50,7 +61,7 @@ vLLM inference performance testing
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -111,35 +122,37 @@ vLLM inference performance testing
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
Getting started
===============
System validation
=================
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
.. _vllm-benchmark-get-started:
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
1. Disable NUMA auto-balancing.
.. code-block:: shell
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. code-block:: shell
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
Pull the Docker image
=====================
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
@@ -316,64 +329,27 @@ vLLM inference performance testing
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
This table lists previous versions of the ROCm vLLM inference Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation.
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.3.1
- 0.7.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`_
* - 6.3.1
- 0.6.6
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -0,0 +1,353 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.9.0.1_20250605-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/7bb0618b1fe725b7d4fad9e525aa44da12c94a8b/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,353 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.9.1_20250702-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-20250702>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models-20250702:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements-20250702:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/5486e7bc8523be0324ccd68f221959445b56cc2a/docs/dev-docker>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models-20250702>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with :literal`{{model.precision}}` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with :literal:`{{model.precision}}` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,109 @@
:orphan:
**************************************************
vLLM inference performance testing version history
**************************************************
This table lists previous versions of the ROCm vLLM inference Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/vllm/tags>`_.
.. list-table::
:header-rows: 1
* - Docker image tag
- Components
- Resources
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.1_20250715``
(latest)
-
* ROCm 6.4.1
* vLLM 0.9.1
* PyTorch 2.7.0
-
* :doc:`Documentation <../vllm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250715/images/sha256-4a429705fa95a58f6d20aceab43b1b76fa769d57f32d5d28bd3f4e030e2a78ea>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.1_20250702``
-
* ROCm 6.4.1
* vLLM 0.9.1
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.9.1-20250702>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.1_20250702/images/sha256-45068a2079cb8df554ed777141bf0c67d6627c470a897256e60c9f262677faab>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.9.0.1_20250605``
-
* ROCm 6.4.1
* vLLM 0.9.0.1
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.9.0.1-20250605>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.9.0.1_20250605/images/sha256-f48beeb3d72663a93c77211eb45273d564451447c097e060befa713d565fa36c>`_
* - ``rocm/vllm:rocm6.3.1_vllm_0.8.5_20250521``
-
* ROCm 6.3.1
* 0.8.5 vLLM (0.8.6.dev)
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.8.5-20250521>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11>`__
* - ``rocm/vllm:rocm6.3.1_vllm_0.8.5_20250513``
-
* ROCm 6.3.1
* vLLM 0.8.5
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.8.5-20250513>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4>`__
* - ``rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415``
-
* ROCm 6.3.1
* vLLM 0.8.3
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.8.3-20250415>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845>`__
* - ``rocm/vllm:rocm6.3.1_instinct_vllm0.7.3_20250325``
-
* ROCm 6.3.1
* vLLM 0.7.3
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.7.3-20250325>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`__
* - ``rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6``
-
* ROCm 6.3.1
* vLLM 0.6.6
* PyTorch 2.7.0
-
* :doc:`Documentation <vllm-0.6.6>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`__
* - ``rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4``
-
* ROCm 6.2.1
* vLLM 0.6.4
* PyTorch 2.5.0
-
* :doc:`Documentation <vllm-0.6.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`__
* - ``rocm/vllm:rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50``
-
* ROCm 6.2.0
* vLLM 0.4.3
* PyTorch 2.4.0
-
* :doc:`Documentation <vllm-0.4.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`__

View File

@@ -24,6 +24,10 @@ PyTorch inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with PyTorch and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
@@ -31,13 +35,13 @@ PyTorch inference performance testing
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1" style="display: none;">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -62,47 +66,52 @@ PyTorch inference performance testing
{% endfor %}
{% endfor %}
Getting started
===============
System validation
=================
Use the following procedures to reproduce the benchmark results on an
MI300X series accelerator with the prebuilt PyTorch Docker image.
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
.. _pytorch-benchmark-get-started:
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
1. Disable NUMA auto-balancing.
.. code-block:: shell
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. code-block:: shell
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
Pull the Docker image
=====================
.. container:: model-doc pyt_chai1_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
.. note::
.. note::
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference
.. container:: model-doc pyt_clip_inference pyt_mochi_video_inference pyt_wan2.1_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull rocm/pytorch:latest
docker pull rocm/pytorch:latest
.. _pytorch-benchmark-get-started:
Benchmarking
============
@@ -131,7 +140,11 @@ PyTorch inference performance testing
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
@@ -142,8 +155,7 @@ PyTorch inference performance testing
For improved performance, consider enabling TunableOp. By default,
``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable
it, edit the default run behavior in the ``tools/run_models.py``-- update the model's
run ``args`` by changing ``--tunableop off`` to ``--tunableop on``.
it, include the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
Although this might increase the initial training time, it can result in a performance gain.
@@ -154,14 +166,19 @@ PyTorch inference performance testing
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
:doc:`Running models from Hugging Face <../hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
:doc:`Inference optimization <../../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.

View File

@@ -0,0 +1,443 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
.. list-table::
:header-rows: 1
* - Software component
- Version
* - `ROCm <https://github.com/ROCm/ROCm>`__
- {{ unified_docker.rocm_version }}
* - `vLLM <https://docs.vllm.ai/en/latest>`__
- {{ unified_docker.vllm_version }}
* - `PyTorch <https://github.com/ROCm/pytorch>`__
- {{ unified_docker.pytorch_version }}
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`__
- {{ unified_docker.hipblaslt_version }}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <previous-versions/vllm-history>`.
* The ``--compilation-config-parameter`` is no longer required as its options are now enabled by default.
This parameter has been removed from the benchmarking script.
* Resolved Llama 3.1 405 B custom all-reduce issue, eliminating the need for ``--disable-custom-all-reduce``.
This parameter has been removed from the benchmarking script.
* Fixed a ``+rms_norm`` custom kernel issue.
* Added quick reduce functionality. Set ``VLLM_ROCM_QUICK_REDUCE_QUANTIZATION=FP`` to enable; supported modes are ``FP``, ``INT8``, ``INT6``, ``INT4``.
* Implemented a workaround to potentially mitigate GPU crashes experienced with the Command R+ model, pending a driver fix.
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
.. _vllm-benchmark-available-models:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__).
To enable it, include the ``--tunableop on`` argument in your
run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed
by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
.. rubric:: Download the Docker image and required scripts
1. Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ unified_docker.pull_tag }}
2. In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
3. To start the benchmark, use the following command with the appropriate options.
.. dropdown:: Benchmark options
:open:
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
Command:
.. code-block::
./vllm_benchmark_report.sh \
-s $test_option \
-m {{model.model_repo}} \
-g $num_gpu \
-d {{model.precision}}
.. note::
For best performance, it's recommend to run with ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1``.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. rubric:: Benchmarking examples
Here are some examples of running the benchmark with various options:
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh \
-s latency \
-m {{model.model_repo}} \
-g 8 \
-d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh \
-s throughput \
-m {{model.model_repo}} \
-g 8 \
-d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/tree/f94ec9beeca1071cc34f9d1e206d8c7f3ac76129/docs/dev-docker>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm/vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/ROCm/vllm>`__.
.. code-block:: shell
git clone https://github.com/ROCm/vllm.git
2. Checkout the specific release commit.
.. code-block:: shell
cd vllm
git checkout b432b7a285aa0dcb9677380936ffa74931bb6d6f
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
.. code-block:: shell
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
Known issues and workarounds
============================
AITER does not support FP8 KV cache yet.
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`previous-versions/vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -14,14 +14,14 @@ Throughout the following topics, this section provides a comprehensive guide to
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
- :doc:`Installing ROCm and machine learning frameworks <install>`
- :doc:`Installing ROCm and machine learning frameworks <../install>`
- :doc:`Running models from Hugging Face <hugging-face-models>`
- :doc:`LLM inference frameworks <llm-inference-frameworks>`
- :doc:`vLLM inference performance testing <vllm-benchmark>`
- :doc:`vLLM inference performance testing <benchmark-docker/vllm>`
- :doc:`PyTorch inference performance testing <pytorch-inference-benchmark>`
- :doc:`PyTorch inference performance testing <benchmark-docker/pytorch-inference>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -141,7 +141,7 @@ Installing vLLM
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, and PyTorch.
For more information, see :doc:`vllm-benchmark`.
For more information, see :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _fine-tuning-llms-tgi:

View File

@@ -28,9 +28,9 @@ ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/install-methods/amdgpu-installer-index>`
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`.
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`
.. grid:: 1
@@ -59,4 +59,8 @@ images with the framework pre-installed.
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
The sections that follow in :doc:`Training a model <../training/train-a-model>` are geared for a ROCm with PyTorch installation.
Next steps
==========
After installing ROCm and your desired ML libraries -- and before running AI workloads -- conduct system health benchmarks
to test the optimal performance of your AMD hardware. See :doc:`system-health-check` to get started.

