Compare commits

...

93 Commits

Author SHA1 Message Date
Istvan Kiss
b12eb75be3 Replace "-" on precision support page 2025-03-10 13:30:03 +01:00
Pratik Basyal
3d59247e7a Content for modprobe added to MI300X system optimization (#4434) (#4461)
Added content for modprobe
2025-03-07 15:05:42 -05:00
Peter Park
d5b1fd4389 Merge pull request #4448 from peterjunpark/docs/6.3.3
Add docs fixes to 6.3.3
2025-03-05 09:18:50 -05:00
Adel Johar
a05d9e2fa0 Docs: use custom directive to reference library versions
(cherry picked from commit cd85ccd539)
2025-03-05 09:02:15 -05:00
Peter Park
7ddb10a0fc Fix applies to linux tag for training benchmark docker pages (#4446)
(cherry picked from commit fa0e212906)
2025-03-05 09:02:08 -05:00
Peter Park
63f9bc30bd Merge pull request #4432 from peterjunpark/docs/6.3.3
Update LLM inference performance validation on AMD Instinct MI300X gu…
2025-02-28 13:02:56 -05:00
Peter Park
b174ab767e Update LLM inference performance validation on AMD Instinct MI300X guide to filter by desired model (#4424)
* WIP

(cherry picked from commit a06a5b5b959a9425e7384fb58b88c3716f380e48)

rm unneeded files

(cherry picked from commit f1d0c00056a83299bdea74a43cd17454999cf2d8)

* add sphinxcontrib.datatemplates

(cherry picked from commit d056b93a325d87b81f54f70c6eb4ae78f4fb0bc1)

* add template

(cherry picked from commit 0691d59f0a1efbda7908762b7a906e30a65c0ee1)

fix template

(cherry picked from commit 01e4bea5522aa5deeaade58c105ff850f449df8b)

WIPO

(cherry picked from commit 4d8daf7445e7be92cd9ee1d39dff564bd8de41f4)

WIP

(cherry picked from commit 9eefd1f5833bc4dc8de9d777ff65a5fe5f826dbd)

update models yaml schema

(cherry picked from commit a5f0fc1e6cc51104dc2d42029bfcf3eea276d270)

add model groups functionality

(cherry picked from commit 13f49f96dd3e5a160d37c52e48a4fbcccdcf4f9e)

add selector headings and fix template

(cherry picked from commit 35f7f2314bcf74b4fd0a8ca10aaabf0de7063bb0)

update template

(cherry picked from commit 9e2dcfe0c7f6e7c2c685866ea83375fbacbc5032)

fix

(cherry picked from commit be51e32791550ddc21785effccb889228394b242)

use classes instead of data tags

(cherry picked from commit cd52d68c504f7e7435d156ae70cf4bde1dfe703e)

update template

(cherry picked from commit 9ed89fee6874b39ee3535fbde54a0a59f346ea2b)

clean up extra wip files

(cherry picked from commit a9f965a104baa966c184054638e935b011526278)

update wordlist

(cherry picked from commit f783656814e896aedd21acd1c8c87b4700c14469)

remove unused template

(cherry picked from commit cac894bd9c2b1262c9c006e5fddbcb742dc6d882)

improve script

(cherry picked from commit ca20ffd4922916616e0924d625652a815f27c35f)

fix template

(cherry picked from commit 752c61fda856fd5b244734636c036c8877e823b9)

fix standalone benchmark output path in template

(cherry picked from commit d8c04203b5ec0f6c2e2307f7890304a3dc5687be)

fix toc

(cherry picked from commit 8df42faf53488ef29f5a263d25032f3d35cd58ed)

update script to prevent flash of unstyled content

import a11y

(cherry picked from commit 46c852717f223a1d8744fab035807cebab4c5404)

add tabindex to wordlist

(cherry picked from commit 11492593f9692f5453045e7ec52c8f8ae9624ae9)

text

update script

* remove unused config option

* reorganize assets

* fix linting warning

* move js from data/ to extension/
2025-02-28 12:40:43 -05:00
Istvan Kiss
f75ef9e2c1 Fix white paper links 2025-02-28 15:03:59 +01:00
Adel Johar
e5bf76ead1 Merge pull request #4422 from ROCm/docs_6.3.3_update_fix_arch
Merge pull request #4393 from ROCm/docs_fix_arch
2025-02-28 14:09:20 +01:00
Adel Johar
5393e90a8e Merge pull request #4393 from ROCm/docs_fix_arch
Docs: Fix gpu-arch-spec.rst
2025-02-27 16:35:33 +01:00
Peter Park
fbc2815223 Merge pull request #4417 from peterjunpark/docs/6.3.3
[docs/6.3.3] Update PT and TF docker inventories in compatibility docs (#4415)
2025-02-26 09:28:30 -05:00
Peter Park
2b96a37b08 Fix tensorflow-rocm repo.radeon.com url 2025-02-25 12:58:02 -05:00
Peter Park
1e5ad14d86 Update PT and TF docker inventories in compatibility docs (#4415)
* update PyTorch docker inventories in compatibility doc

* update TF docker inventories in compatibility doc

* update text to rocm 6.3.3

(cherry picked from commit 934767322b)
2025-02-25 12:38:25 -05:00
Peter Park
f9d6bd4db8 Merge pull request #4410 from peterjunpark/docs/6.3.3
[docs/6.3.3] fix tab sync and nested tab Megatron-LM doc (#4409)
2025-02-21 17:23:06 -05:00
Peter Park
23e78c8d55 fix tab sync and nested tab Megatron-LM doc (#4409)
(cherry picked from commit 1ea1c5c6e0)
2025-02-21 17:20:15 -05:00
Peter Park
0edd31bde6 Merge pull request #4408 from peterjunpark/docs/6.3.3
Update docs on Megatron-LM and PyTorch training Dockers (#4407)
2025-02-21 13:29:10 -05:00
Peter Park
4af488e27d Update docs on Megatron-LM and PyTorch training Dockers (#4407)
* Update Megatron-LM and PyTorch Training Docker docs

Also restructure TOC

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update "start training" text

Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update conf.py

fix spacing

fix branding issue

add disable numa

reorg

remove extra text

(cherry picked from commit 389fa7071b)
2025-02-21 13:10:42 -05:00
Parag Bhandari
7ae7046301 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:25:14 -05:00
Parag Bhandari
358092386e Merge branch 'develop' into roc-6.3.x 2025-02-19 17:25:03 -05:00
Parag Bhandari
e071738908 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:22:38 -05:00
pbhandar-amd
cd79403931 Update vllm-benchmark.rst 2025-02-19 17:21:29 -05:00
pbhandar-amd
e44499357e Merge pull request #4400 from ROCm/amd/pbhandar/roc_633
Add changes for rocm 6.3.3 release.
2025-02-19 17:15:53 -05:00
pbhandar-amd
ce3bc46fcb Create rocm-6.3.3.xml 2025-02-19 17:10:47 -05:00
pbhandar-amd
7f66041b96 Update components.xml 2025-02-19 17:00:34 -05:00
pbhandar-amd
1d312ac9fd Update default.xml 2025-02-19 17:00:06 -05:00
pbhandar-amd
ebc39487a8 Update README.md 2025-02-19 16:59:26 -05:00
Parag Bhandari
275ef1d511 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 16:41:11 -05:00
Parag Bhandari
065fe8b138 Merge branch 'develop' into roc-6.3.x 2025-02-19 16:30:33 -05:00
Parag Bhandari
be36c1808e Merge branch 'develop' into docs/6.3.3 2025-02-19 15:34:46 -05:00
pbhandar-amd
acee9ea228 Merge pull request #4397 from ROCm/amd/pbhandar/internal_to_external_633_part_2
Internal to external sync for 6.3.3 release
2025-02-19 15:33:45 -05:00
Pratik Basyal
1b36ab4850 Final GA day prep for 633 (#313)
* ROCProfiler deprecation notice udpated

* Final GA day changes added

* github issue no. added

* ROCTx added

* rocprofv added to wordlist

* Minor fix
2025-02-19 15:19:44 -05:00
pbhandar-amd
be0d3a981b Merge pull request #312 from ROCm/amd/pbhandar/external_to_internal_633
External to internal sync for 6.3.3 release
2025-02-19 14:08:36 -05:00
Parag Bhandari
ba90b9e61b Removed merge conflict markers 2025-02-19 13:56:00 -05:00
Parag Bhandari
662a40a33f Merge branch 'develop' into internal-develop 2025-02-19 13:35:46 -05:00
pbhandar-amd
fd4ccb9372 Update versions.md 2025-02-19 12:56:36 -05:00
Parag Bhandari
64c362a961 Manually update requirements.in and txt 2025-02-19 11:35:30 -05:00
pbhandar-amd
d392eca232 Update documentation requirements 2025-02-19 11:10:09 -05:00
Pratik Basyal
2170c18828 ROCTx marker known issue updated in 6.3.3. RN (#311)
* ROCTx markers known issue updated

* Leo's feedback incorporated
2025-02-18 16:45:22 -05:00
pbhandar-amd
1b58c08394 Sync develop into docs/6.3.3 2025-02-18 14:05:45 -05:00
Joseph Macaranas
a89b135afb rocPyDecode External CI: Use sudo for cmake install step (#4388)
- Change owner after running install steps, for packaging and upload.
- Necessary to support changes in https://github.com/ROCm/rocPyDecode/pull/160
2025-02-18 11:18:10 -05:00
Daniel Su
a61c2aeaf9 Ex CI: add rocm-cmake to rpp build job (#4379)
* Ex CI: add rocm-cmake to rpp build job

* add ROCM_PLATFORM_VERSION flag
2025-02-14 17:36:16 -05:00
Istvan Kiss
3b9f57166d Update release notes (#310) 2025-02-14 13:56:58 -05:00
Daniel Su
062a1e069d Ex CI: adjust MIOpen's CK fetch script to no longer find parent commits (#4377) 2025-02-14 11:42:23 -05:00
Daniel Su
6cc343f180 Ex CI: set ROCM_PATH for MIOpen tests (#4371) 2025-02-13 16:03:56 -05:00
Pratik Basyal
b75e5f2769 Reference text updated for documentation update in 633 RN (#308)
* ROCProfiler deprecation notice udpated

* Reduntant text removed
2025-02-13 15:02:47 -05:00
Pratik Basyal
4fb9291d33 ROCProfiler deprecation notice udpated (#307) 2025-02-13 12:31:32 -05:00
Peter Park
618b44ed23 add vllm docker to release highlights (#306) 2025-02-13 12:01:08 -05:00
Adel Johar
c52aa329c8 Merge pull request #4350 from ROCm/docs_device_version
Docs: Add Device Major/Minor Versions to gpu-arch-spec.rst
2025-02-13 14:41:01 +01:00
Adel Johar
1499f74c22 Docs: Add Device Major/Minor Versions to gpu-arch-spec.rst 2025-02-13 14:24:00 +01:00
Daniel Su
a9aaabcc68 Ex CI: remove manual hipify-perl chmod from rccl (#4368) 2025-02-12 11:36:53 -05:00
Pratik Basyal
35f4362e68 Release notes updates for ROCm 6.3.3 release (#298)
* Initial changes for 6.3.3 release updated in RN

* conf file updated

* 6.3.3 compatibility matrix updated

* 6.3.3 version update

* HIP documentation updated added

* Deprecation notice added

* ROCm Offline Installer updates added to Release Highlight

* CSV loading error fixed

* ROCm System Profiler 0.1.2 updated added

* Reference to Offline Installer updated

* Resolved issues removed

* Azure Linux support for 6.3.2 added

* Minor update in ROCm Offline Installer highlight

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-02-12 09:24:58 -05:00
dependabot[bot]
24603ac37a Build(deps): Bump cryptography from 43.0.3 to 44.0.1 in /docs/sphinx (#4365)
Bumps [cryptography](https://github.com/pyca/cryptography) from 43.0.3 to 44.0.1.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/43.0.3...44.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-11 17:01:16 -07:00
Joseph Macaranas
a6b1c656b0 External CI: Fix ROCR common test suite build (#4364)
- Removing the creation of expected folders and symbolic links as workaround to get the test components compiling.
- Set the only OpenCL build flag affecting the build.
2025-02-11 14:44:26 -05:00
Joseph Macaranas
82cf58912c External CI: Fix failures for rocprofiler-systems and ROCR-Runtime (#4361)
- Add rocm_smi_lib dependency to rocprofiler-systems.
- Explicitly set OPENCL_INC_DIR in ROCR-Runtime test job.
2025-02-10 14:06:59 -05:00
Pratik Basyal
c469e34b27 Debian 12 support for single-node added (#300) (#4357) 2025-02-10 09:33:27 -05:00
Pratik Basyal
63b8d9da7b Debian 12 support for single-node added (#300) 2025-02-07 17:47:00 -05:00
Joseph Macaranas
b6d19bd91c External CI: rocWMMA ROCM_PLATFORM_VERSION value set (#4353)
- Set the value of this expected variable to fix build failures.
2025-02-06 17:06:29 -05:00
Peter Park
2751a17cf0 Update vLLM benchmarking guide (#4347)
* update vllm-benchmark

fix hlist overflow

update standalone benchmarking options

update list of models

fix typo and model name

unnecessary duplicate info

update formatting

update vllm benchmark guide

- remove Llama 2 FP8
- add Jais 13B
- update commands

update docker pull tag

update MAD available models

remove extra mad models not relevant to vllm

update PyTorch version

add changelog

add model names to .wordlist.txt

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* fix typo

* update link

* fix link text

* change changelog to previous versions

* fix typo

* remove "for"

---------

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>
2025-02-05 17:18:35 -05:00
Peter Park
9b0ae86b1b Fix ROCm Bandwidth Test license type
Fix ROCm Bandwidth Test license type
2025-02-05 16:40:31 -05:00
harkgill-amd
16f7cb4c04 Update issue workflow to trigger on edit (#4346) 2025-02-05 14:46:16 -05:00
harkgill-amd
de007b6faf Update issue_retrieval.yml (#4342) 2025-02-05 13:21:44 -05:00
Daniel Su
aa1333269c Ex CI: add ROCM_PATH to rocBLAS (#4343) 2025-02-05 13:20:36 -05:00
Pratik Basyal
acb8f60304 Radeon support note updated in 6.3.2 (#4339) 2025-02-04 17:44:24 -05:00
Istvan Kiss
faa67965dd Precision support page update 2025-02-04 16:17:31 +01:00
alexxu-amd
73ab81fbaf Merge pull request #4314 from amd-jnovotny/ai-tutorials-link-roc63x
Cherry-pick to roc-6.3.x: Add ToC and index links to the AI Developer Tutorials (#4312)
2025-01-29 16:44:22 -05:00
Jeffrey Novotny
ddfb5bda12 Add ToC and index links to the AI Developer Tutorials (#4312)
* Add ToC and index links to the AI Developer Tutorials

* Change link positioning

* Change wording

(cherry picked from commit d401b5f152)
2025-01-29 14:45:32 -05:00
Alex Xu
ae7f47a0a2 Merge branch 'develop' into roc-6.3.x 2025-01-28 17:05:44 -05:00
Alex Xu
5e5f7d6bb7 Merge branch 'develop' into roc-6.3.x 2025-01-28 16:41:02 -05:00
Alex Xu
da1125e228 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:25:35 -05:00
Alex Xu
e55b9f2a33 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:18:28 -05:00
Yanyao Wang
761a524d03 Merge pull request #4225 from WBobby/roc-6.3.x
Fix miopen-deps build issue by updating rocm-recipes for boost link
2025-01-06 10:03:50 -06:00
Wang, Yanyao
c895ee483c Fix miopen-deps build issue by updating rocm-recipes for boost link
Signed-off-by: Wang, Yanyao <yanyao.wang@amd.com>
2025-01-05 18:07:31 -08:00
Yanyao Wang
e049d952d4 Merge pull request #4221 from WBobby/roc-6.3.x
Add the required manifest file into roc-6.3.x branch
2025-01-03 11:21:45 -06:00
Wang, Yanyao
ce41922bb5 Update the base docker images for ROCm6.3 2025-01-03 08:10:06 -08:00
Wang, Yanyao
2b53b40caa Add manifest file for ROCm6.3.1 2025-01-03 08:07:38 -08:00
Peter Park
9250e1ba28 Fix PyTorch Compatibility link and remove incomplete rows (#4195)
* fix pytorch-compatibility filename

fix links

* remove incomplete rows in pytorch-compatibility

* fix broken refs
2024-12-24 13:51:33 -05:00
alexxu-amd
3c055ab65b Change version variable to latest
Since gpu-cluster-networking gets moved to dcgpu. All versioning will be renamed.
2024-12-24 13:51:33 -05:00
Peter Park
44aaf1b57c Add PyTorch compatibility doc (#4193)
* Add compatibility framework pages