View File

@@ -0,0 +1,104 @@
.. meta::
:description: System health checks with RVS, RCCL tests, BabelStream, and TransferBench to validate AMD hardware performance running AI workloads.
:keywords: gpu, accelerator, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training, inference
.. _rocm-for-ai-system-health-bench:
************************
System health benchmarks
************************
Before running AI workloads, it is important to validate that your AMD hardware is configured correctly and is performing optimally. This topic outlines several system health benchmarks you can use to test key aspects like GPU compute capabilities (FLOPS), memory bandwidth, and interconnect performance. Many of these tests are part of the ROCm Validation Suite (RVS).
ROCm Validation Suite (RVS) tests
=================================
RVS provides a collection of tests, benchmarks, and qualification tools, each
targeting a specific subsystem of the system under test. It includes tests for
GPU stress and memory bandwidth.
.. _healthcheck-install-rvs:
Install ROCm Validation Suite
-----------------------------
To get started, install RVS. For example, on an Ubuntu system with ROCm already
installed, run the following command:
.. code-block:: shell
sudo apt update
sudo apt install rocm-validation-suite
See the `ROCm Validation Suite installation instructions <https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/install/installation.html>`_,
and `System validation tests <https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#system-validation-tests>`_
in the Instinct documentation for more detailed instructions.
Benchmark, stress, and qualification tests
------------------------------------------
The GPU stress test runs various GEMM computations as workloads to stress the GPU FLOPS performance and check whether it
meets the configured target GFLOPS.
Run the benchmark, stress, and qualification tests included with RVS. See the `Benchmark, stress, qualification
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#benchmark-stress-qualification>`_
section of the Instinct documentation for usage instructions.
BabelStream test
----------------
BabelStream is a synthetic GPU benchmark based on the STREAM benchmark for
CPUs, measuring memory transfer rates to and from global device memory.
BabelStream tests are included with the RVS package as part of the `BABEL module
<https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/conceptual/rvs-modules.html#babel-benchmark-test-babel-module>`_.
For more information, see `Performance benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#babelstream-benchmarking-results>`_
in the Instinct documentation.
RCCL tests
==========
The ROCm Communication Collectives Library (RCCL) enables efficient multi-GPU
communication. The `<https://github.com/ROCm/rccl-tests>`__ suite benchmarks
the performance and verifies the correctness of these collective operations.
This helps ensure optimal scaling for multi-accelerator tasks.
1. To get started, build RCCL-tests using the official instructions in the README at
`<https://github.com/ROCm/rccl-tests?tab=readme-ov-file#build>`__ or use the
following commands:
.. code-block:: shell
git clone https://github.com/ROCm/rccl-tests.git
cd rccl-tests
make
2. Run the suggested RCCL tests -- see `RCCL benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#rccl-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.
TransferBench test
==================
TransferBench is a standalone utility for benchmarking simultaneous data
transfer performance between various devices in the system, including
CPU-to-GPU and GPU-to-GPU (peer-to-peer). This helps identify potential
bottlenecks in data movement between the host system and the GPUs, or between
GPUs, which can impact end-to-end latency.
.. _healthcheck-install-transferbench:
1. To get started, use the instructions in the `TransferBench documentation
<https://rocm.docs.amd.com/projects/TransferBench/en/latest/install/install.html#install-transferbench>`_
or use the following commands:
.. code:: shell
git clone https://github.com/ROCm/TransferBench.git
cd TransferBench
CC=hipcc make
2. Run the suggested TransferBench tests -- see `TransferBench benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#transferbench-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.

View File

@@ -79,11 +79,18 @@ across different input sequences. Support for packed input format is planned for
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Environment setup
=================
@@ -175,8 +182,8 @@ with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
.. _amd-maxtext-download-docker:
Download the Docker image
-------------------------
Pull the Docker image
---------------------
1. Use the following command to pull the Docker image from Docker Hub.
@@ -367,22 +374,5 @@ own cluster setup.
Previous versions
=================
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- JAX version
- Resources
* - 25.4
- 6.3.0
- 0.4.31
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_
See :doc:`previous-versions/jax-maxtext-history` to find documentation for previous releases
of the ``ROCm/jax-training`` Docker image.

View File

@@ -34,11 +34,18 @@ for MPT-30B with access to detailed logs and performance metrics.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Getting started
===============
@@ -66,7 +73,11 @@ document are not validated.
.. code-block:: shell
python3 tools/run_models.py --tags pyt_mpt30b_training --keep-model-dir --live-output --clean-docker-cache
madengine run \
--tags pyt_mpt30b_training \
--keep-model-dir \
--live-output \
--clean-docker-cache
.. tip::
@@ -83,7 +94,7 @@ document are not validated.
For improved performance (training throughput), consider enabling TunableOp.
By default, ``pyt_mpt30b_training`` runs with TunableOp disabled. To enable it,
run ``tools/run_models.py`` with the ``--tunableop on`` argument or edit the
run ``madengine run`` with the ``--tunableop on`` argument or edit the
``models.json`` configuration before running training.
Although this might increase the initial training time, it can result in a performance gain.
@@ -165,4 +176,13 @@ Key performance metrics include:
Overall training loss. A decreasing trend indicates the model is learning effectively.
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.

View File

@@ -0,0 +1,34 @@
:orphan:
********************************************************
JAX MaxText training performance testing version history
********************************************************
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
You can find tagged
previous releases of the ``ROCm/jax-training`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/jax-training/tags>`_.
.. list-table::
:header-rows: 1
* - Image version
- Components
- Resources
* - 25.5 (latest)
-
* ROCm 6.3.4
* JAX 0.4.35
-
* :doc:`Documentation <../jax-maxtext>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.5/images/sha256-4e0516358a227cae8f552fb866ec07e2edcf244756f02e7b40212abfbab5217b>`_
* - 25.4
-
* ROCm 6.3.0
* JAX 0.4.31
-
* :doc:`Documentation <jax-maxtext-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_

View File

@@ -0,0 +1,358 @@
:orphan:
.. meta::
:description: How to train a model using JAX MaxText for ROCm.
:keywords: ROCm, AI, LLM, train, jax, torch, Llama, flux, tutorial, docker
**************************************
Training a model with MaxText for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm JAX MaxText
training performance documentation. See :doc:`../jax-maxtext` for the latest version.
MaxText is a high-performance, open-source framework built on the Google JAX
machine learning library to train LLMs at scale. The MaxText framework for
ROCm is an optimized fork of the upstream
`<https://github.com/AI-Hypercomputer/maxtext>`__ enabling efficient AI workloads
on AMD MI300X series accelerators.
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.4``) image
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X accelerators,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| JAX | 0.4.31 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+f81a3eb |
+--------------------------+--------------------------------+
| hipBLASLt | git78ec8622 |
+--------------------------+--------------------------------+
Supported features and models
=============================
MaxText provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- Flash Attention (FA) 3
- GEMM tuning
- Multi-node support
.. _amd-maxtext-model-support:
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3 8B
* Llama 3 70B
* Llama 2 7B
* Llama 2 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
Unsupported features
--------------------
Currently, MaxText's default packed input format is not supported. Using this format
with the current Docker image results in incorrect attention calculations
across different input sequences. Support for packed input format is planned for a future release.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
as follows. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
.. _amd-maxtext-multi-node-setup:
Multi-node setup
----------------
For multi-node environments, ensure you have all the necessary packages for
your network device, such as, RDMA. If you're not using a multi-node setup
with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
1. Install the following packages to build and install the RDMA driver.
.. code-block:: shell
sudo apt install iproute2 -y
sudo apt install -y linux-headers-"$(uname-r)" libelf-dev
sudo apt install -y gcc make libtool autoconf librdmacm-dev rdmacm-utils infiniband-diags ibverbs-utils perftest ethtool libibverbs-dev rdma-core strace libibmad5 libibnetdisc5 ibverbs-providers libibumad-dev libibumad3 libibverbs1 libnl-3-dev libnl-route-3-dev
Refer to your NIC manufacturer's documentation for further steps on
compiling and installing the RoCE driver. For example, for Broadcom,
see `Compiling Broadcom NIC software from source <https://docs.broadcom.com/doc/957608-AN2XX#G3.484341>`_
in `Ethernet networking guide for AMD Instinct MI300X GPU clusters <https://docs.broadcom.com/doc/957608-AN2XX>`_.
2. Set the following environment variables.
a. Master address
Change `localhost` to the master node's resolvable hostname or IP address:
.. code-block:: bash
export MASTER_ADDR="${MASTER_ADDR:-localhost}"
b. Number of nodes
Set the number of nodes you want to train on (for example, ``2``, ``4``, or ``8``):
.. code-block:: bash
export NNODES="${NNODES:-1}"
c. Node ranks
Set the rank of each node (``0`` for master, ``1`` for the first worker node, and so on)
Node ranks should be unique across all nodes in the cluster.
.. code-block:: bash
export NODE_RANK="${NODE_RANK:-0}"
d. Network interface
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface with an IP address in the same subnet as
your other nodes. Then, update the following variable in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
This variable specifies which network interface to use for inter-node communication.
Setting this variable to the incorrect interface can result in communication failures
or significantly reduced performance.
e. RDMA interface
Ensure the :ref:`required packages <amd-maxtext-multi-node-setup>` are installed on all nodes.
Then, set the RDMA interfaces to use for communication.
.. code-block:: bash
# If using Broadcom NIC
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# If using Mellanox NIC
export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
.. _amd-maxtext-download-docker:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/jax-training:maxtext-v25.4
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.4
.. _amd-maxtext-get-started:
Getting started
===============
The following examples demonstrate how to get started with single node
and multi-node training using the benchmarking scripts provided at
`<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__.
.. important::
The provided scripts launch a Docker container and execute a benchmark. Ensure you run these commands outside of any existing Docker container.
Before running any benchmarks, ensure the ``$HF_HOME`` environment variable is
set correctly and points to your Hugging Face cache directory. Refer to the
README at `<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__
for more detailed instructions.
Single node training benchmarking examples
------------------------------------------
* Example 1: Single node training with Llama 2 7B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_7b.sh
Run the single node training benchmark:
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_7b.sh
* Example 2: Single node training with Llama 2 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_70b.sh
* Example 3: Single node training with Llama 3 8B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_8b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_8b.sh
* Example 4: Single node training with Llama 3 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_70b.sh
* Example 5: Single node training with DeepSeek V2 16B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/deepseek_v2_16b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./deepseek_v2_16b.sh
.. note::
The reported TFLOP/s by MaxText for DeepSeek is not accurate. Use
the tokens/s as a performance indicator.
Multi-node training benchmarking examples
-----------------------------------------
The following examples use SLURM for running on multiple nodes -- the commands might need to be adjusted for your
own cluster setup.
* Example 1: Multi-node training with Llama 2 7B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_7b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama2_7b_multinode.sh
* Example 2: Multi-node training with Llama 2 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama2_70b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama2_70b_multinode.sh
* Example 3: Multi-node training with Llama 3 8B model
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_8b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama3_8b_multinode.sh
* Example 4: Multi-node training with Llama 3 70B model
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3_70b_multinode.sh
Run the multi-node training benchmark. For example:
.. code-block:: shell
sbatch -N <num_nodes> llama3_70b_multinode.sh
Previous versions
=================
See :doc:`jax-maxtext-history` to find documentation for previous releases
of the ``ROCm/jax-training`` Docker image.