* update formatting

* WIP

* satisfy spellcheck linter

* PR feedbacks

* caps

* remove jax and tensorflow pages

* comment out "?"s

* update wordlist

* fix toc and table

* update toc and deep-learning-rocm.rst

---------

Co-authored-by: Istvan Kiss <neon60@gmail.com>
2024-12-24 13:51:33 -05:00
alexxu-amd
822e789998 Update index.md 2024-12-24 13:51:33 -05:00
alexxu-amd
243ac78609 Update _toc.yml.in 2024-12-24 13:51:33 -05:00
Daniel Su
c2f483332f External CI: revert sync changes (#4191) 2024-12-24 13:51:33 -05:00
dependabot[bot]
b35267b6bd Build(deps): Bump rocm-docs-core from 1.11.0 to 1.12.0 in /docs/sphinx (#4167)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.11.0 to 1.12.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.11.0...v1.12.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-12-24 13:51:33 -05:00
Alex Xu
deb4895b11 Merge branch 'develop' into roc-6.3.x 2024-12-20 18:42:53 -05:00
Yanyao Wang
8c036531e8 Merge pull request #4163 from WBobby/roc-6.3.x-pr
Update build scripts of ROCm6.3 release to roc-6.3.x branch
2024-12-16 12:23:11 -06:00
Wang, Yanyao
484cbefc2e Update build scripts of ROCm6.3 release to roc-6.3.x branch 2024-12-15 17:35:58 -08:00
alexxu-amd
721b60d52f Merge pull request #4155 from amd-jnovotny/user-kernel-space-rocm-roc63x
Cherry-pick to roc-6.3.x: Change reference to kernel-mode GPU compute driver in ROCm (#4147)
2024-12-13 13:15:06 -05:00
Jeffrey Novotny
8ebe7be283 Change reference to kernel-mode GPU compute driver in ROCm (#4147)
* Change reference to kernel-mode GPU compute driver in ROCm

* More changes for kernel-mode terminology

* Fix linting

(cherry picked from commit 04fdc08328)
2024-12-13 12:13:15 -05:00
Sam Wu
7e8947fdb4 Merge pull request #4128 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-06 11:34:46 -07:00
Sam Wu
66cac5301f Merge pull request #4113 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-05 09:35:17 -07:00
Sam Wu
9f3a1de117 Merge branch 'develop' into roc-6.3.x 2024-12-04 19:34:29 -07:00
Sam Wu
0915fb17e8 Merge pull request #4109 from ROCm/develop
fix links to smi tools full changelog on GH (#4108) in 6.3 release branch
2024-12-04 19:08:06 -07:00
Sam Wu
0d3eb1d774 Merge pull request #4104 from ROCm/develop
Merge develop into ROCm 6.3 release branch
2024-12-04 17:09:23 -07:00
Sam Wu
7a258cdba9 Merge pull request #4093 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-03 16:17:01 -07:00
61 changed files with 3705 additions and 2277 deletions

View File

@@ -101,7 +101,7 @@ jobs:
-DMIOPEN_BACKEND=HIP
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/miopen-deps
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DMIOPEN_ENABLE_AI_KERNEL_TUNING=OFF
-DMIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK=OFF
-DCMAKE_BUILD_TYPE=Release
@@ -129,6 +129,8 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: $(JOB_TEST_POOL)
workspace:
clean: all

View File

@@ -123,16 +123,13 @@ jobs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/rocrtst/suites/test_common
script: |
sudo rm -rf $(Agent.BuildDirectory)/external/llvm-project
mkdir -p $(Agent.BuildDirectory)/external/llvm-project/clang/lib
sudo ln -s $(Agent.BuildDirectory)/rocm/llvm/lib/clang/20/include $(Agent.BuildDirectory)/external/llvm-project/clang/lib/Headers
mkdir build && cd build
cmake .. \
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm \
-DTARGET_DEVICES=$(JOB_GPU_TARGET) \
-DROCM_DIR=$(Agent.BuildDirectory)/rocm \
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin \
-DOPENCL_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin
-DOPENCL_INC_DIR=$(Agent.BuildDirectory)/rocm/llvm/lib/clang/21/include
make
make rocrtst_kernels
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml

View File

@@ -59,14 +59,10 @@ jobs:
value: $(Build.BinariesDirectory)/rocm
- name: TENSILE_ROCM_ASSEMBLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
- name: CMAKE_CXX_COMPILER
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
- name: TENSILE_ROCM_PATH
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin:$(Agent.BuildDirectory)/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: DAY_STRING
value: $[format('{0:ddMMyyyy}', pipeline.startTime)]
pool: ${{ variables.ULTRA_BUILD_POOL }}
@@ -154,9 +150,8 @@ jobs:
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/amdclang
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- TENSILE_ROCM_PATH:::/home/user/workspace/rocm/bin/hipcc
- ROCM_PATH:::/home/user/workspace/rocm
extraCopyDirectories:
- deps

View File

@@ -51,6 +51,7 @@ parameters:
jobs:
- job: rccl
timeoutInMinutes: 90
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -78,7 +79,6 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
- script: chmod +x $(Agent.BuildDirectory)/rocm/bin/hipify-perl
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -88,7 +88,7 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DBUILD_TESTS=ON
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake/
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake;$(Agent.BuildDirectory)/rocm/libexec/hipify
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -64,10 +64,10 @@ jobs:
value: $(Build.BinariesDirectory)/rocm
- name: TENSILE_ROCM_ASSEMBLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang
- name: CMAKE_CXX_COMPILER
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
@@ -96,8 +96,8 @@ jobs:
-DCMAKE_TOOLCHAIN_FILE=toolchain-linux.cmake
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DTensile_CODE_OBJECT_VERSION=default
-DTensile_LOGIC=asm_full
@@ -125,8 +125,8 @@ jobs:
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
- ROCM_PATH:::/home/user/workspace/rocm
- job: rocBLAS_testing
dependsOn: rocBLAS

View File

@@ -84,6 +84,7 @@ jobs:
echo "##vso[task.setvariable variable=PYBIND11_PATH;]$(python3 -c 'import pybind11; print(pybind11.get_cmake_dir())')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
installEnabled: false
extraBuildFlags: >-
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(PYTHON_USER_SITE)/pybind11;$(PYTHON_DIST_PACKAGES)/pybind11;$(PYBIND11_PATH)
@@ -91,6 +92,14 @@ jobs:
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DCMAKE_INSTALL_PREFIX_PYTHON=$(Build.BinariesDirectory)
-GNinja
- task: Bash@3
displayName: 'rocPyDecode install'
inputs:
targetType: inline
script: |
sudo cmake --build . --target install
sudo chown -R $(whoami):$(id -gn) $(Build.BinariesDirectory)
workingDirectory: $(Build.SourcesDirectory)/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)
@@ -105,7 +114,8 @@ jobs:
script: |
export ROCM_PATH=$(Agent.BuildDirectory)/rocm
export HIP_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include/hip
python3 setup.py bdist_wheel
sudo python3 setup.py bdist_wheel
sudo chown -R $(whoami):$(id -gn) $(find . -name "*.whl")
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:

View File

@@ -80,6 +80,7 @@ jobs:
-DROCWMMA_BUILD_SAMPLES=OFF
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
-GNinja
# gfx1030 not supported in documentation
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -56,6 +56,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- job: rocminfo_testing
dependsOn: rocminfo
@@ -102,5 +103,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
environment: test
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -55,9 +55,10 @@ parameters:
- rocJPEG
- rocm-core
- rocminfo
- ROCR-Runtime
- rocm_smi_lib
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
jobs:
- job: rocprofiler_systems

View File

@@ -29,6 +29,7 @@ parameters:
- clr
- half
- llvm-project
- rocm-cmake
- rocminfo
- ROCR-Runtime
- name: rocmTestDependencies
@@ -79,6 +80,7 @@ jobs:
-DHALF_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:

View File

@@ -1,29 +0,0 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: checkoutRef
type: string
default: refs/tags/$(LATEST_RELEASE_TAG)
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
- repository: release_repo
type: github
endpoint: ROCm
name: ROCm/TransferBench
ref: ${{ parameters.checkoutRef }}
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/TransferBench.yml
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -20,41 +20,37 @@ steps:
ARTIFACT_NAME="composablekernel.${{ parameters.gpuTarget }}"
EXIT_CODE=0
# The commits that MIOpen reference are all merge commits from CK/develop to CK/amd-develop
# These commits are present on CK/amd-develop but not on CK/develop
# Ex-CI only builds CK/develop, so we need to find a commit present on both CK/develop and CK/amd-develop
# Try to find an Azure build for the specific CK commit called out in MIOpen's requirements.txt
CK_COMMIT=$(grep 'ROCm/composable_kernel' requirements.txt | sed -E 's/.*@([a-f0-9]{40}).*/\1/')
echo "Fetching CK build ID for commit $CK_COMMIT"
CK_COMMIT_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}"
PARENT_COMMIT=$(curl -s $CK_COMMIT_URL | jq '.parents[1].sha' | tr -d '"')
echo "Found parent commit: $PARENT_COMMIT"
PARENT_CHECKS_URL="$GH_API/composable_kernel/commits/${PARENT_COMMIT}/check-runs"
CK_BUILD_ID=$(curl -s $PARENT_CHECKS_URL | \
CK_CHECKS_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}/check-runs"
CK_BUILD_ID=$(curl -s $CK_CHECKS_URL | \
jq '.check_runs[] | select(.name == "composable_kernel" and .app.slug == "azure-pipelines") | .details_url' | \
tr -d '"' | grep -oP 'buildId=\K\d+')
if [ -z "$CK_BUILD_ID" ]; then
# If none found, use latest successful CK build instead
if [[ -z "$CK_BUILD_ID" ]]; then
echo "Did not find specific CK build ID"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
echo "Found latest CK build ID: $CK_BUILD_ID"
EXIT_CODE=1
else
echo "Found specific CK build ID: $CK_BUILD_ID"
fi
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
if [ -z "$ARTIFACT_URL" ]; then
echo "Did not find specific CK build artifact"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&status=completed&result=succeeded&\$top=1&api-version=7.1"
# If using the specific CK commit and it doesn't have any valid artifacts, use latest successful CK build instead
if { [[ -z "$ARTIFACT_URL" ]] || [[ "$ARTIFACT_URL" == "null" ]]; } && [[ $EXIT_CODE -eq 0 ]]; then
echo "Did not find valid specific CK build artifact"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
echo "Found latest CK build ID: $CK_BUILD_ID"
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
EXIT_CODE=2
elif [ $EXIT_CODE -eq 0 ]; then
echo "Found specific CK build ID: $CK_BUILD_ID"
fi
echo "Downloading CK artifact from $ARTIFACT_URL"
@@ -64,9 +60,13 @@ steps:
tar -zxvf $(System.ArtifactsDirectory)/$ARTIFACT_NAME/*.tar.gz -C $(Agent.BuildDirectory)/rocm
rm -r $(System.ArtifactsDirectory)/ck.zip $(System.ArtifactsDirectory)/$ARTIFACT_NAME
if [ $EXIT_CODE -ne 0 ]; then
if [[ $EXIT_CODE -ne 0 ]]; then
BUILD_COMMIT=$(curl -s $AZ_API/build/builds/$CK_BUILD_ID | jq '.sourceVersion' | tr -d '"')
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
if [[ $EXIT_CODE -eq 1 ]]; then
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
elif [[ $EXIT_CODE -eq 2 ]]; then
echo "WARNING: couldn't find a valid CK artifact for commit $CK_COMMIT"
fi
echo "Instead used latest CK build $CK_BUILD_ID for commit $BUILD_COMMIT"
fi
exit $EXIT_CODE

View File

@@ -2,7 +2,7 @@ name: Issue retrieval
on:
issues:
types: [opened]
types: [opened, edited]
jobs:
auto-retrieve:
@@ -15,7 +15,7 @@ jobs:
app_id: ${{ secrets.ACTION_APP_ID }}
private_key: ${{ secrets.ACTION_PEM }}
- name: 'Retrieve Issue'
uses: abhimeda/rocm_issue_management@main
uses: harkgill-amd/rocm_issue_management@main
with:
authentication-token: ${{ steps.generate_token.outputs.token }}
github-organization: 'ROCm'

1
.gitignore vendored
View File

@@ -11,6 +11,7 @@ _toc.yml
docBin/
_doxygen/
_readthedocs/
__pycache__/
# avoid duplicating contributing.md due to conf.py
docs/CHANGELOG.md

View File

@@ -74,6 +74,7 @@ Conda
ConnectX
CuPy
Dashboarding
DBRX
DDR
DF
DGEMM
@@ -92,6 +93,7 @@ DataFrame
DataLoader
DataParallel
Debian
DeepSeek
DeepSpeed
Dependabot
Deprecations
@@ -115,6 +117,7 @@ FX
Filesystem
FindDb
Flang
FluxBenchmark
Fortran
Fuyu
GALB
@@ -129,6 +132,8 @@ GDS
GEMM
GEMMs
GFortran
GFXIP
Gemma
GiB
GIM
GL
@@ -151,6 +156,7 @@ HCA
HGX
HIPCC
HIPExtension
HIPification
HIPIFY
HIPification
HIPify
@@ -313,6 +319,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretraining
Profiler's
PyPi
Pytest
@@ -334,6 +341,7 @@ RNNs
ROC
ROCProfiler
ROCT
ROCTx
ROCTracer
ROCclr
ROCdbgapi
@@ -474,6 +482,7 @@ ZenDNN
accuracies
activations
addr
ai
alloc
allocatable
allocator
@@ -539,6 +548,7 @@ cTDP
dataset
datasets
dataspace
datatemplate
datatype
datatypes
dbgapi
@@ -567,6 +577,7 @@ el
embeddings
enablement
encodings
endfor
endpgm
enqueue
env
@@ -687,6 +698,7 @@ pageable
pallas
parallelization
parallelizing
param
parameterization
passthrough
perfcounter
@@ -711,6 +723,7 @@ preprocessing
preprocessor
prequantized
prerequisites
pretraining
profiler
profilers
protobuf
@@ -763,6 +776,7 @@ rocm
rocminfo
rocprim
rocprof
rocprofv
rocprofiler
rocr
rocrand
@@ -802,6 +816,7 @@ supercomputing
symlink
symlinks
sys
tabindex
td
tensorfloat
th
@@ -847,6 +862,7 @@ vectorizes
virtualize
virtualized
vjxb
vllm
voxel
walkthrough
walkthroughs

View File

@@ -50,7 +50,7 @@ The following example shows how to use the repo tool to download the ROCm source
```bash
mkdir -p ~/ROCm/
cd ~/ROCm/
export ROCM_VERSION=6.3.2
export ROCM_VERSION=6.3.3
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
```
@@ -77,8 +77,8 @@ The Build time will reduce significantly if we limit the GPU Architecture/s agai
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
cd ~/WORKSPACE/
export ROCM_VERSION=6.3.2
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b develop -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
export ROCM_VERSION=6.3.3
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
# --------------------------------------

View File

@@ -10,7 +10,7 @@
<!-- markdownlint-disable reference-links-images -->
<!-- markdownlint-disable no-missing-space-atx -->
<!-- spellcheck-disable -->
# ROCm 6.3.2 release notes
# ROCm 6.3.3 release notes
The release notes provide a summary of notable changes since the previous ROCm release.
@@ -24,46 +24,51 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm known issues](#rocm-known-issues)
- [ROCm resolved issues](#rocm-resolved-issues)
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a
display connected, continue to use ROCm 6.2.3. See the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
documentation to verify compatibility and system requirements.
```
## Release highlights
The following are notable improvements in ROCm 6.3.2. For changes to individual components, see
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
[Detailed component changes](#detailed-component-changes).
### ROCm Offline Installer Creator updates
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
### ROCm documentation updates
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
* Documentation about ROCm compatibility with deep learning frameworks has been added. These topics outline ROCm-enabled features for each deep learning framework, key ROCm libraries that can influence the capabilities, validated Docker image tags, and features supported across the available ROCm and framework versions. For more information, see:
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
* [PyTorch compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/pytorch-compatibility.html)
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
* [TensorFlow compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/tensorflow-compatibility.html)
* [JAX compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/jax-compatibility.html)
* The [HIP C++ language extensions](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_cpp_language_extensions.html) and [Kernel language C++ support](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/kernel_language_cpp_support.html) topics have been reorganized to make them easier to find and review. The topics have also been enhanced with new content.
* The following HIP documentation topics have been updated:
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)
## Operating system and hardware support changes
ROCm 6.3.2 adds support for Azure Linux 3.0 (kernel: 6.6). Azure Linux is supported only on AMD Instinct accelerators. For more information, see [Azure Linux installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html).
Operating system and hardware support remain unchanged in this release.
See the [Compatibility
matrix](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html)
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
for more information about operating system and hardware compatibility.
## ROCm components
The following table lists the versions of ROCm components for ROCm 6.3.2, including any version
changes from 6.3.1 to 6.3.2. Click the component's updated version to go to a list of its changes.
The following table lists the versions of ROCm components for ROCm 6.3.3, including any version
changes from 6.3.2 to 6.3.3. Click the component's updated version to go to a list of its changes.
Click {fab}`github` to go to the component's source code on GitHub.
<div class="pst-scrollable-table-container">
@@ -85,47 +90,47 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="9">Libraries</th>
<th rowspan="9">Machine learning and computer vision</th>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.2/index.html">Composable Kernel</a></td>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.3/index.html">Composable Kernel</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/composable_kernel"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.2/index.html">MIGraphX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.3/index.html">MIGraphX</a></td>
<td>2.11.0</td>
<td><a href="https://github.com/ROCm/AMDMIGraphX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.2/index.html">MIOpen</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.3/index.html">MIOpen</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/MIOpen"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.2/index.html">MIVisionX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.3/index.html">MIVisionX</a></td>
<td>3.1.0</td>
<td><a href="https://github.com/ROCm/MIVisionX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.2/index.html">rocAL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.3/index.html">rocAL</a></td>
<td>2.1.0</td>
<td><a href="https://github.com/ROCm/rocAL"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.2/index.html">rocDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.3/index.html">rocDecode</a></td>
<td>0.8.0</td>
<td><a href="https://github.com/ROCm/rocDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.2/index.html">rocJPEG</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.3/index.html">rocJPEG</a></td>
<td>0.6.0</td>
<td><a href="https://github.com/ROCm/rocJPEG"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.2/index.html">rocPyDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.3/index.html">rocPyDecode</a></td>
<td>0.2.0</td>
<td><a href="https://github.com/ROCm/rocPyDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.2/index.html">RPP</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.3/index.html">RPP</a></td>
<td>1.9.1</td>
<td><a href="https://github.com/ROCm/rpp"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -134,7 +139,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="1"></th>
<th rowspan="1">Communication</th>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.2/index.html">RCCL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.3/index.html">RCCL</a></td>
<td>2.21.5</td>
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -143,82 +148,82 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="16"></th>
<th rowspan="16">Math</th>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.2/index.html">hipBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.3/index.html">hipBLAS</a></td>
<td>2.3.0</td>
<td><a href="https://github.com/ROCm/hipBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.2/index.html">hipBLASLt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.3/index.html">hipBLASLt</a></td>
<td>0.10.0</td>
<td><a href="https://github.com/ROCm/hipBLASLt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.2/index.html">hipFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.3/index.html">hipFFT</a></td>
<td>1.0.17</td>
<td><a href="https://github.com/ROCm/hipFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.2/index.html">hipfort</a></td>
<td>0.5.0&nbsp;&Rightarrow;&nbsp;<a href="#hipfort-0-5-1">0.5.1</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.3/index.html">hipfort</a></td>
<td>0.5.1</td>
<td><a href="https://github.com/ROCm/hipfort"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.2/index.html">hipRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.3/index.html">hipRAND</a></td>
<td>2.11.1</td>
<td><a href="https://github.com/ROCm/hipRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.2/index.html">hipSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.3/index.html">hipSOLVER</a></td>
<td>2.3.0</td>
<td><a href="https://github.com/ROCm/hipSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.2/index.html">hipSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.3/index.html">hipSPARSE</a></td>
<td>3.1.2</td>
<td><a href="https://github.com/ROCm/hipSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.2/index.html">hipSPARSELt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.3/index.html">hipSPARSELt</a></td>
<td>0.2.2</td>
<td><a href="https://github.com/ROCm/hipSPARSELt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.2/index.html">rocALUTION</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.3/index.html">rocALUTION</a></td>
<td>3.2.1</td>
<td><a href="https://github.com/ROCm/rocALUTION"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.2/index.html">rocBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.3/index.html">rocBLAS</a></td>
<td>4.3.0</td>
<td><a href="https://github.com/ROCm/rocBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.2/index.html">rocFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.3/index.html">rocFFT</a></td>
<td>1.0.31</td>
<td><a href="https://github.com/ROCm/rocFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.2/index.html">rocRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.3/index.html">rocRAND</a></td>
<td>3.2.0</td>
<td><a href="https://github.com/ROCm/rocRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.2/index.html">rocSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.3/index.html">rocSOLVER</a></td>
<td>3.27.0</td>
<td><a href="https://github.com/ROCm/rocSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.2/index.html">rocSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.3/index.html">rocSPARSE</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.2/index.html">rocWMMA</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.3/index.html">rocWMMA</a></td>
<td>1.6.0</td>
<td><a href="https://github.com/ROCm/rocWMMA"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.2/src/index.html">Tensile</a></td>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.3/src/index.html">Tensile</a></td>
<td>4.42.0</td>
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -227,22 +232,22 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="4"></th>
<th rowspan="4">Primitives</th>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.2/index.html">hipCUB</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.3/index.html">hipCUB</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/hipCUB"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.2/index.html">hipTensor</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.3/index.html">hipTensor</a></td>
<td>1.4.0</td>
<td><a href="https://github.com/ROCm/hipTensor"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.2/index.html">rocPRIM</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.3/index.html">rocPRIM</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocPRIM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.2/index.html">rocThrust</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.3/index.html">rocThrust</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -251,27 +256,27 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="7">Tools</th>
<th rowspan="7">System management</th>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.2/index.html">AMD SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.3/index.html">AMD SMI</a></td>
<td>24.7.1</td>
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.2/index.html">ROCm Data Center Tool</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.3/index.html">ROCm Data Center Tool</a></td>
<td>0.3.0</td>
<td><a href="https://github.com/ROCm/rdc"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.2/index.html">rocminfo</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.3/index.html">rocminfo</a></td>
<td>1.0.0</td>
<td><a href="https://github.com/ROCm/rocminfo"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.2/index.html">ROCm SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.3/index.html">ROCm SMI</a></td>
<td>7.4.0</td>
<td><a href="https://github.com/ROCm/rocm_smi_lib"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.2/index.html">ROCmValidationSuite</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.3/index.html">ROCmValidationSuite</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -280,38 +285,38 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="6"></th>
<th rowspan="6">Performance</th>
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.2/index.html">ROCm Bandwidth
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.3/index.html">ROCm Bandwidth
Test</a></td>
<td>1.4.0</td>
<td><a href="https://github.com/ROCm/rocm_bandwidth_test/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.2/index.html">ROCm Compute Profiler</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.3/index.html">ROCm Compute Profiler</a></td>
<td>3.0.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-compute"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.2/index.html">ROCm Systems Profiler</a></td>
<td>0.1.0&nbsp;&Rightarrow;&nbsp;<a href="#rocm-systems-profiler-0-1-1">0.1.1</td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.3/index.html">ROCm Systems Profiler</a></td>
<td>0.1.1&nbsp;&Rightarrow;&nbsp;<a href="#rocm-systems-profiler-0-1-2">0.1.2</td>
<td><a href="https://github.com/ROCm/rocprofiler-systems"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.2/index.html">ROCProfiler</a></td>
<td>2.0.0&nbsp;&Rightarrow;&nbsp;<a href="#rocprofiler-2-0-0">2.0.0</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.3/index.html">ROCProfiler</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/ROCProfiler/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.2/index.html">ROCprofiler-SDK</a></td>
<td>0.5.0&nbsp;&Rightarrow;&nbsp;<a href="#rocprofiler-sdk-0-5-0">0.5.0</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.3/index.html">ROCprofiler-SDK</a></td>
<td>0.5.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-sdk/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr >
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.2/index.html">ROCTracer</a></td>
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.3/index.html">ROCTracer</a></td>
<td>4.1.0</td>
<td><a href="https://github.com/ROCm/ROCTracer/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -321,32 +326,32 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="5"></th>
<th rowspan="5">Development</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.2/index.html">HIPIFY</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.3/index.html">HIPIFY</a></td>
<td>18.0.0</td>
<td><a href="https://github.com/ROCm/HIPIFY/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.2/index.html">ROCdbgapi</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.3/index.html">ROCdbgapi</a></td>
<td>0.77.0</td>
<td><a href="https://github.com/ROCm/ROCdbgapi/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.2/index.html">ROCm CMake</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.3/index.html">ROCm CMake</a></td>
<td>0.14.0</td>
<td><a href="https://github.com/ROCm/rocm-cmake/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.2/index.html">ROCm Debugger (ROCgdb)</a>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.3/index.html">ROCm Debugger (ROCgdb)</a>
</td>
<td>15.2</td>
<td><a href="https://github.com/ROCm/ROCgdb/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.2/index.html">ROCr Debug Agent</a>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.3/index.html">ROCr Debug Agent</a>
</td>
<td>2.0.3</td>
<td><a href="https://github.com/ROCm/rocr_debug_agent/"><i
@@ -356,13 +361,13 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-compilers">
<tr>
<th rowspan="2" colspan="2">Compilers</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.2/index.html">HIPCC</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.3/index.html">HIPCC</a></td>
<td>1.1.1</td>
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/index.html">llvm-project</a></td>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/index.html">llvm-project</a></td>
<td>18.0.0</td>
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -371,12 +376,12 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-runtimes">
<tr>
<th rowspan="2" colspan="2">Runtimes</th>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.2/index.html">HIP</a></td>
<td>6.3.1&nbsp;&Rightarrow;&nbsp;<a href="#hip-6-3-2">6.3.2</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.3/index.html">HIP</a></td>
<td>6.3.2</td>
<td><a href="https://github.com/ROCm/HIP/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.2/index.html">ROCr Runtime</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.3/index.html">ROCr Runtime</a></td>
<td>1.14.0</td>
<td><a href="https://github.com/ROCm/ROCR-Runtime/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -388,112 +393,34 @@ Click {fab}`github` to go to the component's source code on GitHub.
The following sections describe key changes to ROCm components.
### **HIP** (6.3.2)
#### Added
* Tracking of Heterogeneous System Architecture (HSA) handlers:
- Adds an atomic counter to track the outstanding HSA handlers.
- Waits on CPU for the callbacks if the number exceeds the defined value.
* Codes to capture Architected Queueing Language (AQL) packets for HIP graph memory copy node between host and device. HIP enqueues AQL packets during graph launch.
* Control to use system pool implementation in runtime commands handling. By default, it is disabled.
* A new path to avoid `WaitAny` calls in `AsyncEventsLoop`. The new path is selected by default.
* Runtime control on decrement counter only if the event is popped. There is a new way to restore dead signals cleanup for the old path.
* A new logic in runtime to track the age of events from the kernel mode driver.
#### Optimized
* HSA callback performance. The HIP runtime creates and submits commands in the queue and interacts with HSA through a callback function. HIP waits for the CPU status from HSA to optimize the handling of events, profiling, commands, and HSA signals for higher performance.
* Runtime optimization which combines all logic of `WaitAny` in a single processing loop and avoids extra memory allocations or reference counting. The runtime won't spin on the CPU if all events are busy.
* Multi-threaded dispatches for performance improvement.
* Command submissions and processing between CPU and GPU by introducing a way to limit the software batch size.
* Switch to `std::shared_mutex` in book/keep logic in streams from multiple threads simultaneously, for performance improvement in specific customer applications.
* `std::shared_mutex` is used in memory object mapping, for performance improvement.
### **ROCm Systems Profiler** (0.1.2)
#### Resolved issues
* Race condition in multi-threaded producer/consumer scenario with `hipMallocFromPoolAsync`.
* Segmentation fault with `hipStreamLegacy` while using the API `hipStreamWaitEvent`.
* Usage of `hipStreamLegacy` in HIP event record.
* A soft hang in graph execution process from HIP user object. The fix handles the release of graph execution object properly considering synchronization on the device/stream. The user application now behaves the same with `hipUserObject` on both the AMD ROCm and NVIDIA CUDA platforms.
### **hipfort** (0.5.1)
#### Added
* Support for building with LLVM Flang.
#### Resolved issues
* Fixed the exported `hipfort::hipsparse` CMake target.
### **ROCm Systems Profiler** (0.1.1)
#### Resolved issues
* Fixed an error when building from source on some SUSE and RHEL systems when using the `ROCPROFSYS_BUILD_DYNINST` option.
### **ROCProfiler** (2.0.0)
#### Changed
* Replaced `CU_UTILIZATION` metric with `SIMD_UTILIZATION` for better accuracy.
#### Resolved issues
* Fixed the `VALUBusy` and `SALUBusy` activity metrics for accuracy on MI300.
### **ROCprofiler-SDK** (0.5.0)
#### Added
* Support for system-wide collection of SQ counters across all HSA processes.
#### Changed
* `rocprofiler_sample_device_counting_service` API updated to return counter output immediately, when called in synchronous mode.
* Fixed an error that prevented GPU hardware activity from being presented in certain workloads.
## ROCm known issues
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
## ROCm resolved issues
### Zero value is displayed in ROCTx aggregated statistics
The following are previously known issues resolved in this release. For resolved issues related to
individual components, review the [Detailed component changes](#detailed-component-changes).
### TransferBench packages not functional
Issue with TransferBench packages not being compiled properly has been fixed. For more information, See [GitHub issue #4081](https://github.com/ROCm/ROCm/issues/4081).
### ROCm Compute Profiler CTest failure in CI
When running the ROCm Compute Profiler (`rocprof-compute`) CTest in the Azure CI environment, the
`rocprof-compute` execution test failed. This issue was due to an outdated test file that was not renamed
(`omniperf` to `rocprof-compute`), and the `ROCM_PATH` environment variable not being set in
the Azure CI environment, resulting in the tool being unable to extract chip information as expected.
This issue has been fixed in the ROCm 6.3.2 release. See [GitHub issue #4085](https://github.com/ROCm/ROCm/issues/4085).
### MIVisionX memory access fault in Canny edge detection
An issue where Canny edge detection kernels accessed out-of-bounds memory locations while
computing gradient intensities on edge pixels has been fixed. This issue was isolated to
Canny-specific use cases on Instinct MI300 series accelerators. See [GitHub issue #4086](https://github.com/ROCm/ROCm/issues/4086).
### AMD VCN instability with rocDecode
A firmware crash on gfx942 devices when AMD Video Core Next (VCN) was used for rocDecode operations has been resolved.
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior. See [GitHub issue #4396](https://github.com/ROCm/ROCm/issues/4396).
## ROCm upcoming changes
The following changes to the ROCm software stack are anticipated for future releases.
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
### AMDGPU wavefront size compiler macro deprecation
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/LLVM/clang/html/AMDGPUSupport.html).
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
### HIPCC Perl scripts deprecation

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.2"
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |

View File

@@ -1,120 +1,120 @@
ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#mi300x-past-60]_,Debian 12 [#mi300x-past-60]_,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,
Thrust,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,
Thrust,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#single-node-past-60]_ Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
16 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
17 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
18 .. _gpu-support-compatibility-matrix-past-60: .. _gpu-support-compatibility-matrix-past-60:
19 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
20 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
21 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
22 gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
23 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
24
25 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: .. _framework-support-compatibility-matrix-past-60:
26 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30
31 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60: .. _thirdpartycomms-support-compatibility-matrix-past-60:
32 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
33 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
34
35 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
36 Thrust 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
37 CUB 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
38
39 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
40 Tested user space versions 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
41
42 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60: .. _mllibs-support-compatibility-matrix-past-60:
43 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
44 :doc:`MIGraphX <amdmigraphx:index>` 2.11.0 2.11.0 2.11.0 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
45 :doc:`MIOpen <miopen:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
46 :doc:`MIVisionX <mivisionx:index>` 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
47 :doc:`rocAL <rocal:index>` 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0 2.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
48 :doc:`rocDecode <rocdecode:index>` 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
49 :doc:`rocJPEG <rocjpeg:index>` 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
50 :doc:`rocPyDecode <rocpydecode:index>` 0.2.0 0.2.0 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A