View File

@@ -0,0 +1,59 @@
:orphan:
********************************************************
Megatron-LM training performance testing version history
********************************************************
This table lists previous versions of the ROCm Megatron-LM training Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/megatron-lm`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/megatron-lm/tags>`_.
.. list-table::
:header-rows: 1
* - Image version
- Components
- Resources
* - v25.6 (latest)
-
* ROCm 6.4.1
* PyTorch 2.8.0a0+git7d205b2
-
* :doc:`Documentation <../megatron-lm>`
* `Docker Hub (py312) <https://hub.docker.com/layers/rocm/megatron-lm/v25.6_py312/images/sha256-482ff906532285bceabdf2bda629bd32cb6174d2d07f4243a736378001b28df0>`__
* `Docker Hub (py310) <https://hub.docker.com/layers/rocm/megatron-lm/v25.6_py310/images/sha256-9627bd9378684fe26cb1a10c7dd817868f553b33402e49b058355b0f095568d6>`__
* - v25.5
-
* ROCm 6.3.4
* PyTorch 2.8.0a0+gite2f9759
-
* :doc:`Documentation <megatron-lm-v25.5>`
* `Docker Hub (py312) <https://hub.docker.com/layers/rocm/megatron-lm/v25.5_py312/images/sha256-4506f18ba188d24189c6b1f95130b425f52c528a543bb3f420351824edceadc2>`__
* `Docker Hub (py310) <https://hub.docker.com/layers/rocm/megatron-lm/v25.5_py310/images/sha256-743fbf1ceff7a44c4452f938d783a7abf143737d1c15b2b95f6f8a62e0fd048b>`__
* - v25.4
-
* ROCm 6.3.0
* PyTorch 2.7.0a0+git637433
-
* :doc:`Documentation <megatron-lm-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.4/images/sha256-941aa5387918ea91c376c13083aa1e6c9cab40bb1875abbbb73bbb65d8736b3f>`_
* - v25.3
-
* ROCm 6.3.0
* PyTorch 2.7.0a0+git637433
-
* :doc:`Documentation <megatron-lm-v25.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/v25.3/images/sha256-1e6ed9bdc3f4ca397300d5a9907e084ab5e8ad1519815ee1f868faf2af1e04e2>`_
* - v24.12-dev
-
* ROCm 6.1.0
* PyTorch 2.4.0
-
* :doc:`Documentation <megatron-lm-v24.12-dev>`
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,516 @@
:orphan:
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See `Hardware verification with ROCm <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#hardware-verification-with-rocm>`_ for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: /data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: /data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: /data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: /data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,536 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,618 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X series accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3 8B
* Llama 3 70B
* Llama 2 7B
* Llama 2 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
.. _amd-megatron-lm-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this training benchmarking environment <../megatron-lm>`_.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The prebuilt ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.4
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.4
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of the ROCm Megatron-LM development branch `<https://github.com/ROCm/Megatron-LM/tree/rocm_dev>`__
(commit `fd6f01 <https://github.com/ROCm/Megatron-LM/tree/fd6f0d11d7f9480ace32f22eb7e4dab5314fa350>`_).
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface that has an IP address in the same subnet as
your other nodes. Then, update the following variables in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH="/data/bookcorpus_text_sentence" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
To download the dataset, set the ``DATASET`` variable to the dataset you'd like to use. Two datasets are supported: ``DATASET=wiki`` and ``DATASET=bookcorpus``.
Use the following command to download the dataset.
.. code-block:: shell
DATASET=wiki bash examples/llama/prepare_dataset.sh # For wiki-en dataset
DATASET=bookcorpus bash examples/llama/prepare_dataset.sh # For bookcorpus dataset
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
You can assign the path of an existing tokenizer to the ``TOKENIZER_MODEL`` as shown in the following examples.
If the tokenizer is not found, it'll be downloaded to the default tokenizer model path: ``${DATA_DIR}/tokenizer_llama3``
or ``${DATA_DIR}/tokenizer_llama2``.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``
or the default ``HuggingFaceTokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model path in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. note::
If you don't already have the Llama 3.1 tokenizer locally, set your
personal Hugging Face access token ``HF_TOKEN`` to download the
tokenizer. If you encounter the following error, set ``HF_TOKEN`` to
your access-authorized Hugging Face token.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker container, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
.. code-block:: shell
# Specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use one of the
following commands.
- For Llama 3.1 8B FP8:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 3.1 8B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=0 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 2 7B FP8:
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
- For Llama 2 7B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=0 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
To run training with FSDP2 enabled, add the ``FSDP=1`` argument. For example:
- For Llama 3 70B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=3 BS=24 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=8192 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
- For Llama 2 70B BF16:
.. code-block:: shell
TEE_OUTPUT=1 MBS=3 BS=56 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=4096 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
.. note::
It's suggested to use ``TP=1`` when FSDP is enabled for higher throughput. FSDP2 is not supported with pipeline parallelism,
expert parallelism, MCore's distributed optimizer, gradient accumulation fusion, and ``FP16`` precision.
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none SEQ_LEN=4096 PAD_LEN=4096 TRAIN_ITERS=50 bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for B16 or ``1`` for FP8 -- ``0`` by default.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``FSDP``
``1`` to enable PyTorch FSDP2. If FSDP is enabled, ``--use-distributed-optimizer``,
``--overlap-param-gather``, and ``--sequence-parallel`` are automaticallyu disabled.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data you provide.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``). ``TP`` is disabled when ``FSDP`` is turned on.
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TRAIN_ITERS``
The total number of iterations.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data you provide.
``MBS``
Micro batch size.
``GBS``
Global batch size.
``SEQ_LEN``
Input sequence length.
``AC``
Activation checkpointing (``none``, ``sel``, or ``full``) -- ``sel`` by default.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: /data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: /data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,775 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../megatron-lm` for the latest version.
The `Megatron-LM framework for ROCm <https://github.com/ROCm/Megatron-LM>`_ is
a specialized fork of the robust Megatron-LM, designed to enable efficient
training of large-scale language models on AMD GPUs. By leveraging AMD
Instinct™ MI300X series accelerators, Megatron-LM delivers enhanced
scalability, performance, and resource utilization for AI workloads. It is
purpose-built to support models like Llama, DeepSeek, and Mixtral,
enabling developers to train next-generation AI models more
efficiently.
AMD provides a ready-to-use Docker image for MI300X series accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.8.0a0+gite2f9759 |
+--------------------------+--------------------------------+
| Python | 3.12 or 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.13.0+bb061ade |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | 0.13.0-4f18bf6 |
+--------------------------+--------------------------------+
| Triton | 3.3.0 |
+--------------------------+--------------------------------+
| RCCL | 2.22.3 |
+--------------------------+--------------------------------+
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support-v255:
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/megatron-lm-v25.5-benchmark-models.yaml
Supported models
================
The following models are supported for training performance benchmarking with Megatron-LM and ROCm.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
{% set model_groups = data["megatron-lm_benchmark"].model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-4 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
.. _amd-megatron-lm-performance-measurements-v255:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`__
page provides reference throughput and latency measurements for training
popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`__
only reflects the latest version of this training benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-megatron-lm-training-v255:
Environment setup
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements-v255:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
.. tab-item:: Ubuntu 24.04 + Python 3.12
:sync: py312
.. code-block:: shell
docker pull rocm/megatron-lm:v25.5_py312
.. tab-item:: Ubuntu 22.04 + Python 3.10
:sync: py310
.. code-block:: shell
docker pull rocm/megatron-lm:v25.5_py310
2. Launch the Docker container.
.. tab-set::
.. tab-item:: Ubuntu 24.04 + Python 3.12
:sync: py312
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 128G --name megatron_training_env rocm/megatron-lm:v25.5_py312
.. tab-item:: Ubuntu 22.04 + Python 3.10
:sync: py310
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --device /dev/infiniband --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 128G --name megatron_training_env rocm/megatron-lm:v25.5_py310
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of the ROCm
Megatron-LM development branch
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev>`__, including necessary
training scripts.
.. _amd-megatron-lm-environment-setup-v255:
Configuration
=============
.. container:: model-doc pyt_megatron_lm_train_llama-3.3-70b pyt_megatron_lm_train_llama-3.1-8b pyt_megatron_lm_train_llama-3.1-70b
Update the ``train_llama3.sh`` configuration script in the ``examples/llama``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v255>`.
.. container:: model-doc pyt_megatron_lm_train_llama-2-7b pyt_megatron_lm_train_llama-2-70b
Update the ``train_llama2.sh`` configuration script in the ``examples/llama``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v255>`.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
Update the ``train_deepseekv3.sh`` configuration script in the ``examples/deepseek_v3``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v3>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v255>`.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v2-lite-16b
Update the ``train_deepseekv2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v2>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v255>`.
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b pyt_megatron_lm_train_mixtral-8x22b-proxy
Update the ``train_mixtral_moe.sh`` configuration script in the ``examples/mixtral``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/mixtral>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v255>`.
.. note::
See :ref:`Key options <amd-megatron-lm-benchmark-test-vars-v255>` for more information on configuration options.
Network interface
-----------------
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface that has an IP address in the same subnet as
your other nodes. Then, update the following variables in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
.. _amd-megatron-lm-tokenizer-v255:
Tokenizer
---------
You can assign the path of an existing tokenizer to the ``TOKENIZER_MODEL`` as shown in the following examples.
If the tokenizer is not found, it'll be downloaded if publicly available.
.. container:: model-doc pyt_megatron_lm_train_llama-3.3-70b
If you do not have Llama 3.3 tokenizer locally, you need to use your
personal Hugging Face access token ``HF_TOKEN`` to download the tokenizer.
See `Llama-3.3-70B-Instruct
<https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_. After you are
authorized, use your ``HF_TOKEN`` to download the tokenizer and set the
variable ``TOKENIZER_MODEL`` to the tokenizer path.
.. code-block:: shell
export HF_TOKEN=<Your personal Hugging Face access token>
The training script uses the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL="meta-llama/Llama-3.3-70B-Instruct"
.. container:: model-doc pyt_megatron_lm_train_llama-3.1-8b
The training script uses the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL="meta-llama/Llama-3.1-8B"
.. container:: model-doc pyt_megatron_lm_train_llama-3.1-70b
The training script uses the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL="meta-llama/Llama-3.1-70B"
.. container:: model-doc pyt_megatron_lm_train_llama-2-7b pyt_megatron_lm_train_llama-2-70b
The training script uses either the ``Llama2Tokenizer`` or ``HuggingFaceTokenizer`` by default.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
The training script uses the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL="deepseek-ai/DeepSeek-V3"
.. container:: model-doc pyt_megatron_lm_train_deepseek-v2-lite-16b
The training script uses the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL="deepseek-ai/DeepSeek-V2-Lite"
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b pyt_megatron_lm_train_mixtral-8x22b-proxy
Download the Mixtral tokenizer.
.. code-block:: shell
mkdir tokenizer
cd tokenizer
export HF_TOKEN=<Your personal Hugging Face access token>
wget --header="Authorization: Bearer $HF_TOKEN" -O ./tokenizer.model https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/resolve/main/tokenizer.model
Use the ``HuggingFaceTokenizer``. Set ``TOKENIZER_MODEL`` to the appropriate Hugging Face model path.
.. code-block:: shell
TOKENIZER_MODEL=tokenizer/tokenizer.model
Dataset options
---------------
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH="/data/bookcorpus_text_sentence" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Download the dataset
^^^^^^^^^^^^^^^^^^^^
.. container:: model-doc pyt_megatron_lm_train_llama-3.3-70b pyt_megatron_lm_train_llama-3.1-8b pyt_megatron_lm_train_llama-3.1-70b pyt_megatron_lm_train_llama-2-7b pyt_megatron_lm_train_llama-2-70b
For Llama models, use the `prepare_dataset.sh
<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`_ script
to prepare your dataset.
To download the dataset, set the ``DATASET`` variable to the dataset you'd
like to use. Three datasets are supported: ``DATASET=wiki``, ``DATASET=fineweb``, and
``DATASET=bookcorpus``.
.. code-block:: shell
DATASET=wiki TOKENIZER_MODEL=NousResearch/Llama-2-7b-chat-hf bash examples/llama/prepare_dataset.sh #for wiki-en dataset
DATASET=bookcorpus TOKENIZER_MODEL=NousResearch/Llama-2-7b-chat-hf bash examples/llama/prepare_dataset.sh #for bookcorpus dataset
``TOKENIZER_MODEL`` can be any accessible Hugging Face tokenizer.
Remember to either pre-download the tokenizer or setup Hugging Face access
otherwise when needed -- see the :ref:`Tokenizer <amd-megatron-lm-tokenizer-v255>` section.
.. note::
When training set ``DATA_PATH`` to the specific file name prefix pointing to the ``.bin`` or ``.idx``
as in the following example:
.. code-block:: shell
DATA_PATH="data/bookcorpus_text_sentence" # Change to where your dataset is stored.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
To train on this data, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0 # Train on real data
DATA_DIR="<path-to>/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v2-lite-16b
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
To train on this data, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0 # Train on real data
DATA_DIR="<path-to>/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b pyt_megatron_lm_train_mixtral-8x22b-proxy
If you don't already have the dataset, download the Mixtral dataset using the following
commands:
.. code-block:: shell
mkdir mixtral-datasets
cd mixtral-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/mistral-datasets/wudao_mistralbpe_content_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/mistral-datasets/wudao_mistralbpe_content_document.idx
To train on this data, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0 # Train on real data
DATA_DIR="<path-to>/mixtral-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Multi-node configuration