51 :doc:`RPP <rpp:index>` 1.9.1 1.9.1 1.9.1 1.9.1 1.8.0 1.8.0 1.8.0 1.8.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0
52
53 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60: .. _commlibs-support-compatibility-matrix-past-60:
54 :doc:`RCCL <rccl:index>` 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
55
56 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60: .. _mathlibs-support-compatibility-matrix-past-60:
57 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
58 :doc:`hipBLAS <hipblas:index>` 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0
59 :doc:`hipBLASLt <hipblaslt:index>` 0.10.0 0.10.0 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
60 :doc:`hipFFT <hipfft:index>` 1.0.17 1.0.17 1.0.17 1.0.17 1.0.16 1.0.15 1.0.15 1.0.14 1.0.14 1.0.14 1.0.14 1.0.13 1.0.13
61 :doc:`hipfort <hipfort:index>` 0.5.1 0.5.1 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0
62 :doc:`hipRAND <hiprand:index>` 2.11.1 2.11.1 2.11.1 2.11.0 2.11.1 2.11.0 2.11.0 2.11.0 2.10.16 2.10.16 2.10.16 2.10.16 2.10.16
63 :doc:`hipSOLVER <hipsolver:index>` 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.1 2.1.1 2.1.0 2.0.0 2.0.0
64 :doc:`hipSPARSE <hipsparse:index>` 3.1.2 3.1.2 3.1.2 3.1.2 3.1.1 3.1.1 3.1.1 3.1.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
65 :doc:`hipSPARSELt <hipsparselt:index>` 0.2.2 0.2.2 0.2.2 0.2.2 0.2.1 0.2.1 0.2.1 0.2.1 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0
66 :doc:`rocALUTION <rocalution:index>` 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.0 3.2.0 3.2.0 3.1.1 3.1.1 3.1.1 3.0.3 3.0.3
67 :doc:`rocBLAS <rocblas:index>` 4.3.0 4.3.0 4.3.0 4.3.0 4.2.4 4.2.1 4.2.1 4.2.0 4.1.2 4.1.0 4.1.0 4.0.0 4.0.0
68 :doc:`rocFFT <rocfft:index>` 1.0.31 1.0.31 1.0.31 1.0.31 1.0.30 1.0.29 1.0.29 1.0.28 1.0.27 1.0.27 1.0.26 1.0.25 1.0.23
69 :doc:`rocRAND <rocrand:index>` 3.2.0 3.2.0 3.2.0 3.2.0 3.1.1 3.1.0 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.0 2.10.17
70 :doc:`rocSOLVER <rocsolver:index>` 3.27.0 3.27.0 3.27.0 3.27.0 3.26.2 3.26.0 3.26.0 3.26.0 3.25.0 3.25.0 3.25.0 3.24.0 3.24.0
71 :doc:`rocSPARSE <rocsparse:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
72 :doc:`rocWMMA <rocwmma:index>` 1.6.0 1.6.0 1.6.0 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
73 :doc:`Tensile <tensile:src/index>` 4.42.0 4.42.0 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
74
75 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60: .. _primitivelibs-support-compatibility-matrix-past-60:
76 :doc:`hipCUB <hipcub:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
77 :doc:`hipTensor <hiptensor:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
78 :doc:`rocPRIM <rocprim:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
79 :doc:`rocThrust <rocthrust:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
80
81 SUPPORT LIBS
82 `hipother <https://github.com/ROCm/hipother>`_ 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
83 `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
84 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
85
86 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60: .. _tools-support-compatibility-matrix-past-60:
87 :doc:`AMD SMI <amdsmi:index>` 24.7.1 24.7.1 24.7.1 24.7.1 24.6.3 24.6.3 24.6.3 24.6.2 24.5.1 24.5.1 24.4.1 23.4.2 23.4.2
88 :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
89 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
90 :doc:`ROCm SMI <rocm_smi_lib:index>` 7.4.0 7.4.0 7.4.0 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
91 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
92
93 PERFORMANCE TOOLS
94 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
95 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.0.0 3.0.0 3.0.0 3.0.0 2.0.1 2.0.1 2.0.1 2.0.1 N/A N/A N/A N/A N/A
96 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A
97 :doc:`ROCProfiler <rocprofiler:index>` 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
98 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.5.0 0.5.0 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 N/A N/A N/A N/A N/A
99 :doc:`ROCTracer <roctracer:index>` 4.1.60303 4.1.60302 4.1.60301 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
100
101 DEVELOPMENT TOOLS
102 :doc:`HIPIFY <hipify:index>` 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
103 :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.14.0 0.14.0 0.14.0 0.13.0 0.13.0 0.13.0 0.13.0 0.12.0 0.12.0 0.12.0 0.11.0 0.11.0
104 :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.0 0.77.0 0.77.0 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
105 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 15.2.0 15.2.0 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
106 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.3.0 0.3.0 0.3.0 N/A N/A
107 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
108
109 COMPILERS .. _compilers-support-compatibility-matrix-past-60: .. _compilers-support-compatibility-matrix-past-60:
110 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
111 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
112 `Flang <https://github.com/ROCm/flang>`_ 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
113 :doc:`llvm-project <llvm-project:index>` 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
114 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
115
116 RUNTIMES .. _runtime-support-compatibility-matrix-past-60: .. _runtime-support-compatibility-matrix-past-60:
117 :doc:`AMD CLR <hip:understand/amd_clr>` 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
118 :doc:`HIP <hip:index>` 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
119 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
120 :doc:`ROCr Runtime <rocr-runtime:index>` 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -23,7 +23,7 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "6.3.2", "6.3.1", "6.2.0"
:header: "ROCm Version", "6.3.3", "6.3.2", "6.2.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04
@@ -32,8 +32,8 @@ compatibility and system requirements.
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
,Debian 12 [#mi300x]_,Debian 12 [#mi300x]_,
,Azure Linux 3.0 [#mi300x]_,,
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
@@ -83,7 +83,7 @@ compatibility and system requirements.
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.2.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.8.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.14
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.4.0
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.2.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.1
@@ -104,8 +104,8 @@ compatibility and system requirements.
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.0.1
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.2.0
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.2.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,20240607.1.4246
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
@@ -118,37 +118,39 @@ compatibility and system requirements.
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,2.0.1
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60200
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60200
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.4.0
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60200
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60200
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.13.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.76.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,14.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,..
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,..
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.2.41133
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.2.41133
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.2.41133
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.2.41133
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.13.0
.. rubric:: Footnotes
.. [#mi300x] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
@@ -215,7 +217,8 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#mi300x-past-60] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].

View File

@@ -4,6 +4,8 @@
:description: JAX compatibility
:keywords: GPU, JAX compatibility
.. version-set:: rocm_version latest
*******************************************************************************
JAX compatibility
*******************************************************************************
@@ -119,7 +121,8 @@ Critical ROCm libraries for JAX
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:header-rows: 1
@@ -129,7 +132,7 @@ performance, and feature set available to developers.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
@@ -138,7 +141,7 @@ performance, and feature set available to developers.
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
@@ -147,7 +150,7 @@ performance, and feature set available to developers.
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
@@ -155,23 +158,23 @@ performance, and feature set available to developers.
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
@@ -179,28 +182,28 @@ performance, and feature set available to developers.
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for

View File

@@ -4,6 +4,8 @@
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
.. version-set:: rocm_version latest
********************************************************************************
PyTorch compatibility
********************************************************************************
@@ -56,7 +58,7 @@ Docker image compatibility
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -77,26 +79,26 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -107,11 +109,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.18 <https://www.python.org/downloads/release/python-3918/>`_
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -122,11 +124,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -137,7 +139,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
@@ -152,7 +154,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
@@ -167,14 +169,14 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
@@ -182,7 +184,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
@@ -200,7 +202,8 @@ Critical ROCm libraries for PyTorch
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:header-rows: 1
@@ -210,28 +213,28 @@ performance, and feature set available to developers.
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- :version-ref:`"Composable Kernel" rocm_version`
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
@@ -239,93 +242,93 @@ performance, and feature set available to developers.
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 1.4.0
- :version-ref:`hipTensor rocm_version`
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- :version-ref:`MIGraphX rocm_version`
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.1.0
- :version-ref:`MIVisionX rocm_version`
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 2.1.0
- :version-ref:`rocAL rocm_version`
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- :version-ref:`rocDecode rocm_version`
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- :version-ref:`rocJPEG rocm_version`
- Provides hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 1.6.0
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.

View File

@@ -4,6 +4,8 @@
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow compatibility
.. version-set:: rocm_version latest
*******************************************************************************
TensorFlow compatibility
*******************************************************************************
@@ -54,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -68,47 +70,47 @@ the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
Critical ROCm libraries for TensorFlow
@@ -117,7 +119,8 @@ Critical ROCm libraries for TensorFlow
TensorFlow depends on multiple components and the supported features of those
components can affect the TensorFlow ROCm supported feature set. The versions
in the following table refer to the first TensorFlow version where the ROCm
library was introduced as a dependency.
library was introduced as a dependency. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:widths: 25, 10, 35, 30
@@ -128,43 +131,43 @@ library was introduced as a dependency.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Accelerates operations like ``tf.matmul``, ``tf.linalg.matmul``, and
other matrix multiplications commonly used in neural network layers.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- Extends hipBLAS with additional optimizations like fused kernels and
integer tensor cores.
- Optimizes matrix multiplications and linear algebra operations used in
layers like dense, convolutional, and RNNs in TensorFlow.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``tf.reduce_sum``, ``tf.cumsum``, ``tf.sort``
and other tensor operations in TensorFlow, especially those involving
scanning, sorting, and filtering.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Accelerates Fast Fourier Transforms (FFT) for signal processing tasks.
- Used for operations like signal processing, image filtering, and
certain types of neural networks requiring FFT-based transformations.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated direct linear solvers for dense and sparse
systems.
- Optimizes linear algebra functions such as solving systems of linear
equations, often used in optimization and training tasks.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Optimizes sparse matrix operations for efficient computations on sparse
data.
- Accelerates sparse matrix operations in models with sparse weight
matrices or activations, commonly used in neural networks.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Provides optimized deep learning primitives such as convolutions,
pooling,
normalization, and activation functions.
@@ -172,13 +175,13 @@ library was introduced as a dependency.
in TensorFlow for layers like ``tf.nn.conv2d``, ``tf.nn.relu``, and
``tf.nn.lstm_cell``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``tf.distribute.MirroredStrategy``).
Handles communication in multi-GPU setups.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``tf.reduce_sum``, ``tf.cumsum`` for computing

View File

@@ -0,0 +1,916 @@
.. meta::
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
********************************************************************************
PyTorch compatibility
********************************************************************************
`PyTorch <https://pytorch.org/>`_ is an open-source tensor library designed for
deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
version.
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
- Official PyTorch release:
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
.. _pytorch-docker-compat:
Docker image compatibility
================================================================================
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
- OFED
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3918/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Critical ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is shaped by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
and ``torch.topk``. Operations on sparse tensors or tensors with
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 1.4.0
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- Add graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.1.0
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 2.1.0
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- Provide hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- Provide hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- Speed up data augmentation, transformation, and other preprocessing step.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 1.6.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Linear layers (``torch.nn.Linear``), convolutional layers
(``torch.nn.Conv2d``), attention layers, general tensor operations that
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported and unsupported features
================================================================================
The following section maps GPU-accelerated PyTorch features to their supported
ROCm and PyTorch versions.
torch
--------------------------------------------------------------------------------
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types, along with various
other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
- 5.5
* - ``torch.float8_e5m2``
- 8-bit floating point, e5m2
- 2.3
- 5.5
* - ``torch.float16`` or ``torch.half``
- 16-bit floating point
- 0.1.6
- 2.0
* - ``torch.bfloat16``
- 16-bit floating point
- 1.6
- 2.6
* - ``torch.float32`` or ``torch.float``
- 32-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.float64`` or ``torch.double``
- 64-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.complex32`` or ``torch.chalf``
- PyTorch provides native support for 32-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex64`` or ``torch.cfloat``
- PyTorch provides native support for 64-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex128`` or ``torch.cdouble``
- PyTorch provides native support for 128-bit complex numbers
- 1.6
- 2.0
* - ``torch.uint8``
- 8-bit integer (unsigned)
- 0.1.12_2
- 2.0
* - ``torch.uint16``
- 16-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint32``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint64``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.int8``
- 8-bit integer (signed)
- 1.12
- 5.0
* - ``torch.int16`` or ``torch.short``
- 16-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int32`` or ``torch.int``
- 32-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int64`` or ``torch.long``
- 64-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.bool``
- Boolean
- 1.2
- 2.0
* - ``torch.quint8``
- Quantized 8-bit integer (unsigned)
- 1.8
- 5.0
* - ``torch.qint8``
- Quantized 8-bit integer (signed)
- 1.8
- 5.0
* - ``torch.qint32``
- Quantized 32-bit integer (signed)
- 1.8
- 5.0
* - ``torch.quint4x2``
- Quantized 4-bit integer (unsigned)
- 1.8
- 5.0
.. note::
Unsigned types aside from ``uint8`` are currently only have limited support in
eager mode (they primarily exist to assist usage with ``torch.compile``).
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
collected the native HW support of different data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
computations, memory management, and efficient execution of tensor operations,
leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Perform tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance, events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
- Functions to manage and inspect memory usage like
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Return a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- A set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
* - ``torch.cuda.CUDAGraph``
- Graphs capture sequences of GPU operations to minimize kernel launch
overhead and improve performance.
- 1.10.0
- 5.3
* - TunableOp
- A mechanism that allows certain operations to be more flexible and
optimized for performance. It enables automatic tuning of kernel
configurations and other settings to achieve the best possible
performance based on the specific hardware (GPU) and workload.
- 2.0
- 5.4
* - NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.8.0
- ❌
* - Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.13.0
- ❌
* - Jiterator (beta)
- Jiterator allows asynchronous data streaming into computation streams
during training loops.
- 1.13.0
- 5.2
.. Need to validate and extend.
torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of CUDA or ROCm operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the CUDA or ROCm environment.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
- 5.0
* - ``matmul.allow_tf32``
- Enables or disables the use of TensorFloat-32 (TF32) precision for
faster matrix multiplications on GPUs with Tensor Cores.
- 1.10.0
- ❌
* - ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions (e.g., with fp16 accumulation type) are
allowed with fp16 GEMMs.
- 2.0
- ❌
* - ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
- ❌
* - ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
- ❌
* - ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
- ❌
* - ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
- ❌
* - ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
- ❌
.. Need to validate and extend.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported ``torch`` options:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
- 1.12.0
- ❌
* - ``deterministic``
- A bool that, if True, causes cuDNN to only use deterministic
convolution algorithms.
- 1.12.0
- 6.0
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch that automates the process of using both 16-bit (half-precision,
float16) and 32-bit (single-precision, float32) floating-point types in model
training and inference.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Autocasting
- Instances of autocast serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss(es) by a scale factor and invokes a backward pass on the scaled
loss(es). Gradients flowing backward through the network are then
scaled by the same factor. In other words, gradient values have a
larger magnitude, so they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
- These ops always go through autocasting whether they are invoked as part
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
functions are exposed in multiple namespaces, they go through
autocasting regardless of the namespace.
- 1.9
- 2.5
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
The Distributed Library feature in PyTorch provides tools and APIs for building
and running distributed machine learning workflows. It allows training models
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - TensorPipe
- TensorPipe is a point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
- 1.8
- 5.4
* - Gloo
- Gloo is designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
- 1.0
- 2.0
torch.compiler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
enables acceleration of both forwards and backwards pass using
``TorchInductor``.
- 2.0
- 5.3
* - ``torch.compiler`` (TorchInductor)
- The default ``torch.compile`` deep learning compiler that generates fast
code for multiple accelerators and backends. You need to use a backend
compiler to make speedups through ``torch.compile`` possible. For AMD,
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
- 2.0
- 5.3
torchaudio
--------------------------------------------------------------------------------
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchaudio version
- Since ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generate the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
- Extract of MFCC features.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resample a signal from one frequency to another
- 0.9.0
- 4.5
torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provide datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchvision version
- Since ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
- 0.2.0
- 4.0
* - ``torchvision.ops``
- GPU-accelerated operations for object detection and segmentation tasks.
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
``box_convert``.
- 0.6.0
- 3.3
* - ``torchvision.models`` with ``.to('cuda')``
- ``torchvision`` provides several pre-trained models (ResNet, Faster
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
training.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3
torchtext
--------------------------------------------------------------------------------
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
utilities for processing and working with text data in PyTorch, including
tokenization, vocabulary management, and text embeddings. torchtext supports
preprocessing pipelines and integration with PyTorch models, simplifying the
implementation of natural language processing (NLP) tasks.
To leverage GPU acceleration in torchtext, you need to move tensors
explicitly to the GPU using ``.to('cuda')``.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchtune
--------------------------------------------------------------------------------
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
torchserve
--------------------------------------------------------------------------------
The `torchserve <https://pytorch.org/torchserve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchrec
--------------------------------------------------------------------------------
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
----------------------------
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
.. list-table::
:widths: 30, 60, 10
:header-rows: 1
* - Data type
- Description
- Since PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
- A bool that controls whether TensorFloat-32 tensor cores may be used in
matrix multiplications.
- 1.7
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.7.0
* - ``torch.cuda`` / Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.8.0
* - ``torch-tensorrt``
- Integrate TensorRT library for optimizing and deploying PyTorch models.
ROCm does not have equialent library for TensorRT.
- 1.9.0
* - ``torch.backends`` / ``cudnn.allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
- 1.10.0
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions with fp16 accumulation type are
allowed with fp16 GEMMs.
- 2.0
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
- Flash attention backend for SDPA to accelerate attention computation in
transformer-based models.
- 2.0
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
* - Dynamic parallelism
- PyTorch itself does not directly expose dynamic parallelism as a core
feature. Dynamic parallelism allow GPU threads to launch additional
threads which can be reached using custom operations via the
``torch.utils.cpp_extension`` module.
- Not a core feature
* - Unified memory support in PyTorch
- Unified Memory is not directly exposed in PyTorch's core API, it can be
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/train-a-model>` provides
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
for optimizing training workflows on AMD GPUs using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/llm-fine-tuning-optimization/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
machine learning models, particularly large language models (LLMs), on systems with a single AMD
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
executing fine-tuning and inference workflows in such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/llm-fine-tuning-optimization/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning models on systems
with multi MI300X accelerators.
* The :doc:`Instinct MI300X workload optimization guide </how-to/tuning-guides/mi300x/workload>` provides detailed
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_

View File

@@ -32,7 +32,7 @@ architecture.
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
* [AMD Instinct MI200/CDNA2 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf)
* [Performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
:::
@@ -45,7 +45,7 @@ architecture.
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)
* [AMD Instinct MI100/CDNA1 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf)
:::
@@ -55,7 +55,6 @@ architecture.
* [AMD RDNA3 ISA](https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf)
* [AMD RDNA2 ISA](https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf)
* [AMD RDNA ISA](https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf)
* [AMD RDNA Architecture White Paper](https://www.amd.com/system/files/documents/rdna-whitepaper.pdf)
:::

View File

@@ -6,6 +6,8 @@
import os
import shutil
import sys
from pathlib import Path
shutil.copy2("../RELEASE.md", "./about/release-notes.md")
@@ -30,15 +32,15 @@ if os.environ.get("READTHEDOCS", "") == "True":
project = "ROCm Documentation"
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "6.3.2"
release = "6.3.2"
version = "6.3.3"
release = "6.3.3"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-01-28"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-02-19"},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/tensorflow-compatibility", "os": ["linux"]},
@@ -49,6 +51,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -63,7 +68,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-quantization", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries", "os": ["linux"]},
@@ -86,11 +91,16 @@ article_pages = [
external_toc_path = "./sphinx/_toc.yml"
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap"]
# Add the _extensions directory to Python's search path
sys.path.append(str(Path(__file__).parent / 'extension'))
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref"]
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
external_projects_current_project = "rocm"
# Uncomment if facing rate limit exceed issue with local build
# Uncomment if facing rate limit exceed issue with local build
# external_projects_remote_repository = ""
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
@@ -101,8 +111,9 @@ if os.environ.get("READTHEDOCS", "") == "True":
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
html_static_path = ["sphinx/static/css"]
html_css_files = ["rocm_custom.css", "rocm_rn.css"]
html_static_path = ["sphinx/static/css", "extension/how-to/rocm-for-ai/inference"]
html_css_files = ["rocm_custom.css", "rocm_rn.css", "vllm-benchmark.css"]
html_js_files = ["vllm-benchmark.js"]
html_title = "ROCm Documentation"

View File

@@ -0,0 +1,153 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9
rocm_version: 6.3.1
vllm_version: 0.6.6
pytorch_version: 2.7.0 (2.7.0a0+git3a58512)
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

View File

@@ -0,0 +1,212 @@
function ready(proc) {
// Check if page is loaded. If so, init.
if (document.readyState !== "loading") {
proc();
} else {
// Otherwise, wait for DOMContentLoaded event.
document.addEventListener("DOMContentLoaded", proc);
}
}
ready(() => {
const ModelPicker = {
// Selector strings for DOM elements
SELECTORS: {
CONTAINER: "#vllm-benchmark-ud-params-picker",
MODEL_GROUP_BTN: 'div[data-param-k="model-group"][data-param-v]',
MODEL_PARAM_BTN: 'div[data-param-k="model"][data-param-v]',
MODEL_DOC: "div.model-doc",
},
CSS_CLASSES: {
HIDDEN: "hidden",
},
ATTRIBUTES: {
PARAM_KEY: "data-param-k", // URL search parameter key (i.e., "model")
PARAM_VALUE: "data-param-v", // URL search param value (e.g., "pyt_vllm_llama-3.1-8b", "pyt_vllm_llama-3.1-70b") -- these are MAD model tags
PARAM_GROUP: "data-param-group", // Model group (e.g., "llama", "mistral")
PARAM_STATE: "data-param-state", // Selection state
},
// Cache DOM elements
elements: {
container: null,
modelGroups: null,
modelParams: null,
modelDocs: null,
},
data: {
availableModels: new Set(),
modelsByGroup: new Map(),
modelToGroupMap: new Map(),
formattedModelClassMap: new Map(), //TODO
},
init() {
this.elements.container = document.querySelector(
this.SELECTORS.CONTAINER,
);
if (!this.elements.container) return;
this.cacheDOMElements();
if (!this.validateElements()) return;
this.buildModelData();
this.bindEvents();
this.initializeState();
},
cacheDOMElements() {
const { CONTAINER, MODEL_GROUP_BTN, MODEL_PARAM_BTN, MODEL_DOC } =
this.SELECTORS;
this.elements = {
container: document.querySelector(CONTAINER),
modelGroups: document.querySelectorAll(MODEL_GROUP_BTN),
modelParams: document.querySelectorAll(MODEL_PARAM_BTN),
modelDocs: document.querySelectorAll(MODEL_DOC),
};
},
validateElements() {
const { modelGroups, modelParams } = this.elements;
if (!modelGroups.length || !modelParams.length) {
console.warn("Model picker is missing required elements");
return false;
}
return true;
},
buildModelData() {
const { PARAM_VALUE, PARAM_GROUP } = this.ATTRIBUTES;
this.elements.modelParams.forEach((model) => {
const modelTag = model.getAttribute(PARAM_VALUE);
const groupTag = model.getAttribute(PARAM_GROUP);
if (!modelTag || !groupTag) return;
this.data.availableModels.add(modelTag);
this.data.modelToGroupMap.set(modelTag, groupTag);
// FIXME: this is because Sphinx auto-formats class names to use dashes
this.data.formattedModelClassMap.set(
modelTag,
modelTag.replace(/[^a-zA-Z0-9]/g, "-"),
);
if (!this.data.modelsByGroup.has(groupTag)) {
this.data.modelsByGroup.set(groupTag, []);
}
this.data.modelsByGroup.get(groupTag).push(modelTag);
});
},
// Event listeners for user interactions
bindEvents() {
const handleInteraction = (event) => {
const target = event.target.closest(`[${this.ATTRIBUTES.PARAM_KEY}]`);
if (!target) return;
const paramType = target.getAttribute(this.ATTRIBUTES.PARAM_KEY);
const paramValue = target.getAttribute(this.ATTRIBUTES.PARAM_VALUE);
if (paramType === "model") {
const groupTag = target.getAttribute(this.ATTRIBUTES.PARAM_GROUP);
if (groupTag) this.updateUI(paramValue, groupTag);
} else if (paramType === "model-group") {
const firstModelInGroup = this.data.modelsByGroup.get(paramValue)
?.[0];
if (firstModelInGroup) this.updateUI(firstModelInGroup, paramValue);
}
};
this.elements.container.addEventListener("click", handleInteraction);
this.elements.container.addEventListener("keydown", (event) => {
if (event.key === "Enter" || event.key === " ") {
event.preventDefault();
handleInteraction(event);
}
});
},
// Update the page based on the selected model
updateUI(modelTag, groupTag) {
const validModel = this.setModelSearchParam(modelTag);
// Update model group buttons
this.elements.modelGroups.forEach((group) => {
const isSelected =
group.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === groupTag;
group.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelected ? "selected" : "",
);
group.setAttribute("aria-selected", isSelected.toString());
});
// Update model buttons
this.elements.modelParams.forEach((model) => {
const isInSelectedGroup =
model.getAttribute(this.ATTRIBUTES.PARAM_GROUP) === groupTag;
const isSelectedModel =
model.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === validModel;
model.classList.toggle(this.CSS_CLASSES.HIDDEN, !isInSelectedGroup);
model.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelectedModel ? "selected" : "",
);
model.setAttribute("aria-selected", isSelectedModel.toString());
});
// Update visibility of doc sections
const formattedClass = this.data.formattedModelClassMap.get(validModel);
if (formattedClass) {
this.elements.modelDocs.forEach((doc) => {
doc.classList.toggle(
this.CSS_CLASSES.HIDDEN,
!doc.classList.contains(formattedClass),
);
});
}
},
// Get the current model from the URL search parameters.
getModelSearchParam() {
return new URLSearchParams(location.search).get("model");
},
// Set the model in the URL search parameters, or fallback to the first available one.
setModelSearchParam(modelTag) {
const defaultModel = [...this.data.availableModels][0];
const model = this.data.availableModels.has(modelTag)
? modelTag
: defaultModel;
const searchParams = new URLSearchParams(location.search);
searchParams.set("model", model);
history.replaceState(
{},
"",
`${location.pathname}?${searchParams.toString()}`,
);
return model;
},
// Initialize the UI state based on the current URL search parameter or default values.
initializeState() {
const currentModel = this.getModelSearchParam();
const validModel = this.setModelSearchParam(currentModel);
const initialGroup = this.data.modelToGroupMap.get(validModel) ??
[...this.data.modelsByGroup.keys()][0];
if (initialGroup) {
this.updateUI(validModel, initialGroup);
}
},
};
ModelPicker.init();
});

View File

@@ -0,0 +1,266 @@
from docutils import nodes
from docutils.parsers.rst import Directive
from sphinx.util import logging
import csv
from io import StringIO
import re
import shlex
logger = logging.getLogger(__name__)
class VersionReference(nodes.Inline, nodes.TextElement):
"""Represents an inline version reference."""
pass
class VersionSetDirective(Directive):
"""Directive for setting version references within a page scope."""
required_arguments = 2 # name and value
optional_arguments = 0
def run(self):
env = self.state.document.settings.env
if not hasattr(env, 'doc_version_refs'):
env.doc_version_refs = {}
current_doc = env.docname
if current_doc not in env.doc_version_refs:
env.doc_version_refs[current_doc] = {}
name, value = self.arguments
if name.lower() == 'latest':
logger.warning('Cannot override the "latest" keyword with version-set')
return []
# Handle 'latest' value by getting the actual version
if value.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if data:
latest_version = get_latest_rocm_version(data)
if latest_version:
value = latest_version
env.doc_version_refs[current_doc][name] = value
return []
def clean_library_name(name):
"""Extract library name from RST formatting."""
# Handle :doc: format
doc_match = re.search(r':doc:`([^<]+)(?:\s+<[^>]+>)?`', name)
if doc_match:
return doc_match.group(1).strip()
# Handle other link formats
link_match = re.search(r'`([^<]+)(?:\s+<[^>]+>)?`_?', name)
if link_match:
return link_match.group(1).strip()
return name.strip()
def get_latest_rocm_version(data):
"""Get the latest ROCm version from the matrix headers."""
if not data or len(data) == 0:
return None
# Get all column names except 'ROCm Version'
columns = [col for col in data[0].keys() if col != 'ROCm Version']
# Return the first column name (assumed to be the latest version)
return columns[0] if columns else None
def version_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function to print version value.
Usage: :version:`version_name`
"""
try:
version_name = text.strip()
env = inliner.document.settings.env
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if version_name in doc_refs:
version = doc_refs[version_name]
node = nodes.Text(version)
return [node], []
msg = inliner.reporter.warning(
f'No version defined for name {version_name}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def version_ref_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function for version references.
Usage: :version-ref:`library_name release`
:version-ref:`"library name" release`
:version-ref:`library_name latest`
:version-ref:`rocm latest`
"""
try:
# Parse the text - handle both quoted and unquoted formats
if '"' in text:
parts = shlex.split(text)
else:
parts = text.split()
if len(parts) != 2:
msg = inliner.reporter.error(
'Version reference must be in format "library_name release" or "\\"library name\\" release"',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
library_name, release = parts
env = inliner.document.settings.env
# Check if release is a version reference in current document
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if release in doc_refs:
release = doc_refs[release]
# Handle special case for "rocm latest"
if library_name.lower() == 'rocm' and release.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
latest_version = get_latest_rocm_version(data)
if latest_version:
node = VersionReference()
node += nodes.Text(latest_version)
return [node], []
else:
msg = inliner.reporter.warning(
'No ROCm versions found in compatibility matrix',
line=lineno
)
return [], [msg]
version = lookup_version(inliner, library_name, release)
if version:
node = VersionReference()
node += nodes.Text(version)
return [node], []
else:
msg = inliner.reporter.warning(
f'No version found for library {library_name} in release {release}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def lookup_version(inliner, library_name, release):
"""Look up the version in the compatibility matrix."""
env = inliner.document.settings.env
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
# Handle the 'latest' keyword
if release.lower() == 'latest':
latest_version = get_latest_rocm_version(data)
if not latest_version:
return None
release = latest_version
# For ROCm, check if the version exists in column headers
if library_name.lower() == 'rocm':
columns = [col for col in data[0].keys() if col != 'ROCm Version']
if release in columns:
return release
return None
# Find the library version
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name == library_name:
# Get the version, removing any whitespace
version = row.get(release, '').strip()
if version:
return version
# If not found, try a case-insensitive search
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name.lower() == library_name.lower():
version = row.get(release, '').strip()
if version:
return version
return None
def visit_version_reference(self, node):
self.body.append(f'<span class="version-reference">')
def depart_version_reference(self, node):
self.body.append('</span>')
def load_compatibility_matrix(app):
"""Load the compatibility matrix content from CSV."""
if not app.config.compatibility_matrix_file:
logger.warning('No compatibility matrix file configured')
return
try:
with open(app.config.compatibility_matrix_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
app.env.compatibility_matrix = list(reader)
logger.info('Successfully loaded compatibility matrix')
# Debug: print first few rows with their library names
for row in list(app.env.compatibility_matrix)[:5]:
if 'ROCm Version' in row:
lib_name = clean_library_name(row['ROCm Version'])
logger.debug(f"Loaded library: {lib_name}")
except Exception as e:
logger.error(f'Error loading compatibility matrix: {str(e)}')
def purge_version_refs(app, env, docname):
"""Remove version references for a document when it is purged"""
if hasattr(env, 'doc_version_refs'):
if docname in env.doc_version_refs:
del env.doc_version_refs[docname]
def setup(app):
app.add_node(VersionReference,
html=(visit_version_reference, depart_version_reference))
app.add_role('version-ref', version_ref_role)
app.add_role('version', version_role)
app.add_directive('version-set', VersionSetDirective)
# Add a config value for the compatibility matrix file path
app.add_config_value('compatibility_matrix_file', None, 'env')
# Connect to the builder-inited event to load the matrix
app.connect('builder-inited', load_compatibility_matrix)
# Connect to env-purge-doc event to clean up document-specific version refs
app.connect('env-purge-doc', purge_version_refs)
return {
'parallel_read_safe': True,
'parallel_write_safe': True,
}

View File

@@ -9,377 +9,266 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* Tuning files (in CSV format)
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
.. hlist::
:columns: 6
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
* Llama 3.1 8B
.. _vllm-benchmark-available-models:
* Llama 3.1 70B
Available models
================
* Llama 3.1 405B
.. raw:: html
* Llama 2 7B
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
* Llama 2 70B
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
* Mixtral 8x7B
.. _vllm-benchmark-vllm:
* Mixtral 8x22B
{% for model_group in model_groups %}
{% for model in model_group.models %}
* Mixtral 7B
.. container:: model-doc {{model.mad_tag}}
* Qwen2 7B
.. note::
* Qwen2 72B
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
* JAIS 13B
{% endfor %}
{% endfor %}
* JAIS 30B
.. _vllm-benchmark-vllm:
.. note::
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. code-block:: shell
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
Benchmarking
============
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
.. _vllm-benchmark-mad:
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. _vllm-benchmark-mad:
.. container:: model-doc {{model.mad_tag}}
MAD-integrated benchmarking
===========================
.. tab-set::
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. tab-item:: MAD-integrated benchmarking
.. code-block:: shell
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
.. code-block:: shell
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
.. code-block:: shell
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
.. code-block:: shell
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Available models
----------------
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
.. hlist::
:columns: 3
.. tab-item:: Standalone benchmarking
* ``pyt_vllm_llama-3.1-8b``
Run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* ``pyt_vllm_llama-3.1-70b``
.. code-block::
* ``pyt_vllm_llama-3.1-405b``
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
* ``pyt_vllm_llama-2-7b``
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
* ``pyt_vllm_llama-2-70b``
.. code-block::
* ``pyt_vllm_mixtral-8x7b``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
* ``pyt_vllm_mixtral-8x22b``
To start the benchmark, use the following command with the appropriate options.
* ``pyt_vllm_mistral-7b``
.. code-block::
* ``pyt_vllm_qwen2-7b``
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
* ``pyt_vllm_qwen2-72b``
.. list-table::
:header-rows: 1
:align: center
* ``pyt_vllm_jais-13b``
* - Name
- Options
- Description
* ``pyt_vllm_jais-30b``
* - ``$test_option``
- latency
- Measure decoding token latency
* ``pyt_vllm_llama-3.1-8b_fp8``
* -
- throughput
- Measure token generation throughput
* ``pyt_vllm_llama-3.1-70b_fp8``
* -
- all
- Measure both throughput and latency
* ``pyt_vllm_llama-3.1-405b_fp8``
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* ``pyt_vllm_mixtral-8x7b_fp8``
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
* ``pyt_vllm_mixtral-8x22b_fp8``
.. note::
.. _vllm-benchmark-standalone:
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
Standalone benchmarking
=======================
.. note::
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
OSError: You are trying to access a gated repo.
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. code-block::
Here are some examples of running the benchmark with various options.
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
* Latency benchmark
Command
-------
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block::
.. code-block:: shell
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
* Throughput benchmark
.. note::
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. code-block:: shell
.. note::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. code-block:: shell
.. raw:: html
OSError: You are trying to access a gated repo.
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. note::
.. _vllm-benchmark-standalone-options:
Throughput is calculated as:
Options
-------
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
@@ -394,14 +283,10 @@ Further reading
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Using ROCm for AI <../index>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.

View File

@@ -0,0 +1,547 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
This table lists previous versions of the ROCm Megatron-LM Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- Megatron-LM version
- PyTorch version
- Resources
* - 6.1
- 24.12-dev
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,341 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B

View File

@@ -19,6 +19,10 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`
- Training a model
- :doc:`Scale model training <scale-model-training>`
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -0,0 +1,130 @@
:orphan:
.. meta::
:description: Prerequisite system validation before using ROCm for AI.
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
**********************************************
Prerequisite system validation before training
**********************************************
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800

View File

@@ -1,503 +0,0 @@
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800

View File

@@ -308,6 +308,24 @@ Otherwise, if the system has Intel host CPUs add this instead to
intel_iommu=on iommu=pt
``modprobe.blacklist=amdgpu``
For some system configurations, the ``amdgpu`` driver needs to be blocked during kernel initialization to avoid an issue where after boot, the GPUs are not listed when running the command ``rocm-smi`` or ``amd-smi``.
Alternatively, configuring the AMD recommended system optimized BIOS settings might remove the need for using this setting. Some manufacturers and users might not implement the recommended system optimized BIOS settings.
If you experience the mentioned issue, then add this to ``GRUB_CMDLINE_LINUX``:
.. code-block:: text
modprobe.blacklist=amdgpu
After the change, the ``amdgpu`` module must be loaded to support the ROCm framework
software tools and utilities. Run the following command to load the ``amdgpu`` module:
.. code-block:: text
sudo modprobe amdgpu
Update GRUB
-----------

View File

@@ -32,6 +32,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L1 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- MI325X
- CDNA3
@@ -47,6 +49,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300X
- CDNA3