------------------------
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments. Refer to the following example configurations.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker container, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
.. code-block:: shell
# Specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
Getting started
===============
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama, DeepSeek, and Mixtral. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
.. _amd-megatron-lm-run-training-v255:
Run training
------------
Use the following example commands to set up the environment, configure
:ref:`key options <amd-megatron-lm-benchmark-test-vars-v255>`, and run training on
MI300X series accelerators with the AMD Megatron-LM environment.
Single node training
^^^^^^^^^^^^^^^^^^^^
.. container:: model-doc pyt_megatron_lm_train_llama-3.3-70b
To run the training on a single node for Llama 3.3 70B BF16 with FSDP-v2 enabled, add the ``FSDP=1`` argument.
For example, use the following command:
.. code-block:: shell
TEE_OUTPUT=1 RECOMPUTE=1 SEQ_LENGTH=8192 MBS=2 BS=16 TE_FP8=0 TP=1 PP=1 FSDP=1 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
.. note::
It is suggested to use ``TP=1`` when FSDP is enabled for higher
throughput. FSDP-v2 is not supported with pipeline parallelism, expert
parallelism, MCore's distributed optimizer, gradient accumulation fusion,
or FP16.
Currently, FSDP is only compatible with BF16 precision.
.. container:: model-doc pyt_megatron_lm_train_llama-3.1-8b
To run training on a single node for Llama 3.1 8B FP8, navigate to the Megatron-LM folder and use the
following command.
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
For Llama 3.1 8B BF16, use the following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=0 SEQ_LENGTH=8192 MODEL_SIZE=8 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
.. container:: model-doc pyt_megatron_lm_train_llama-3.1-70b
To run the training on a single node for Llama 3.1 70B BF16 with FSDP-v2 enabled, add the ``FSDP=1`` argument.
For example, use the following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=3 BS=24 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=8192 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama3.sh
.. note::
It is suggested to use ``TP=1`` when FSDP is enabled for higher
throughput. FSDP-v2 is not supported with pipeline parallelism, expert
parallelism, MCore's distributed optimizer, gradient accumulation fusion,
or FP16.
Currently, FSDP is only compatible with BF16 precision.
.. container:: model-doc pyt_megatron_lm_train_llama-2-7b
To run training on a single node for Llama 2 7B FP8, navigate to the Megatron-LM folder and use the
following command.
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
For Llama 2 7B BF16, use the following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=4 BS=256 TP=1 TE_FP8=0 SEQ_LENGTH=4096 MODEL_SIZE=7 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
.. container:: model-doc pyt_megatron_lm_train_llama-2-70b
To run the training on a single node for Llama 2 70B BF16 with FSDP-v2 enabled, add the ``FSDP=1`` argument.
For example, use the following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=7 BS=56 TP=1 TE_FP8=0 FSDP=1 RECOMPUTE=1 SEQ_LENGTH=4096 MODEL_SIZE=70 TOTAL_ITERS=50 bash examples/llama/train_llama2.sh
.. note::
It is suggested to use ``TP=1`` when FSDP is enabled for higher
throughput. FSDP-v2 is not supported with pipeline parallelism, expert
parallelism, MCore's distributed optimizer, gradient accumulation fusion,
or FP16.
Currently, FSDP is only compatible with BF16 precision.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
navigate to the Megatron-LM folder and use the following command.
.. code-block:: shell
FORCE_BANLANCE=true \
RUN_ENV=cluster \
MODEL_SIZE=671B \
TRAIN_ITERS=50 \
SEQ_LEN=4096 \
NUM_LAYERS=3 \
MICRO_BATCH_SIZE=1 GLOBAL_BATCH_SIZE=32 \
PR=bf16 \
TP=1 PP=1 ETP=1 EP=8 \
GEMM_TUNING=1 \
NVTE_CK_USES_BWD_V3=1 \
USE_GROUPED_GEMM=true MOE_USE_LEGACY_GROUPED_GEMM=true \
GPT_LAYER_IN_TE=true \
bash examples/deepseek_v3/train_deepseekv3.sh
.. container:: model-doc pyt_megatron_lm_train_deepseek-v2-lite-16b
To run training on a single node for DeepSeek-V2-Lite (MoE with expert parallel),
navigate to the Megatron-LM folder and use the following command.
.. code-block:: shell
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none SEQ_LEN=4096 PAD_LEN=4096 TRAIN_ITERS=50 bash examples/deepseek_v2/train_deepseekv2.sh
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
navigate to the Megatron-LM folder and use the following command.
.. code-block:: shell
RECOMPUTE_NUM_LAYERS=0 TEE_OUTPUT=1 MBS=1 GBS=16 TP_SIZE=1 PP_SIZE=1 AC=none PR=bf16 EP_SIZE=8 ETP_SIZE=1 SEQLEN=4096 FORCE_BALANCE=true MOCK_DATA=1 RUN_ENV=cluster MODEL_SIZE=8x7B TRAIN_ITERS=50 bash examples/mixtral/train_mixtral_moe.sh
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x22b-proxy
To run training on a single node for Mixtral 8x7B (MoE with expert parallel) with 4-layer proxy,
navigate to the Megatron-LM folder and use the following command.
.. code-block:: shell
RECOMPUTE_NUM_LAYERS=4 TEE_OUTPUT=1 MBS=1 GBS=16 TP_SIZE=1 PP_SIZE=1 AC=full NUM_LAYERS=4 PR=bf16 EP_SIZE=8 ETP_SIZE=1 SEQLEN=8192 FORCE_BALANCE=true MOCK_DATA=1 RUN_ENV=cluster MODEL_SIZE=8x22B TRAIN_ITERS=50 bash examples/mixtral/train_mixtral_moe.sh
Multi-node training
^^^^^^^^^^^^^^^^^^^
To run training on multiple nodes, launch the Docker container on each node.
For example, for Llama 3 using a two node setup (``NODE0`` as the master node),
use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
Or, for DeepSeek-V3, an example script ``train_deepseek_v3_slurm.sh`` is
provided in
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v3>`__ to
enable training at scale under a SLURM environment. For example, to run
training on 16 nodes, try the following command:
.. code-block:: shell
sbatch examples/deepseek_v3/train_deepseek_v3_slurm.sh
.. _amd-megatron-lm-benchmark-test-vars-v255:
Key options
-----------
The benchmark tests support the following sets of variables.
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for B16 or ``1`` for FP8 -- ``0`` by default.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``FSDP``
``1`` to enable PyTorch FSDP2. If FSDP is enabled, ``--use-distributed-optimizer``,
``--overlap-param-gather``, and ``--sequence-parallel`` are automatically disabled.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2, for example.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data you provide.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP`` / ``TP_SIZE``
Tensor parallel (``1``, ``2``, ``4``, ``8``). ``TP`` is disabled when ``FSDP`` is turned on.
``EP`` / ``EP_SIZE``
Expert parallel for MoE models.
``SEQ_LENGTH``
Input sequence length.
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``AC``
Activation checkpointing (``none``, ``sel``, or ``full``) -- ``sel`` by default.
``NUM_LAYERS``
Use reduced number of layers as a proxy model.
``RECOMPUTE_NUM_LAYERS``
Number of layers used for checkpointing recompute.
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -0,0 +1,49 @@
:orphan:
****************************************************
PyTorch training performance testing version history
****************************************************
This table lists previous versions of the ROCm Megatron-LM training Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/pytorch-training`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/pytorch-training/tags>`_.
.. list-table::
:header-rows: 1
* - Image version
- Components
- Resources
* - v25.6
-
* ROCm 6.3.4
* PyTorch 2.8.0a0+git7d205b2
-
* :doc:`Documentation <../pytorch-training>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.6/images/sha256-a4cea3c493a4a03d199a3e81960ac071d79a4a7a391aa9866add3b30a7842661>`_
* - v25.5
-
* ROCm 6.3.4
* PyTorch 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.5>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
* - v25.4
-
* ROCm 6.3.0
* PyTorch 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.4>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
-
* ROCm 6.3.0
* PyTorch 2.7.0a0+git637433
-
* :doc:`Documentation <pytorch-training-v25.3>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.3/images/sha256-0ffdde1b590fd2787b1c7adf5686875b100980b0f314090901387c44253e709b>`_