@@ -62,6 +66,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300A
- CDNA3
@@ -77,6 +83,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI250X
- CDNA2
@@ -92,6 +100,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI250
- CDNA2
@@ -107,6 +117,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI210
- CDNA2
@@ -122,6 +134,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI100
- CDNA
@@ -137,6 +151,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256 VGPR and 256 AccVGPR
- 12.5
- 9
- 0
*
- MI60
- GCN5.1
@@ -152,6 +168,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (32GB)
- GCN5.1
@@ -167,6 +185,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (16GB)
- GCN5.1
@@ -182,6 +202,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI25
- GCN5.0
@@ -197,6 +219,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI8
- GCN3.0
@@ -212,6 +236,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
*
- MI6
- GCN4.0
@@ -227,6 +253,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
.. tab-item:: AMD Radeon PRO GPUs
@@ -238,6 +266,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -250,6 +279,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon PRO V710
- RDNA3
@@ -266,6 +297,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900 Dual Slot
- RDNA3
@@ -282,6 +315,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900
- RDNA3
@@ -298,6 +333,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7800
- RDNA3
@@ -314,6 +351,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7700
- RDNA3
@@ -330,6 +369,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W6800
- RDNA2
@@ -346,6 +387,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO W6600
- RDNA2
@@ -362,6 +405,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO V620
- RDNA2
@@ -378,6 +423,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon Pro W5500
- RDNA
@@ -394,6 +441,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 20
- 10
- 1
*
- Radeon Pro VII
- GCN5.1
@@ -410,6 +459,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
.. tab-item:: AMD Radeon GPUs
@@ -433,6 +484,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 7900 XTX
- RDNA3
@@ -449,6 +502,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 XT
- RDNA3
@@ -465,6 +520,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 GRE
- RDNA3
@@ -481,6 +538,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7800 XT
- RDNA3
@@ -497,6 +556,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7700 XT
- RDNA3
@@ -513,6 +574,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7600
- RDNA3
@@ -529,6 +592,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 11
- 0
*
- Radeon RX 6950 XT
- RDNA2
@@ -545,6 +610,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6900 XT
- RDNA2
@@ -561,6 +628,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800 XT
- RDNA2
@@ -577,6 +646,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800
- RDNA2
@@ -593,6 +664,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6750 XT
- RDNA2
@@ -609,6 +682,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700 XT
- RDNA2
@@ -625,6 +700,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700
- RDNA2
@@ -641,6 +718,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6650 XT
- RDNA2
@@ -657,6 +736,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600 XT
- RDNA2
@@ -673,6 +754,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600
- RDNA2
@@ -689,6 +772,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon VII
- GCN5.1
@@ -705,12 +790,14 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
Glossary
========
For more information about the terms used, see the
:ref:`specific documents and guides <gpu-arch-documentation>`, or
:ref:`specific documents and guides <gpu-arch-documentation>`, or
:doc:`Understanding the HIP programming model<hip:understand/programming_model>`.
**LLVM target name**
@@ -800,6 +887,26 @@ Purpose Vector Registers, used specifically in matrix instructions.
Size of the Scalar General Purpose Register (SGPR) file. Holds data used in
scalar instructions.
**GFXIP**
GFXIP (Graphics IP) is a versioning system used by AMD to identify the GPU
architecture and its instruction set. It helps categorize different generations
of GPUs and their feature sets.
**GFXIP major version**
Defines the GPU's core instruction set and architecture, which determines
compatibility with software stacks such as HIP and OpenCL. For example, a GFXIP
11 major version corresponds to the RDNA 3 (Navi 3x) architecture, influencing
driver support and available compute features.
**GFXIP minor version**
Represents specific variations within a GFXIP major version and affects feature sets,
optimizations, and driver behavior in software stacks such as HIP and OpenCL. Different
GPU models within the same major version can have unique capabilities, impacting
performance and supported instructions.
**GCD**
Graphics Compute Die.

View File

@@ -1,20 +1,22 @@
.. meta::
:description: Supported data types in ROCm
:keywords: int8, float8, float8 (E4M3), float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32, float,
float32, float64, double, AMD, ROCm, AMDGPU
:description: Supported data types of AMD GPUs and libraries in ROCm.
:keywords: precision, data types, HIP types, int8, float8, float8 (E4M3),
float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32,
float, float32, float64, double, AMD data types, HIP data types,
ROCm precision, ROCm data types
*************************************************************
Precision support
Data types and precision support
*************************************************************
Use the following sections to identify data types and HIP types ROCm™ supports.
This topic lists the data types support on AMD GPUs, ROCm libraries along
with corresponding :doc:`HIP <hip:index>` data types.
Integral types
==========================================
The signed and unsigned integral types that are supported by ROCm are listed in the following table,
together with their corresponding HIP type and a short description.
==============
The signed and unsigned integral types supported by ROCm are listed in
the following table.
.. list-table::
:header-rows: 1
@@ -44,10 +46,9 @@ together with their corresponding HIP type and a short description.
.. _precision_support_floating_point_types:
Floating-point types
==========================================
====================
The floating-point types that are supported by ROCm are listed in the following table, together with
their corresponding HIP type and a short description.
The floating-point types supported by ROCm are listed in the following table.
.. image:: ../data/about/compatibility/floating-point-data-types.png
:alt: Supported floating-point types
@@ -62,44 +63,66 @@ their corresponding HIP type and a short description.
- Description
*
- float8 (E4M3)
- ``-``
- An 8-bit floating-point number that mostly follows IEEE-754 conventions and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
- ``__hip_fp8_e4m3_fnuz``
- An 8-bit floating-point number that mostly follows IEEE-754 conventions
and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_,
with expanded range and no infinity or signed zero. NaN is represented
as negative zero.
*
- float8 (E5M2)
- ``-``
- An 8-bit floating-point number mostly following IEEE-754 conventions and **S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
- ``__hip_fp8_e5m2_fnuz``
- An 8-bit floating-point number mostly following IEEE-754 conventions and
**S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_,
with expanded range and no infinity or signed zero. NaN is represented
as negative zero.
*
- float16
- ``half``
- A 16-bit floating-point number that conforms to the IEEE 754-2008 half-precision storage format.
- A 16-bit floating-point number that conforms to the IEEE 754-2008
half-precision storage format.
*
- bfloat16
- ``bfloat16``
- A shortened 16-bit version of the IEEE 754 single-precision storage format.
- A shortened 16-bit version of the IEEE 754 single-precision storage
format.
*
- tensorfloat32
- ``-``
- A floating-point number that occupies 32 bits or less of storage, providing improved range compared to half (16-bit) format, at (potentially) greater throughput than single-precision (32-bit) formats.
- Not available
- A floating-point number that occupies 32 bits or less of storage,
providing improved range compared to half (16-bit) format, at
(potentially) greater throughput than single-precision (32-bit) formats.
*
- float32
- ``float``
- A 32-bit floating-point number that conforms to the IEEE 754 single-precision storage format.
- A 32-bit floating-point number that conforms to the IEEE 754
single-precision storage format.
*
- float64
- ``double``
- A 64-bit floating-point number that conforms to the IEEE 754 double-precision storage format.
- A 64-bit floating-point number that conforms to the IEEE 754
double-precision storage format.
.. note::
* The float8 and tensorfloat32 types are internal types used in calculations in Matrix Cores and can be stored in any type of the same size.
* The encodings for FP8 (E5M2) and FP8 (E4M3) that are natively supported by MI300 differ from the FP8 (E5M2) and FP8 (E4M3) encodings used in H100 (`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
* The float8 and tensorfloat32 types are internal types used in calculations
in Matrix Cores and can be stored in any type of the same size.
* The encodings for FP8 (E5M2) and FP8 (E4M3) that the
MI300 series natively supports differ from the FP8 (E5M2) and FP8 (E4M3)
encodings used in NVIDIA H100
(`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
* In some AMD documents and articles, float8 (E5M2) is referred to as bfloat8.
ROCm support icons
==========================================
* The :doc:`low precision floating point types page <hip:reference/low_fp_types>`
describes how to use these types in HIP with examples.
In the following sections, we use icons to represent the level of support. These icons, described in the
following table, are also used on the library data type support pages.
Level of support definitions
============================
In the following sections, icons represent the level of support. These icons,
described in the following table, are also used in the library data type support
pages.
.. list-table::
:header-rows: 1
@@ -107,6 +130,11 @@ following table, are also used on the library data type support pages.
*
- Icon
- Definition
*
- NA
- Not applicable
*
-
- Not supported
@@ -121,17 +149,29 @@ following table, are also used on the library data type support pages.
.. note::
* Full support means that the type is supported natively or with hardware emulation.
* Native support means that the operations for that type are implemented in hardware. Types that are not natively supported are emulated with the available hardware. The performance of non-natively supported types can differ from the full instruction throughput rate. For example, 16-bit integer operations can be performed on the 32-bit integer ALUs at full rate; however, 64-bit integer operations might need several instructions on the 32-bit integer ALUs.
* Any type can be emulated by software, but this page does not cover such cases.
* Full support means that the type is supported natively or with hardware
emulation.
Hardware type support
* Native support means that the operations for that type are implemented in
hardware. Types that are not natively supported are emulated with the
available hardware. The performance of non-natively supported types can
differ from the full instruction throughput rate. For example, 16-bit
integer operations can be performed on the 32-bit integer ALUs at full rate;
however, 64-bit integer operations might need several instructions on the
32-bit integer ALUs.
* Any type can be emulated by software, but this page does not cover such
cases.
Data type support by Hardware Architecture
==========================================
AMD GPU hardware support for data types is listed in the following tables.
The MI200 series GPUs, which include MI210, MI250, and MI250X, are based on the
CDNA2 architecture. The MI300 series GPUs, consisting of MI300A, MI300X, and
MI325X, are based on the CDNA3 architecture.
Compute units support
-------------------------------------------------------------------------------
---------------------
The following table lists data type support for compute units.
@@ -212,7 +252,7 @@ The following table lists data type support for compute units.
-
Matrix core support
-------------------------------------------------------------------------------
-------------------
The following table lists data type support for AMD GPU matrix cores.
@@ -293,7 +333,7 @@ The following table lists data type support for AMD GPU matrix cores.
-
Atomic operations support
-------------------------------------------------------------------------------
-------------------------
The following table lists data type support for atomic operations.
@@ -375,21 +415,23 @@ The following table lists data type support for atomic operations.
.. note::
For cases that are not natively supported, you can emulate atomic operations using software.
Software-emulated atomic operations have high negative performance impact when they frequently
access the same memory address.
You can emulate atomic operations using software for cases that are not
natively supported. Software-emulated atomic operations have a high negative
performance impact when they frequently access the same memory address.
Data Type support in ROCm Libraries
==========================================
Data type support in ROCm libraries
===================================
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16, bfloat16, int32,
tensorfloat32, float32, int64, and float64 is listed in the following tables.
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16,
bfloat16, int32, tensorfloat32, float32, int64, and float64 is listed in the
following tables.
Libraries input/output type support
-------------------------------------------------------------------------------
-----------------------------------
The following tables list ROCm library support for specific input and output data types. For a detailed
description, refer to the corresponding library data type support page.
The following tables list ROCm library support for specific input and output
data types. Refer to the corresponding library data type support page for a
detailed description.
.. tab-set::
@@ -406,37 +448,37 @@ description, refer to the corresponding library data type support page.
- int32
- int64
*
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
- ✅/✅
- ❌/❌
- ❌/❌
- ❌/❌
*
- rocRAND (:doc:`details <rocrand:api-reference/data-type-support>`)
- -/✅
- -/✅
- -/✅
- -/✅
- :doc:`rocRAND <rocrand:api-reference/data-type-support>`
- NA/✅
- NA/✅
- NA/✅
- NA/✅
*
- hipRAND (:doc:`details <hiprand:api-reference/data-type-support>`)
- -/✅
- -/✅
- -/✅
- -/✅
- :doc:`hipRAND <hiprand:api-reference/data-type-support>`
- NA/✅
- NA/✅
- NA/✅
- NA/✅
*
- rocPRIM (:doc:`details <rocprim:reference/data-type-support>`)
- :doc:`rocPRIM <rocprim:reference/data-type-support>`
- ✅/✅
- ✅/✅
- ✅/✅
- ✅/✅
*
- hipCUB (:doc:`details <hipcub:api-reference/data-type-support>`)
- :doc:`hipCUB <hipcub:api-reference/data-type-support>`
- ✅/✅
- ✅/✅
- ✅/✅
- ✅/✅
*
- rocThrust (:doc:`details <rocthrust:data-type-support>`)
- :doc:`rocThrust <rocthrust:data-type-support>`
- ✅/✅
- ✅/✅
- ✅/✅
@@ -458,7 +500,7 @@ description, refer to the corresponding library data type support page.
- float32
- float64
*
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
- ❌/❌
- ❌/❌
- ✅/✅
@@ -467,25 +509,25 @@ description, refer to the corresponding library data type support page.
- ❌/❌
- ❌/❌
*
- rocRAND (:doc:`details <rocrand:api-reference/data-type-support>`)
- -/❌
- -/❌
- -/✅
- -/❌
- -/❌
- -/✅
- -/✅
- :doc:`rocRAND <rocrand:api-reference/data-type-support>`
- NA/❌
- NA/❌
- NA/✅
- NA/❌
- NA/❌
- NA/✅
- NA/✅
*
- hipRAND (:doc:`details <hiprand:api-reference/data-type-support>`)
- -/❌
- -/❌
- -/✅
- -/❌
- -/❌
- -/✅
- -/✅
- :doc:`hipRAND <hiprand:api-reference/data-type-support>`
- NA/❌
- NA/❌
- NA/✅
- NA/❌
- NA/❌
- NA/✅
- NA/✅
*
- rocPRIM (:doc:`details <rocprim:reference/data-type-support>`)
- :doc:`rocPRIM <rocprim:reference/data-type-support>`
- ❌/❌
- ❌/❌
- ✅/✅
@@ -494,7 +536,7 @@ description, refer to the corresponding library data type support page.
- ✅/✅
- ✅/✅
*
- hipCUB (:doc:`details <hipcub:api-reference/data-type-support>`)
- :doc:`hipCUB <hipcub:api-reference/data-type-support>`
- ❌/❌
- ❌/❌
- ✅/✅
@@ -503,7 +545,7 @@ description, refer to the corresponding library data type support page.
- ✅/✅
- ✅/✅
*
- rocThrust (:doc:`details <rocthrust:data-type-support>`)
- :doc:`rocThrust <rocthrust:data-type-support>`
- ❌/❌
- ❌/❌
- ⚠️/⚠️
@@ -512,12 +554,18 @@ description, refer to the corresponding library data type support page.
- ✅/✅
- ✅/✅
.. note::
As random number generation libraries, rocRAND and hipRAND only specify output
data types for the random values they generate, with no need for input data
types.
Libraries internal calculations type support
-------------------------------------------------------------------------------
--------------------------------------------
The following tables list ROCm library support for specific internal data types. For a detailed
description, refer to the corresponding library data type support page.
The following tables list ROCm library support for specific internal data types.
Refer to the corresponding library data type support page for a detailed
description.
.. tab-set::
@@ -534,7 +582,7 @@ description, refer to the corresponding library data type support page.
- int32
- int64
*
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
-
-
-
@@ -557,7 +605,7 @@ description, refer to the corresponding library data type support page.
- float32
- float64
*
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
-
-
-

View File

@@ -10,6 +10,7 @@
| Version | Release date |
| ------- | ------------ |
| [6.3.3](https://rocm.docs.amd.com/en/docs-6.3.3/) | February 19, 2025 |
| [6.3.2](https://rocm.docs.amd.com/en/docs-6.3.2/) | January 28, 2025 |
| [6.3.1](https://rocm.docs.amd.com/en/docs-6.3.1/) | December 20, 2024 |
| [6.3.0](https://rocm.docs.amd.com/en/docs-6.3.0/) | December 3, 2024 |

View File

@@ -40,11 +40,13 @@ subtrees:
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/train-a-model.rst
title: Train a model
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training
- file: how-to/rocm-for-ai/fine-tuning/index.rst
title: Fine-tuning LLMs
subtrees:
@@ -152,7 +154,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
title: AMD Instinct MI200/CDNA2 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
title: White paper
- file: conceptual/gpu-arch/mi100.md
title: MI100 microarchitecture
@@ -160,7 +162,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
title: AMD Instinct MI100/CDNA1 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
title: White paper
- file: conceptual/iommu.rst
title: Input-Output Memory Management Unit (IOMMU)

View File

@@ -1,3 +1,4 @@
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -1,13 +1,15 @@
#
# This file is autogenerated by pip-compile with Python 3.10
# This file is autogenerated by pip-compile with Python 3.11
# by the following command:
#
# pip-compile requirements.in
# pip-compile docs/sphinx/requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
alabaster==1.0.0
# via sphinx
appnope==0.1.4
# via ipykernel
asttokens==3.0.0
# via stack-data
attrs==25.1.0
@@ -23,7 +25,7 @@ beautifulsoup4==4.12.3
# via pydata-sphinx-theme
breathe==4.35.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2024.12.14
# via requests
cffi==1.17.1
# via
@@ -37,12 +39,14 @@ click==8.1.7
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==43.0.3
cryptography==44.0.0
# via pyjwt
debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
# via pygithub
docutils==0.21.2
@@ -51,11 +55,9 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.20.0
fastjsonschema==2.21.1
# via
# nbformat
# rocm-docs-core
@@ -63,8 +65,6 @@ gitdb==4.0.11
# via gitpython
gitpython==3.1.43
# via rocm-docs-core
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
@@ -75,13 +75,13 @@ importlib-metadata==8.6.1
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.31.0
ipython==8.32.0
# via
# ipykernel
# myst-nb
jedi==0.19.2
# via ipython
jinja2==3.1.5
jinja2==3.1.4
# via
# myst-parser
# sphinx
@@ -115,7 +115,7 @@ mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.1.2
myst-nb==1.2.0
# via rocm-docs-core
myst-parser==4.0.0
# via myst-nb
@@ -142,7 +142,7 @@ platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.50
# via ipython
psutil==6.1.1
psutil==7.0.0
# via ipykernel
ptyprocess==0.7.0
# via pexpect
@@ -150,7 +150,7 @@ pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
@@ -162,7 +162,7 @@ pygments==2.18.0
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -175,7 +175,7 @@ pyyaml==6.0.2
# myst-parser
# rocm-docs-core
# sphinx-external-toc
pyzmq==26.2.0
pyzmq==26.2.1
# via
# ipykernel
# jupyter-client
@@ -187,7 +187,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
# via -r requirements.in
rpds-py==0.22.3
# via
@@ -215,6 +215,8 @@ sphinx==8.1.3
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
# via rocm-docs-core
sphinx-copybutton==0.5.2
@@ -226,11 +228,13 @@ sphinx-external-toc==1.0.1
sphinx-notfound-page==1.0.4
# via rocm-docs-core
sphinx-reredirects==0.1.5
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinx-sitemap==2.6.0
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
sphinxcontrib-datatemplates==0.11.0
# via -r docs/sphinx/requirements.in
sphinxcontrib-devhelp==2.0.0
# via sphinx
sphinxcontrib-htmlhelp==2.1.0
@@ -239,16 +243,16 @@ sphinxcontrib-jsmath==1.0.1
# via sphinx
sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
sqlalchemy==2.0.38
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
# via sphinx
tornado==6.4.2
# via
# ipykernel

View File

@@ -0,0 +1,102 @@
/* ------------------ Compatibility options grid ------------------ */
html {
--compat-border-radius: 2px;
--compat-accent-color: var(--pst-color-primary);
--compat-bg-color: var(--pst-color-on-background);
--compat-fg-color: var(--pst-color-primary-text);
--compat-head-color: var(--pst-color-surface);
--compat-param-hover-color: var(--pst-color-link-hover);
--compat-param-selected-color: var(--pst-color-primary);
}
html[data-theme="light"] {
--compat-border-color: var(--pst-gray-500);
--compat-param-disabled-color: var(--pst-gray-300);
}
html[data-theme="dark"] {
--compat-border-color: var(--pst-gray-600);
--compat-param-disabled-color: var(--pst-gray-600);
}
div#vllm-benchmark-ud-params-picker.container-fluid {
padding: 0 0 1rem 0;
}
div[data-param-k="model"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
div[data-param-k="model-group"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model-group"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model-group"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
.model-param-head {
background-color: var(--compat-head-color);
padding: 0.15rem 0.15rem 0.15rem 0.67rem;
/* margin: 2px; */
border-right: solid 2px var(--compat-accent-color);
font-weight: 600;
}
.model-param {
/* padding: 2px; */
/* margin: 0 2px 0 2px; */
/* margin: 2px; */
border: solid 1px var(--compat-border-color);
font-weight: 500;
}
.hidden {
display: none !important;
}

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.2"
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -0,0 +1,47 @@
# ROCm 6.3.3 release notes
The release notes provide a summary of notable changes since the previous ROCm release.
- [Release highlights](#release-highlights)
- [Operating system and hardware support changes](#operating-system-and-hardware-support-changes)
- [ROCm components versioning](#rocm-components)
- [Detailed component changes](#detailed-component-changes)
- [ROCm known issues](#rocm-known-issues)
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
documentation to verify compatibility and system requirements.
```
## Release highlights
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
[Detailed component changes](#detailed-component-changes).
### ROCm Offline Installer Creator updates
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
### ROCm documentation updates
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
* The following HIP documentation topics have been updated:
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)

View File

@@ -0,0 +1,8 @@
## ROCm known issues
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
### Zero value is displayed in ROCTx aggregated statistics
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior.

View File

@@ -0,0 +1,7 @@
## Operating system and hardware support changes
Operating system and hardware support remain unchanged in this release.
See the [Compatibility
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
for more information about operating system and hardware compatibility.

View File

@@ -0,0 +1,17 @@
## ROCm upcoming changes
The following changes to the ROCm software stack are anticipated for future releases.
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
### AMDGPU wavefront size compiler macro deprecation
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
### HIPCC Perl scripts deprecation
The HIPCC Perl scripts (`hipcc.pl` and `hipconfig.pl`) will be removed in an upcoming release.

View File

@@ -68,85 +68,6 @@ set_address_sanitizer_off() {
export LDFLAGS=""
}
build_miopen_ckProf() {
ENABLE_ADDRESS_SANITIZER=false
echo "Start Building Composable Kernel Profiler"
if [ "${ENABLE_ADDRESS_SANITIZER}" == "true" ]; then
set_asan_env_vars
set_address_sanitizer_on
else
unset_asan_env_vars
set_address_sanitizer_off
fi
cd $COMPONENT_SRC
cd "$BUILD_DIR"
rm -rf *
architectures='gfx10 gfx11 gfx90 gfx94'
if [ -n "$GPU_ARCHS" ]; then
architectures=$(echo ${GPU_ARCHS} | awk -F';' '{for(i=1;i<=NF;i++) a[substr($i,1,5)]} END{for(i in a) printf i" "}')
fi
for arch in ${architectures}
do
if [ "${ASAN_CMAKE_PARAMS}" == "true" ] ; then
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}/lib/cmake;${ROCM_PATH%-*}/$ASAN_LIBDIR;${ROCM_PATH%-*}/llvm;${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE:-'RelWithDebInfo'} \
-DCMAKE_SHARED_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_LIB_RPATH" \
-DCMAKE_EXE_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_EXE_RPATH" \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DENABLE_ASAN_PACKAGING=true \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
else
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_SHARED_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN' \
-DCMAKE_EXE_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN/../lib' \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
fi
cmake --build . -- -j${PROC} package
cp ./*ckprofiler*.${PKGTYPE} $PACKAGE_DIR
rm -rf *
done
rm -rf _CPack_Packages/ && find -name '*.o' -delete
echo "Finished building Composable Kernel"
show_build_cache_stats
}
clean_miopen_ck() {
echo "Cleaning MIOpen-CK build directory: ${BUILD_DIR} ${PACKAGE_DIR}"
rm -rf "$BUILD_DIR" "$PACKAGE_DIR"

View File

@@ -42,7 +42,6 @@ DEB_PATH="$(getDebPath $PROJ_NAME)"
RPM_PATH="$(getRpmPath $PROJ_NAME)"
INSTALL_PATH="${ROCM_INSTALL_PATH}/lib/llvm"
LLVM_ROOT_LCL="${LLVM_ROOT}"
ROCM_WHEEL_DIR="${BUILD_PATH}/_wheel"
TARGET="all"
MAKEOPTS="$DASH_JAY"
@@ -150,7 +149,6 @@ ENABLE_RUNTIMES="$ENABLE_RUNTIMES;libcxx;libcxxabi"
BOOTSTRAPPING_BUILD_LIBCXX=1
clean_lightning() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_PATH"
rm -rf "$DEB_PATH"
rm -rf "$RPM_PATH"
@@ -332,15 +330,6 @@ build_lightning() {
echo "End Workaround for race condition"
cmake --build . -- $MAKEOPTS
case "$DISTRO_ID" in
(rhel*|centos*)
RHEL_BUILD=1
;;
(*)
RHEL_BUILD=0
;;
esac
if [ $SKIP_LIT_TESTS -eq 0 ]; then
if [ $RHEL_BUILD -eq 1 ]; then
cmake --build . -- $MAKEOPTS check-lld check-mlir
@@ -1158,9 +1147,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,171 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omniperf.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omniperf"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
ROCM_WHEEL_DIR="${BUILD_DIR}/_wheel"
BUILD_TYPE="Debug"
MAKE_OPTS="$DASH_JAY -C $BUILD_DIR"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0;
MAKETARGET="deb"
PKGTYPE="deb"
WHEEL_PACKAGE=false
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,static,address_sanitizer,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
-h | --help)
printUsage ; exit 0;;
-c | --clean)
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
-r | --release)
BUILD_TYPE="Release" ; shift ;;
-a | --address_sanitizer)
set_asan_env_vars
set_address_sanitizer_on ; shift ;;
-s | --static)
SHARED_LIBS="OFF" ; shift ;;
-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
-p | --package)
MAKETARGET="$2" ; shift 2 ;;
-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
--) shift; break;; # end delimiter
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
RET_CONFLICT=1
check_conflicting_options "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
if [ $RET_CONFLICT -ge 30 ]; then
print_vars "$API_NAME" "$TARGET" "$BUILD_TYPE" "$SHARED_LIBS" "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = centos-7 ]; then
echo "Skip make and uploading packages for Omniperf on Centos7 distro, due to python dependency"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
pushd "$BUILD_DIR" || exit
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
print_lib_type $SHARED_LIBS
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DCHECK_PYTHON_DEPS=NO \
-DPYTHON_DEPS=${BUILD_DIR}/python-libs \
-DMOD_INSTALL_PATH=${BUILD_DIR}/modulefiles \
"$OMNIPERF_ROOT"
fi
make $MAKE_OPTS
make $MAKE_OPTS install
make $MAKE_OPTS package
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
create_wheel_package() {
echo "Creating Omniperf wheel package"
# Copy the setup.py generator to build folder
mkdir -p "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/generate_setup_py.py "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/repackage_wheel.sh "$ROCM_WHEEL_DIR"
cd "$ROCM_WHEEL_DIR" || exit
# Currently only supports python3.6
./repackage_wheel.sh "$BUILD_DIR"/*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo "${PACKAGE_DEB}";;
("rpm")
echo "${PACKAGE_RPM}";;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
(clean) clean ;;
(build) build ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,191 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omnitrace.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omnitrace"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
BUILD_TYPE="Debug"
MAKE_OPTS="-j 8"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0
MAKETARGET="deb"
PKGTYPE="deb"
ASAN=0
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,address_sanitizer,static,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true; do
case "$1" in
-h | --help)
printUsage
exit 0
;;
-c | --clean)
TARGET="clean"
((CLEAN_OR_OUT |= 1))
shift
;;
-r | --release)
BUILD_TYPE="RelWithDebInfo"
shift
;;
-a | --address_sanitizer)
ack_and_ignore_asan
ASAN=1
shift
;;
-s | --static)
SHARED_LIBS="OFF"
shift
;;
-o | --outdir)
TARGET="outdir"
PKGTYPE=$2
((CLEAN_OR_OUT |= 2))
shift 2
;;
-p | --package)
MAKETARGET="$2"
shift 2
;;
-w | --wheel)
echo "omnitrace: wheel build option accepted and ignored"
shift
;;
--)
shift
break
;;
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] " >&2
exit 20
;;
esac
done
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $API_NAME $TARGET $BUILD_TYPE $SHARED_LIBS $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build_omnitrace() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = "mariner-2.0" ] || [ "$DISTRO_ID" = "ubuntu-24.04" ] || [ "$DISTRO_ID" = "azurelinux-3.0" ]; then
echo "Skip make and uploading packages for Omnitrace on \"${DISTRO_ID}\" distro"
exit 0
fi
if [ $ASAN == 1 ]; then
echo "Skip make and uploading packages for Omnitrace on ASAN build"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
echo "Created build directory: $BUILD_DIR"
fi
echo "Build directory: $BUILD_DIR"
pushd "$BUILD_DIR" || exit
print_lib_type $SHARED_LIBS
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
if [ $ASAN == 1 ]; then
echo "Address Sanitizer path"
else
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DOMNITRACE_BUILD_{LIBUNWIND,DYNINST}=ON \
-DDYNINST_BUILD_{TBB,BOOST,ELFUTILS,LIBIBERTY}=ON \
"$OMNITRACE_ROOT"
fi
popd || exit
echo "Make Options: $MAKE_OPTS"
cmake --build "$BUILD_DIR" --target all -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target install -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target package -- $MAKE_OPTS
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
print_output_directory() {
case ${PKGTYPE} in
"deb")
echo "${PACKAGE_DEB}"
;;
"rpm")
echo "${PACKAGE_RPM}"
;;
*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2
exit 1
;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
clean) clean ;;
build) build_omnitrace ;;
outdir) print_output_directory ;;
*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -1,141 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
PROJ_NAME=OpenCL-ICD-Loader
TARGET="build"
MAKEOPTS="$DASH_JAY"
BUILD_TYPE="Debug"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_DEB="$PACKAGE_ROOT/deb/${PROJ_NAME,,}"
PACKAGE_RPM="$PACKAGE_ROOT/rpm/${PROJ_NAME,,}"
CLEAN_OR_OUT=0;
PKGTYPE="deb"
MAKETARGET="deb"
API_NAME="rocm-opencl-icd-loader"
printUsage() {
echo
echo "Usage: $(basename "${BASH_SOURCE}") [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -h, --help Prints this help"
echo " -o, --outdir Print path of output directory containing packages"
echo " -s, --static Component/Build does not support static builds just accepting this param & ignore. No effect of the param on this build"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $TARGET $BUILD_TYPE $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean_opencl_icd_loader() {
echo "Cleaning $PROJ_NAME"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME,,}"
}
copy_pkg_files_to_rocm() {
local comp_folder=$1
local comp_pkg_name=$2
cd "${OUT_DIR}/${PKGTYPE}/${comp_folder}"|| exit 2
if [ "${PKGTYPE}" = 'deb' ]; then
dpkg-deb -x ${comp_pkg_name}_*.deb pkg/
else
mkdir pkg && pushd pkg/ || exit 2
if [[ "${comp_pkg_name}" != *-dev* ]]; then
rpm2cpio ../${comp_pkg_name}-*.rpm | cpio -idmv
else
rpm2cpio ../${comp_pkg_name}el-*.rpm | cpio -idmv
fi
popd || exit 2
fi
ls ./pkg -alt
cp -r ./pkg/*/rocm*/* "${ROCM_PATH}" || exit 2
rm -rf pkg/
}
build_opencl_icd_loader() {
echo "Downloading $PROJ_NAME" package
if [ "$DISTRO_NAME" = ubuntu ]; then
mkdir -p "$PACKAGE_DEB"
local rocm_ver=${ROCM_VERSION}
if [ ${ROCM_VERSION##*.} = 0 ]; then
rocm_ver=${ROCM_VERSION%.*}
fi
local url="https://repo.radeon.com/rocm/apt/${rocm_ver}/pool/main/r/${API_NAME}/"
local package
package=$(curl -s "$url" | grep -Po 'href="\K[^"]*' | grep "${DISTRO_RELEASE}" | head -n 1)
if [ -z "$package" ]; then
echo "No package found for Ubuntu version $DISTRO_RELEASE"
exit 1
fi
wget -t3 -P "$PACKAGE_DEB" "${url}${package}"
copy_pkg_files_to_rocm ${PROJ_NAME,,} ${API_NAME}
else
echo "$DISTRO_ID is not supported..."
exit 2
fi
echo "Installing $PROJ_NAME" package
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo ${PACKAGE_DEB};;
("rpm")
echo ${PACKAGE_RPM};;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
VALID_STR=`getopt -o hcraswlo:p: --long help,clean,release,outdir:,package: -- "$@"`
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
(-c | --clean )
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
(-r | --release )
BUILD_TYPE="RelWithDebInfo" ; shift ;;
(-h | --help )
printUsage ; exit 0 ;;
(-a | --address_sanitizer)
ack_and_ignore_asan ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
MAKETARGET="$2" ; shift 2;;
(-s | --static)
echo "-s parameter accepted but ignored" ; shift ;;
--) shift; break;;
(*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
case $TARGET in
(clean) clean_opencl_icd_loader ;;
(build) build_opencl_icd_loader ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -32,7 +32,6 @@ ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_PACKAGE_DEB="$(getPackageRoot)/deb/rocm-cmake"
ROCM_CMAKE_PACKAGE_RPM="$(getPackageRoot)/rpm/rocm-cmake"
ROCM_WHEEL_DIR="${ROCM_CMAKE_BUILD_DIR}/_wheel"
ROCM_CMAKE_BUILD_TYPE="debug"
BUILD_TYPE="Debug"
SHARED_LIBS="ON"
@@ -56,8 +55,6 @@ do
ack_and_ignore_asan ; shift ;;
(-s | --static)
SHARED_LIBS="OFF" ; shift ;;
(-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
@@ -78,7 +75,6 @@ fi
clean_rocm_cmake() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf $ROCM_CMAKE_BUILD_DIR
rm -rf $ROCM_CMAKE_PACKAGE_DEB
rm -rf $ROCM_CMAKE_PACKAGE_RPM
@@ -106,19 +102,6 @@ build_rocm_cmake() {
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$ROCM_CMAKE_PACKAGE_RPM" $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm
}
create_wheel_package() {
echo "Creating rocm-cmake wheel package"
# Copy the setup.py generator to build folder
mkdir -p $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/generate_setup_py.py $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/repackage_wheel.sh $ROCM_WHEEL_DIR
cd $ROCM_WHEEL_DIR
# Currently only supports python3.6
./repackage_wheel.sh $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$ROCM_CMAKE_PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
@@ -138,9 +121,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils
@@ -121,11 +120,9 @@ python3-yaml
python3.8-dev
re2c
redis-tools
# Eventually we should be able to remove rpm for debian builds.
rpm
rsync
ssh
# This makes life more pleasent inside the container
strace
sudo
systemtap-sdt-dev