View File

@@ -0,0 +1,353 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch
training performance documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`System validation and optimization <rocm-for-ai-system-optimization>`
for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -0,0 +1,397 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch
training performance documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.4``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 2 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.4
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.4
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Getting started
===============
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI325X and MI300X
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. note::
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -0,0 +1,439 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
performance benchmark documentation. See :doc:`../pytorch-training` for the latest version.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+25a33da |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git53b53bf |
+--------------------------+--------------------------------+
| Triton | 3.2.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 2 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Benchmarking
============
Once the setup is complete, choose between two options to start benchmarking:
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
The available models for MAD-integrated benchmarking are:
* ``pyt_train_llama-3.3-70b``
* ``pyt_train_llama-3.1-8b``
* ``pyt_train_llama-3.1-70b``
* ``pyt_train_flux``
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
.. tab-item:: Standalone benchmarking
.. rubric:: Download the Docker image and required packages
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.5
Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
.. rubric:: Pretraining
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. note::
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
.. rubric:: Fine-tuning
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. rubric:: Benchmarking examples
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B

View File

@@ -9,28 +9,27 @@ Training a model with PyTorch for ROCm
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
The `PyTorch for ROCm training Docker <https://hub.docker.com/r/rocm/pytorch-training/tags>`_
(``rocm/pytorch-training:v25.6``) image provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following software components to accelerate
training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
| PyTorch | 2.8.0a0+git7d205b2 |
+--------------------------+--------------------------------+
| Python | 3.10 |
| Python | 3.10.17 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+25a33da |
| Transformer Engine | 1.14.0+2f85f5f2 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
| Flash Attention | 3.0.0.post1 |
+--------------------------+--------------------------------+
| hipBLASLt | git53b53bf |
| hipBLASLt | 0.15.0-8c6919d |
+--------------------------+--------------------------------+
| Triton | 3.2.0 |
| Triton | 3.3.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
@@ -40,415 +39,411 @@ Supported models
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
* Llama 3.1 8B
{% set unified_docker = data.unified_docker.latest %}
{% set model_groups = data.model_groups %}
* Llama 3.1 70B
.. raw:: html
* Llama 2 70B
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Workload</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
* FLUX.1-dev
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
.. note::
Only these models are supported in the following steps.
Some models require an external license agreement through a third party (for example, Meta).
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
.. _amd-pytorch-training-performance-measurements:
.. _amd-pytorch-training-performance-measurements:
Performance measurements
========================
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
page provides reference throughput and latency measurements for training
popular AI models.
System validation
=================
.. note::
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
System validation
=================
Benchmarking
============
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
Once the setup is complete, choose between two options to start benchmarking:
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
.. tab-set::
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. tab-item:: MAD-integrated benchmarking
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
Benchmarking
============
.. code-block:: shell
Once the setup is complete, choose between two options to start benchmarking:
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
.. tab-set::
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. tab-item:: MAD-integrated benchmarking
.. code-block:: shell
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
.. code-block:: shell
The available models for MAD-integrated benchmarking are:
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
* ``pyt_train_llama-3.3-70b``
{% for model_group in model_groups %}
{% for model in model_group.models %}
* ``pyt_train_llama-3.1-8b``
.. container:: model-doc {{ model.mad_tag }}
* ``pyt_train_llama-3.1-70b``
For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one GPU with the {{ model.precision }} data type on the host machine.
* ``pyt_train_flux``
.. code-block:: shell
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{ model.mad_tag }} \
--keep-model-dir \
--live-output \
--timeout 28800
.. tab-item:: Standalone benchmarking
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
.. rubric:: Download the Docker image and required packages
{% endfor %}
{% endfor %}
Use the following command to pull the Docker image from Docker Hub.
.. tab-item:: Standalone benchmarking
.. code-block:: shell
.. rubric:: Download the Docker image and required packages
docker pull rocm/pytorch-training:v25.5
Use the following command to pull the Docker image from Docker Hub.
Run the Docker container.
.. code-block:: shell
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
Run the Docker container.
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env {{ unified_docker.pull_tag }}
docker start training_env
docker exec -it training_env bash
Use these commands if you exit the ``training_env`` container and need to return to it.
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. rubric:: Prepare training datasets and dependencies
.. code-block:: shell
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. code-block:: shell
.. rubric:: Prepare training datasets and dependencies
export HF_TOKEN=$your_personal_hugging_face_access_token
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
./pytorch_benchmark_setup.sh
Run the setup script to install libraries and datasets needed for benchmarking.
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. code-block:: shell
.. list-table::
:header-rows: 1
./pytorch_benchmark_setup.sh
* - Library
- Benchmark model
- Reference
.. container:: model-doc pyt_train_llama-3.1-8b
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 8B:
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
.. list-table::
:header-rows: 1
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - Library
- Reference
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
.. container:: model-doc pyt_train_llama-3.1-70b
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 70B:
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
.. list-table::
:header-rows: 1
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - Library
- Reference
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``torchdata``
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``tiktoken``
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``blobfile``
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``tabulate``
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``wandb``
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
.. container:: model-doc pyt_train_flux
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
``pytorch_benchmark_setup.sh`` installs the following libraries for FLUX:
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
.. list-table::
:header-rows: 1
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - Library
- Reference
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
Along with the following datasets:
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``csvkit``
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* - ``deepspeed``
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
.. rubric:: Pretraining
* - ``diffusers``
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* - ``GitPython``
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
.. code-block:: shell
* - ``opencv-python-headless``
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
* - ``peft``
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
.. list-table::
:header-rows: 1
* - ``protobuf``
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - Name
- Options
- Description
* - ``pytest``
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* - ``python-dotenv``
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* - ``seaborn``
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``transformers``
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
{% for model_group in model_groups %}
{% for model in model_group.models %}
{% if model_group.tag == "pre-training" and model.mad_tag in ["pyt_train_llama-3.1-8b", "pyt_train_llama-3.1-70b", "pyt_train_flux"] %}
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
.. container:: model-doc {{ model.mad_tag }}
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
.. rubric:: Pretraining
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
To start the pre-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. code-block:: shell
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
./pytorch_benchmark_report.sh -t pretrain -m {{ model.model_repo }} -p $datatype -s $sequence_length
.. note::
.. list-table::
:header-rows: 1
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
* - Name
- Options
- Description
.. rubric:: Fine-tuning
{% if model.mad_tag == "pyt_train_llama-3.1-8b" %}
* - ``$datatype``
- ``BF16`` or ``FP8``
- Only Llama 3.1 8B supports FP8 precision.
{% else %}
* - ``$datatype``
- ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
{% endif %}
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
.. code-block:: shell
{% if model.mad_tag == "pyt_train_flux" %}
.. container:: model-doc {{ model.mad_tag }}
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
.. note::
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
{% endif %}
{% endif %}
.. code-block:: shell
{% if model_group.tag == "fine-tuning" %}
.. container:: model-doc {{ model.mad_tag }}
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. rubric:: Fine-tuning
.. rubric:: Benchmarking examples
To start the fine-tuning benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
.. code-block:: shell
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
./pytorch_benchmark_report.sh -t $training_mode -m {{ model.model_repo }} -p BF16 -s $sequence_length
.. code-block:: shell
.. list-table::
:header-rows: 1
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* - Name
- Options
- Description
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
* - ``$training_mode``
- ``finetune_fw``
- Full weight fine-tuning (BF16 supported)
.. code-block:: shell
* -
- ``finetune_lora``
- LoRA fine-tuning (BF16 supported)
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* -
- ``finetune_qlora``
- QLoRA fine-tuning (BF16 supported)
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
* -
- ``HF_finetune_lora``
- LoRA fine-tuning with Hugging Face PEFT
.. code-block:: shell
* - ``$datatype``
- ``BF16``
- All models support BF16.
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* - ``$sequence_length``
- Between 2048 and 16384.
- Sequence length for the language model.
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. note::
.. code-block:: shell
{{ model.model }} currently supports the following fine-tuning methods:
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
{% for method in model.training_modes %}
* ``{{ method }}``
{% endfor %}
{% if model.training_modes|length < 4 %}
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
The upstream `torchtune <https://github.com/pytorch/torchtune>`_ repository
does not currently provide YAML configuration files for other combinations of
model to fine-tuning method
However, you can still configure your own YAML files to enable support for
fine-tuning methods not listed here by following existing patterns in the
``/workspace/torchtune/recipes/configs`` directory.
{% endif %}
{% endif %}
{% endfor %}
{% endfor %}
.. code-block:: shell
.. rubric:: Benchmarking examples
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
Further reading
===============
.. code-block:: shell
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
This table lists previous versions of the ROCm PyTorch training Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- PyTorch version
- Resources
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.3/images/sha256-0ffdde1b590fd2787b1c7adf5686875b100980b0f314090901387c44253e709b>`_
See :doc:`previous-versions/pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -21,8 +21,12 @@ In this guide, you'll learn about:
- Training a model
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`With Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`With PyTorch <benchmark-docker/pytorch-training>`
- :doc:`With JAX MaxText <benchmark-docker/jax-maxtext>`
- :doc:`With LLM Foundry <benchmark-docker/mpt-llm-foundry>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -5,12 +5,13 @@
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
.. _rocm-for-ai-system-optimization:
**********************************************
Prerequisite system validation before training
**********************************************
**********************************************************
Prerequisite system validation before running AI workloads
**********************************************************
Complete the following system validation and optimization steps to set up your system before starting training.
Complete the following system validation and optimization steps to set up your system before starting training and inference.
Disable NUMA auto-balancing
---------------------------
@@ -26,7 +27,8 @@ the output is ``1``, run the following command to disable NUMA auto-balancing.
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
See `Disable NUMA auto-balancing <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#disable-numa-auto-balancing>`_
in the Instinct documentation for more information.
Hardware verification with ROCm
-------------------------------
@@ -42,7 +44,8 @@ Run the command:
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
See `Hardware verfication for ROCm <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#hardware-verification-with-rocm>`_
in the Instinct documentation for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------

View File

@@ -76,14 +76,6 @@ Ubuntu versions.
single node workstations, multi and many-core nodes, clusters of nodes via
QMP, and classic vector computers.
* -
- `Grid <https://github.com/amd/InfinityHub-CI/tree/main/grid/>`_
- Grid is a library for lattice QCD calculations that employs a high-level data parallel
approach while using a number of techniques to target multiple types of parallelism.
The library currently supports MPI, OpenMP and short vector parallelism. The SIMD
instructions sets covered include SSE, AVX, AVX2, FMA4, IMCI and AVX512. Recent
releases expanded this support to include GPU offloading.
* -
- `MILC <https://github.com/amd/InfinityHub-CI/tree/main/milc/>`_
- The MILC Code is a set of research codes developed by MIMD Lattice Computation
@@ -237,12 +229,18 @@ Ubuntu versions.
of these applications.
* - Tools and libraries
- `ROCm with GPU-aware MPI container <https://github.com/amd/InfinityHub-CI/tree/main/base-gpu-mpi-rocm-docker>`_
- `AMD ROCm with OpenMPI container <https://github.com/amd/InfinityHub-CI/blob/main/base-gpu-mpi-rocm-docker>`_
- Base container for GPU-aware MPI with ROCm for HPC applications. This
project provides a boilerplate for building and running a Docker
container with ROCm supporting GPU-aware MPI implementations using
OpenMPI or UCX.
* -
- `AMD ROCm with MPICH container <https://github.com/amd/InfinityHub-CI/blob/main/base-mpich-rocm-docker>`_
- Base container for GPU-aware MPI with ROCm for HPC applications. This
project provides a boilerplate for building and running a Docker
container with ROCm supporting GPU-aware MPI implementations using MPICH.
* -
- `Kokkos <https://github.com/amd/InfinityHub-CI/tree/main/kokkos>`_
- Kokkos is a programming model in C++ for writing performance portable

View File

@@ -38,5 +38,5 @@ The variable parsing stops when a syntax error occurs. The erroneous set and the
These environment variables only affect ROCm software, not graphics applications.
Not all CU configurations are valid on all devices. For example, on devices where two CUs can be combined into a WGP (for kernels running in WGP mode), its not valid to disable only a single CU in a WGP. For more information about what to expect when disabling CUs, see the `Exploring AMD GPU Scheduling Details by Experimenting With “Worst Practices” <https://www.cs.unc.edu/~otternes/papers/rtsj2022.pdf>`_ paper.
Not all CU configurations are valid on all devices. For example, on devices where two CUs can be combined into a WGP (for kernels running in WGP mode), its not valid to disable only a single CU in a WGP.

View File

@@ -12,8 +12,7 @@ accelerators. They include detailed instructions on system settings and
application tuning suggestions to help you fully leverage the capabilities of
these accelerators, thereby achieving optimal performance.
* :doc:`../../rocm-for-ai/inference/vllm-benchmark`
* :doc:`../../rocm-for-ai/inference-optimization/workload`
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload`
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_

View File

@@ -45,7 +45,7 @@
(communication-libraries)=
* {doc}`RCCL <rccl:index>`
* [rocSHMEM](https://github.com/ROCm/rocSHMEM)
* {doc}`rocSHMEM <rocshmem:index>`
:::
:::{grid-item-card} Math

View File

@@ -281,13 +281,31 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon AI PRO R9700
- RDNA4
- gfx1201
- 32
- 64
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon PRO V710
- RDNA3
- gfx1101
- 28
- 54
- 32
- 32 or 64
- 128
- 56
- 4
@@ -296,7 +314,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -305,7 +323,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -314,7 +332,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -323,7 +341,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -332,7 +350,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -341,7 +359,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 70
- 32
- 32 or 64
- 128
- 96
- 6
@@ -350,7 +368,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -359,7 +377,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 32
- 70
- 32
- 32 or 64
- 128
- 64
- 6
@@ -368,7 +386,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -377,7 +395,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 48
- 32
- 32 or 64
- 128
- 64
- 4
@@ -386,7 +404,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -395,7 +413,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 60
- 32
- 32 or 64
- 128
- 128
- 4
@@ -404,7 +422,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -413,7 +431,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32
- 32 or 64
- 128
- 32
- 2
@@ -422,7 +440,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -431,7 +449,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 72
- 32
- 32 or 64
- 128
- 128
- 4
@@ -440,7 +458,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -449,7 +467,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1012
- 8
- 22
- 32
- 32 or 64
- 128
-
- 4
@@ -504,13 +522,85 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 9070 XT
- RDNA4
- gfx1201
- 16
- 64
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9070 GRE
- RDNA4
- gfx1201
- 16
- 48
- 32 or 64
- 128
- 48
- 6
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9070
- RDNA4
- gfx1201
- 16
- 56
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9060 XT
- RDNA4
- gfx1200
- 16
- 32
- 32 or 64
- 128
- 32
- 4
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 7900 XTX
- RDNA3
- gfx1100
- 24
- 96
- 32
- 32 or 64
- 128
- 96
- 6
@@ -519,7 +609,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -528,7 +618,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 20
- 84
- 32
- 32 or 64
- 128
- 80
- 6
@@ -537,7 +627,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -546,7 +636,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 16
- 80
- 32
- 32 or 64
- 128
- 64
- 6
@@ -555,7 +645,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -564,7 +654,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 60
- 32
- 32 or 64
- 128
- 64
- 4
@@ -573,7 +663,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -582,7 +672,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 12
- 54
- 32
- 32 or 64
- 128
- 48
- 4
@@ -591,7 +681,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 16
- 32
- 11
- 0
*
@@ -600,7 +690,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1102
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -609,7 +699,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 11
- 0
*
@@ -618,7 +708,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32
- 32 or 64
- 128
- 128
- 4
@@ -627,7 +717,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -636,7 +726,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32
- 32 or 64
- 128
- 128
- 4
@@ -645,7 +735,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -654,7 +744,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 72
- 32
- 32 or 64
- 128
- 128
- 4
@@ -663,7 +753,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -672,7 +762,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 60
- 32
- 32 or 64
- 128
- 128
- 4
@@ -681,7 +771,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -690,7 +780,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32
- 32 or 64
- 128
- 96
- 3
@@ -699,7 +789,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -708,7 +798,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32
- 32 or 64
- 128
- 96
- 3
@@ -717,7 +807,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -726,7 +816,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 10
- 36
- 32
- 32 or 64
- 128
- 80
- 3
@@ -735,7 +825,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -744,7 +834,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -753,7 +843,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -762,7 +852,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32
- 32 or 64
- 128
- 32
- 2
@@ -771,7 +861,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*
@@ -780,7 +870,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32
- 32 or 64
- 128
- 32
- 2
@@ -789,7 +879,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 16
- 32
- 10
- 3
*

View File

@@ -10,6 +10,7 @@
| Version | Release date |
| ------- | ------------ |
| [6.4.1](https://rocm.docs.amd.com/en/docs-6.4.1/) | May 21, 2025 |
| [6.4.0](https://rocm.docs.amd.com/en/docs-6.4.0/) | April 11, 2025 |
| [6.3.3](https://rocm.docs.amd.com/en/docs-6.3.3/) | February 19, 2025 |
| [6.3.2](https://rocm.docs.amd.com/en/docs-6.3.2/) | January 28, 2025 |

View File

@@ -36,15 +36,19 @@ subtrees:
title: Use ROCm for AI
subtrees:
- entries:
- file: how-to/rocm-for-ai/install.rst
title: Installation
- file: how-to/rocm-for-ai/system-health-check.rst
title: System health benchmarks
- file: how-to/rocm-for-ai/training/index.rst
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm.rst
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.rst
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.rst
title: Train a model with JAX MaxText
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
title: Train a model with LLM Foundry
@@ -70,15 +74,13 @@ subtrees:
title: Inference
subtrees:
- entries:
- file: how-to/rocm-for-ai/inference/install.rst
title: Installation
- file: how-to/rocm-for-ai/inference/hugging-face-models.rst
title: Run models from Hugging Face
- file: how-to/rocm-for-ai/inference/llm-inference-frameworks.rst
title: LLM inference frameworks
- file: how-to/rocm-for-ai/inference/vllm-benchmark.rst
- file: how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst
title: vLLM inference performance testing
- file: how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst
- file: how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference.rst
title: PyTorch inference performance testing
- file: how-to/rocm-for-ai/inference/deploy-your-model.rst
title: Deploy your model

View File

@@ -1,4 +1,4 @@
rocm-docs-core==1.18.2
rocm-docs-core==1.23.0
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0
sphinxcontrib.datatemplates==0.11.0

View File

@@ -2,7 +2,7 @@
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile docs/sphinx/requirements.in
# pip-compile /mnt/nonstandard/ROCm/requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
@@ -10,74 +10,71 @@ alabaster==1.0.0
# via sphinx
asttokens==3.0.0
# via stack-data
attrs==25.1.0
attrs==25.3.0
# via
# jsonschema
# jupyter-cache
# referencing
babel==2.16.0
babel==2.17.0
# via
# pydata-sphinx-theme
# sphinx
beautifulsoup4==4.12.3
beautifulsoup4==4.13.5
# via pydata-sphinx-theme
breathe==4.35.0
breathe==4.36.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2025.8.3
# via requests
cffi==1.17.1
cffi==2.0.0
# via
# cryptography
# pynacl
charset-normalizer==3.4.0
charset-normalizer==3.4.3
# via requests
click==8.1.7
click==8.2.1
# via
# jupyter-cache
# sphinx-external-toc
comm==0.2.2
comm==0.2.3
# via ipykernel
cryptography==44.0.1
cryptography==45.0.7
# via pyjwt
debugpy==1.8.12
debugpy==1.8.16
# via ipykernel
decorator==5.1.1
decorator==5.2.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
# via pygithub
docutils==0.21.2
# via
# breathe
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
exceptiongroup==1.3.0
# via ipython
executing==2.2.0
executing==2.2.1
# via stack-data
fastjsonschema==2.20.0
fastjsonschema==2.21.2
# via
# nbformat
# rocm-docs-core
gitdb==4.0.11
gitdb==4.0.12
# via gitpython
gitpython==3.1.43
gitpython==3.1.45
# via rocm-docs-core
greenlet==3.1.1
greenlet==3.2.4
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==8.6.1
importlib-metadata==8.7.0
# via
# jupyter-cache
# myst-nb
ipykernel==6.29.5
ipykernel==6.30.1
# via myst-nb
ipython==8.31.0
ipython==8.37.0
# via
# ipykernel
# myst-nb
@@ -87,9 +84,9 @@ jinja2==3.1.6
# via
# myst-parser
# sphinx
jsonschema==4.23.0
jsonschema==4.25.1
# via nbformat
jsonschema-specifications==2024.10.1
jsonschema-specifications==2025.9.1
# via jsonschema
jupyter-cache==1.0.1
# via myst-nb
@@ -97,7 +94,7 @@ jupyter-client==8.6.3
# via
# ipykernel
# nbclient
jupyter-core==5.7.2
jupyter-core==5.8.1
# via
# ipykernel
# jupyter-client
@@ -113,13 +110,13 @@ matplotlib-inline==0.1.7
# via
# ipykernel
# ipython
mdit-py-plugins==0.4.2
mdit-py-plugins==0.5.0
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.1.2
myst-nb==1.3.0
# via rocm-docs-core
myst-parser==4.0.0
myst-parser==4.0.1
# via myst-nb
nbclient==0.10.2
# via
@@ -132,41 +129,41 @@ nbformat==5.10.4
# nbclient
nest-asyncio==1.6.0
# via ipykernel
packaging==24.2
packaging==25.0
# via
# ipykernel
# sphinx
parso==0.8.4
parso==0.8.5
# via jedi
pexpect==4.9.0
# via ipython
platformdirs==4.3.6
platformdirs==4.4.0
# via jupyter-core
prompt-toolkit==3.0.50
prompt-toolkit==3.0.52
# via ipython
psutil==6.1.1
psutil==7.0.0
# via ipykernel
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pycparser==2.22
pycparser==2.23
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
pygithub==2.5.0
pygithub==2.8.1
# via rocm-docs-core
pygments==2.18.0
pygments==2.19.2
# via
# accessible-pygments
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
pynacl==1.6.0
# via pygithub
python-dateutil==2.9.0.post0
# via jupyter-client
@@ -178,7 +175,7 @@ pyyaml==6.0.2
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.2.0
pyzmq==27.1.0
# via
# ipykernel
# jupyter-client
@@ -186,23 +183,23 @@ referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
requests==2.32.3
requests==2.32.5
# via
# pygithub
# sphinx
rocm-docs-core==1.18.2
# via -r requirements.in
rpds-py==0.22.3
rocm-docs-core==1.23.0
# via -r /mnt/nonstandard/ROCm/requirements.in
rpds-py==0.27.1
# via
# jsonschema
# referencing
six==1.17.0
# via python-dateutil
smmap==5.0.1
smmap==5.0.2
# via gitdb
snowballstemmer==2.2.0
snowballstemmer==3.0.1
# via sphinx
soupsieve==2.6
soupsieve==2.8
# via beautifulsoup4
sphinx==8.1.3
# via
@@ -215,9 +212,9 @@ sphinx==8.1.3
# sphinx-copybutton
# sphinx-design
# sphinx-external-toc
# sphinx-last-updated-by-git
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
@@ -228,16 +225,18 @@ sphinx-design==0.6.1
# via rocm-docs-core
sphinx-external-toc==1.0.1
# via rocm-docs-core
sphinx-notfound-page==1.0.4
sphinx-last-updated-by-git==0.3.8
# via sphinx-sitemap
sphinx-notfound-page==1.1.0
# via rocm-docs-core
sphinx-reredirects==0.1.6
# via -r requirements.in
sphinx-sitemap==2.6.0
# via -r requirements.in
# via -r /mnt/nonstandard/ROCm/requirements.in
sphinx-sitemap==2.8.0
# via -r /mnt/nonstandard/ROCm/requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
sphinxcontrib-datatemplates==0.11.0
# via -r requirements.in
# via -r /mnt/nonstandard/ROCm/requirements.in
sphinxcontrib-devhelp==2.0.0
# via sphinx
sphinxcontrib-htmlhelp==2.1.0
@@ -250,21 +249,20 @@ sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
sqlalchemy==2.0.43
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
tomli==2.2.1
# via sphinx
tornado==6.4.2
tornado==6.5.2
# via
# ipykernel
# jupyter-client
traitlets==5.14.3
# via
# comm
# ipykernel
# ipython
# jupyter-client
@@ -272,21 +270,21 @@ traitlets==5.14.3
# matplotlib-inline
# nbclient
# nbformat
typing-extensions==4.12.2
typing-extensions==4.15.0
# via
# beautifulsoup4
# exceptiongroup
# ipython
# myst-nb
# pydata-sphinx-theme
# pygithub
# referencing
# sqlalchemy
urllib3==2.2.3
urllib3==2.5.0
# via
# pygithub
# requests
wcwidth==0.2.13
# via prompt-toolkit
wrapt==1.17.0
# via deprecated
zipp==3.21.0
# via importlib-metadata
zipp==3.23.0
# via importlib-metadata

View File

@@ -52,7 +52,7 @@ Communication
:header: "Component", "Description"
":doc:`RCCL <rccl:index>`", "Standalone library that provides multi-GPU and multi-node collective communication primitives"
"`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_", "Runtime that provides GPU-centric networking through an OpenSHMEM-like interface. This intra-kernel networking library simplifies application code complexity and enables more fine-grained communication/computation overlap than traditional host-driven networking"
":doc:`rocSHMEM <rocshmem:index>`", "An intra-kernel networking library that provides GPU-centric networking through an OpenSHMEM-like interface"
Math
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -98,7 +98,7 @@ System Management
.. csv-table::
:header: "Component", "Description"
":doc:`AMD SMI <amdsmi:index>`", "C library for Linux that provides a user space interface for applications to monitor and control AMD devices"
":doc:`AMD SMI <amdsmi:index>`", "System management interface to control AMD GPU settings, monitor performance, and retrieve device and process information"
":doc:`ROCm Data Center Tool <rdc:index>`", "Simplifies administration and addresses key infrastructure challenges in AMD GPUs in cluster and data-center environments"
":doc:`rocminfo <rocminfo:index>`", "Reports system information"
":doc:`ROCm SMI <rocm_smi_lib:index>`", "C library for Linux that provides a user space interface for applications to monitor and control GPU applications"
@@ -117,6 +117,11 @@ Performance
":doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`", "Toolkit for developing analysis tools for profiling and tracing GPU compute applications. This toolkit is in beta and subject to change"
":doc:`ROCTracer <roctracer:index>`", "Intercepts runtime API calls and traces asynchronous activity"
.. note::
`ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is a tool for visualizing and analyzing GPU thread trace data collected using :doc:`rocprofv3 <rocprofiler-sdk:index>`.
Note that `ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is in an early access state. Running production workloads is not recommended.
Development
^^^^^^^^^^^

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.4.0"
<default revision="refs/tags/rocm-6.4.1"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -87,7 +87,6 @@ endef
$(call adddep,amd_smi_lib,${ASAN_DEP})
$(call adddep,aqlprofile,${ASAN_DEP} rocr)
$(call adddep,aqlprofiletest,lightning rocminfo aqlprofile opencl_on_rocclr hip_on_rocclr)
$(call adddep,comgr,lightning devicelibs)
$(call adddep,dbgapi,rocr comgr)
$(call adddep,devicelibs,lightning)
@@ -115,7 +114,7 @@ $(call adddep,roctracer,${ASAN_DEP} rocr hip_on_rocclr)
# rocm-dev points to all possible last finish components of Stage1 build.
rocm-dev-components :=amd_smi_lib aqlprofile aqlprofiletest comgr dbgapi devicelibs hip_on_rocclr hipcc hipify_clang \
rocm-dev-components :=amd_smi_lib aqlprofile comgr dbgapi devicelibs hip_on_rocclr hipcc hipify_clang \
lightning rocprofiler-compute opencl_on_rocclr openmp_extras rocm_bandwidth_test rocm_smi_lib \
rocm-cmake rocm-core rocm-gdb rocminfo rocprofiler-register rocprofiler-sdk rocprofiler-systems \
rocprofiler rocr rocr_debug_agent rocrsamples roctracer

View File

@@ -255,8 +255,8 @@ print_output_directory() {
# Common variables
target="build"
kfdtest_target="yes"
rocrtst_target="yes"
kfdtest_target="no"
rocrtst_target="no"
rocr_target="ON"
package_root="$(getPackageRoot)"

View File

@@ -60,7 +60,6 @@ libfile-find-rule-perl
libgflags-dev
libglew-dev
libgmp-dev
libgoogle-glog-dev
libgtk2.0-dev
libhdf5-serial-dev
libjpeg-dev
@@ -90,7 +89,6 @@ libsuitesparse-dev
libsystemd-dev
libtinfo-dev
libtool
libunwind-dev
liburi-encode-perl
libva-dev
libvirt-clients
@@ -98,7 +96,6 @@ libvirt-daemon-system
libyaml-cpp-dev
libzstd-dev
llvm
llvm-6.0-dev
llvm-dev
llvm-runtime
mesa-common-dev
@@ -112,8 +109,7 @@ pigz
pkg-config
protobuf-compiler
python-is-python3
python-pip-whl
python-yaml
python3-pip-whl
python3-dev
python3-pip
python3-venv

View File

@@ -17,7 +17,7 @@ git --version
# venv for python to be able to run pip3 without --break-system-packages
python3 -m venv /opt/venv
source /opt/venv/bin/activate
pip3 install CppHeaderParser argparse lxml recommonmark jinja2==3.0.0 \
websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas \
myst-parser setuptools lit

View File

@@ -217,7 +217,7 @@ export RCCL_ROOT=$WORK_ROOT/rccl
export ROCM_DBGAPI_ROOT=$WORK_ROOT/ROCdbgapi
export ROCM_GDB_ROOT=$WORK_ROOT/ROCgdb
# export ROCclr_ROOT=$WORK_ROOT/vdi
export HIP_ON_ROCclr_ROOT=$WORK_ROOT/HIP
export HIP_ON_ROCclr_ROOT=$WORK_ROOT/hip
export HIPAMD_ROOT=$WORK_ROOT/hipamd
export HIP_CATCH_TESTS_ROOT=$WORK_ROOT/hip-tests
# export OPENCL_ON_ROCclr_ROOT=$WORK_ROOT/opencl-on-vdi

Some files were not shown because too many files have changed in this diff Show More