View File

@@ -1,285 +0,0 @@
#! /usr/bin/bash
set -x
apt-get -y update
DEBIAN_FRONTEND=noninteractive DEBCONF_NONINTERACTIVE_SEEN=true apt-get install --no-install-recommends -y $(sed 's/#.*//' /tmp/packages)
apt-get clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* /etc/apt/apt.conf.d/01proxy
#Install 2.17.1 version of git as we are seeing issues with 2.25 , where it was not allowing to add git submodules if the user is different for parent git directory
curl -o git.tar.gz https://cdn.kernel.org/pub/software/scm/git/git-2.17.1.tar.gz
tar -zxf git.tar.gz
cd git-*
make prefix=/usr/local all
make prefix=/usr/local install
git --version
#install argparse and CppHeaderParser python modules for roctracer and rocprofiler
#install rocm-docs-core for the docs-as-code project. Only needed on one OS
# CppHeader needs setuptools. setuptools needs wheel.
# Looks like I need them as seperate commands
# Sigh, install both python2 and python 3 version
pip3 install --no-cache-dir setuptools wheel tox
pip3 install --no-cache-dir CppHeaderParser argparse requests lxml barectf recommonmark jinja2==3.0.0 websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas myst-parser
# Allow sudo for everyone user
echo 'ALL ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/everyone
# Install OCaml packages to build LLVM's OCaml bindings to be used in lightning compiler test pipeline
wget -nv https://sourceforge.net/projects/opam.mirror/files/2.1.4/opam-2.1.4-x86_64-linux -O /usr/local/bin/opam
chmod +x /usr/local/bin/opam
opam init --yes --disable-sandboxing
opam install ctypes --yes
# Install and modify git-repo (#!/usr/bin/env python -> #!/usr/bin/env python3)
curl https://storage.googleapis.com/git-repo-downloads/repo > /usr/bin/repo
chmod a+x /usr/bin/repo
# Build ccache from the source
cd /tmp
git clone https://github.com/ccache/ccache -b v4.7.5
cd ccache
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
make install
cd /tmp
rm -rf ccache
# Install sharp from MLNX_OFED_LINUX as dependency for rccl-rdma-sharp-plugins
cd /var/tmp
mkdir mlnx
wget -O mlnx/tar.tgz https://content.mellanox.com/ofed/MLNX_OFED-24.01-0.3.3.1/MLNX_OFED_LINUX-24.01-0.3.3.1-ubuntu22.04-x86_64.tgz
tar -xz -C mlnx -f mlnx/tar.tgz
apt-key add mlnx/*/RPM-GPG-KEY-Mellanox
echo "deb [arch=amd64] file:$(echo $PWD/mlnx/*/DEBS) ./" > /etc/apt/sources.list.d/sharp.list
apt update
apt install -y sharp
apt clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* mlnx /etc/apt/sources.list.d/sharp.list
apt update
apt -y install libunwind-dev
apt -y install libgoogle-glog-dev
# Install python3.8 from source
curl -LO https://www.python.org/ftp/python/3.8.13/Python-3.8.13.tar.xz
tar -xvf Python-3.8.13.tar.xz
pwd
ls /var/tmp/
ls Python-3.8.13
mv Python-3.8.13 /opt/
apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev pkg-config make -y
cd /opt/Python-3.8.13/
./configure --enable-optimizations --enable-shared
make
make -j 6
make altinstall
ldconfig /opt/Python3.8.13
python3.8 --version
# roctracer and rocprofiler needs this python3.8
python3.8 -m pip install setuptools wheel
python3.8 -m pip install CppHeaderParser argparse requests lxml PyYAML joblib
#Install older version of hwloc-devel package for rocrtst
curl -lO https://download.open-mpi.org/release/hwloc/v1.11/hwloc-1.11.13.tar.bz2
tar -xvf hwloc-1.11.13.tar.bz2
cd hwloc-1.11.13
./configure
make
make install
cp /usr/local/lib/libhwloc.so.5 /usr/lib
hwloc-info --version
# Install gtest
mkdir -p /tmp/gtest
cd /tmp/gtest
wget https://github.com/google/googletest/archive/refs/tags/v1.14.0.zip -O googletest.zip
unzip googletest.zip
cd googletest-1.14.0/
mkdir build
cd build
cmake ..
make -j$(nproc)
make install
rm -rf /tmp/gtest
## Install gRPC from source
## RDC Pre-requisites
GRPC_ARCHIVE=grpc-1.61.0.tar.gz
mkdir /tmp/grpc
mkdir /usr/grpc
cd /tmp
git clone --recurse-submodules -b v1.61.0 https://github.com/grpc/grpc
cd grpc
mkdir -p build
cd build
cmake -DgRPC_INSTALL=ON -DBUILD_SHARED_LIBS=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/usr/grpc -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=14 -DCMAKE_SHARED_LINKER_FLAGS_INIT=-Wl,--enable-new-dtags,--build-id=sha1,--rpath,'$ORIGIN' ..
make -j $(nproc) install
rm -rf /tmp/grpc
## rocBLAS Pre-requisites
## Download prebuilt AMD multithreaded blis (2.0)
## Reference : https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/install.sh#L403
mkdir -p /tmp/blis
cd /tmp/blis
wget -O - https://github.com/amd/blis/releases/download/2.0/aocl-blis-mt-ubuntu-2.0.tar.gz | tar xfz -
mv amd-blis-mt /usr/blis
cd /
rm -rf /tmp/blis
## rocBLAS Pre-requisites(SWDEV-404612)
## Download aocl-linux-gcc-4.2.0_1_amd64.deb
mkdir -p /tmp/aocl
cd /tmp/aocl
wget -nv https://download.amd.com/developer/eula/aocl/aocl-4-2/aocl-linux-gcc-4.2.0_1_amd64.deb
apt install ./aocl-linux-gcc-4.2.0_1_amd64.deb
rm -rf /tmp/aocl
## hipBLAS Pre-requisites
## lapack(3.9.1v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L174
lapack_version=3.9.1
lapack_srcdir=lapack-$lapack_version
lapack_blddir=lapack-$lapack_version-bld
mkdir -p /tmp/lapack
cd /tmp/lapack
rm -rf "$lapack_srcdir" "$lapack_blddir"
wget -O - https://github.com/Reference-LAPACK/lapack/archive/refs/tags/v3.9.1.tar.gz | tar xzf -
cmake -H$lapack_srcdir -B$lapack_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_Fortran_FLAGS=-fno-optimize-sibling-calls -DBUILD_TESTING=OFF -DCBLAS=ON -DLAPACKE=OFF
make -j$(nproc) -C "$lapack_blddir"
make -C "$lapack_blddir" install
cd $lapack_blddir
cp -r ./include/* /usr/local/include/
cp -r ./lib/* /usr/local/lib
cd /
rm -rf /tmp/lapack
## rocSOLVER Pre-requisites
## FMT(7.1.3v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L152
fmt_version=7.1.3
fmt_srcdir=fmt-$fmt_version
fmt_blddir=fmt-$fmt_version-bld
mkdir -p /tmp/fmt
cd /tmp/fmt
rm -rf "$fmt_srcdir" "$fmt_blddir"
wget -O - https://github.com/fmtlib/fmt/archive/refs/tags/7.1.3.tar.gz | tar xzf -
cmake -H$fmt_srcdir -B$fmt_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=OFF -DCMAKE_CXX_STANDARD_REQUIRED=ON -DFMT_DOC=OFF -DFMT_TEST=OFF
make -j$(nproc) -C "$fmt_blddir"
make -C "$fmt_blddir" install
# Build and install libjpeg-turbo
mkdir -p /tmp/libjpeg-turbo
cd /tmp/libjpeg-turbo
wget -nv https://github.com/rrawther/libjpeg-turbo/archive/refs/heads/2.0.6.2.zip -O libjpeg-turbo-2.0.6.2.zip
unzip libjpeg-turbo-2.0.6.2.zip
cd libjpeg-turbo-2.0.6.2
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=RELEASE -DENABLE_STATIC=FALSE -DCMAKE_INSTALL_DEFAULT_LIBDIR=lib ..
make -j$(nproc) install
rm -rf /tmp/libjpeg-turbo
# Get released ninja from source
mkdir -p /tmp/ninja
cd /tmp/ninja
wget -nv https://codeload.github.com/Kitware/ninja/zip/refs/tags/v1.11.1.g95dee.kitware.jobserver-1 -O ninja.zip
unzip ninja.zip
cd ninja-1.11.1.g95dee.kitware.jobserver-1
./configure.py --bootstrap
cp ninja /usr/local/bin/
rm -rf /tmp/ninja
# Install FFmpeg and dependencies
# Build NASM
mkdir -p /tmp/nasm-2.15.05
cd /tmp
wget -qO- "https://distfiles.macports.org/nasm/nasm-2.15.05.tar.bz2" | tar -xvj
cd nasm-2.15.05
./autogen.sh
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/nasm-2.15.05
# Build YASM
mkdir -p /tmp/yasm-1.3.0
cd /tmp
wget -qO- "http://www.tortall.net/projects/yasm/releases/yasm-1.3.0.tar.gz" | tar -xvz
cd yasm-1.3.0
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/yasm-1.3.0
# Build x264
mkdir -p /tmp/x264-snapshot-20191217-2245-stable
cd /tmp
wget -qO- "https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-20191217-2245-stable.tar.bz2" | tar -xvj
cd /tmp/x264-snapshot-20191217-2245-stable
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig" ./configure --prefix="/usr/local" --enable-shared
make -j$(nproc) install
rm -rf /tmp/x264-snapshot-20191217-2245-stable
# Build x265
mkdir -p /tmp/x265_2.7
cd /tmp
wget -qO- "https://get.videolan.org/x265/x265_2.7.tar.gz" | tar -xvz
cd /tmp/x265_2.7/build/linux
cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX="/usr/local" -DENABLE_SHARED:bool=on ../../source
make -j$(nproc) install
rm -rf /tmp/x265_2.7
# Build fdk-aac
mkdir -p /tmp/fdk-aac-2.0.2
cd /tmp
wget -qO- "https://sourceforge.net/projects/opencore-amr/files/fdk-aac/fdk-aac-2.0.2.tar.gz" | tar -xvz
cd /tmp/fdk-aac-2.0.2
autoreconf -fiv
./configure --prefix="/usr/local" --enable-shared --disable-static
make -j$(nproc) install
rm -rf /tmp/fdk-aac-2.0.2
# Build FFmpeg
cd /tmp
git clone -b release/4.4 https://git.ffmpeg.org/ffmpeg.git ffmpeg
cd ffmpeg
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig"
./configure --prefix="/usr/local" --extra-cflags="-I/usr/local/include" --extra-ldflags="-L/usr/local/lib" --extra-libs=-lpthread --extra-libs=-lm --enable-shared --disable-static --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-gpl --enable-nonfree
make -j$(nproc) install
rm -rf /tmp/ffmpeg
cp /tmp/local-pin-600 /etc/apt/preferences.d
command -v lbzip2
ln -sf $(command -v lbzip2) /usr/local/bin/compressor || ln -sf $(command -v bzip2) /usr/local/bin/compressor
# Install Google Benchmark
mkdir -p /tmp/Gbenchmark
cd /tmp/Gbenchmark
wget -qO- https://github.com/google/benchmark/archive/refs/tags/v1.6.1.tar.gz | tar xz
cmake -Sbenchmark-1.6.1 -Bbuild -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DBENCHMARK_ENABLE_TESTING=OFF -DCMAKE_CXX_STANDARD=14
make -j -C build
cd /tmp/Gbenchmark/build
make install
# Build boost-1.85.0 from source for RPP
# Installing in a non-standard location since the test packages of hipFFT and rocFFT pick up the version of
# the installed Boost library and declare a package dependency on that specific version of Boost.
# For example, if this was installed in the standard location it would declare a dependency on libboost-dev(el)1.85.0
# which is not available as a package in any distro.
# Once this is fixed, we can remove the Boost package from the requirements list and install this
# in the standard location
mkdir -p /tmp/boost-1.85.0
cd /tmp/boost-1.85.0
wget -nv https://sourceforge.net/projects/boost/files/boost/1.85.0/boost_1_85_0.tar.bz2 -O ./boost_1_85_0.tar.bz2
tar -xf boost_1_85_0.tar.bz2 --use-compress-program="/usr/local/bin/compressor"
cd boost_1_85_0
./bootstrap.sh --prefix=${RPP_DEPS_LOCATION} --with-python=python3
./b2 stage -j$(nproc) threading=multi link=shared cxxflags="-std=c++11"
./b2 install threading=multi link=shared --with-system --with-filesystem
./b2 stage -j$(nproc) threading=multi link=static cxxflags="-std=c++11 -fpic" cflags="-fpic"
./b2 install threading=multi link=static --with-system --with-filesystem
rm -rf /tmp/boost-1.85.0

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils

View File

@@ -0,0 +1,77 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCm-->
<project name="ROCm" revision="roc-6.3.x" />
<project name="ROCK-Kernel-Driver" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="rdc" />
<project name="rocm_bandwidth_test" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-examples" />
<project name="rocminfo" />
<project name="rocprofiler" />
<project name="rocprofiler-register" />
<project name="rocprofiler-sdk" />
<project name="rocprofiler-compute" />
<project name="rocprofiler-systems" />
<project name="roctracer" />
<!--HIP Projects-->
<project name="HIP" />
<project name="hip-tests" />
<project name="HIPIFY" />
<project name="clr" />
<project name="hipother" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="half" />
<project name="llvm-project" />
<!-- gdb projects -->
<project name="ROCdbgapi" />
<project name="ROCgdb" />
<project name="rocr_debug_agent" />
<!-- ROCm Libraries -->
<project groups="mathlibs" name="AMDMIGraphX" />
<project groups="mathlibs" name="MIOpen" />
<project groups="mathlibs" name="MIVisionX" />
<project groups="mathlibs" name="ROCmValidationSuite" />
<project groups="mathlibs" name="Tensile" />
<project groups="mathlibs" name="composable_kernel" />
<project groups="mathlibs" name="hipBLAS-common" />
<project groups="mathlibs" name="hipBLAS" />
<project groups="mathlibs" name="hipBLASLt" />
<project groups="mathlibs" name="hipCUB" />
<project groups="mathlibs" name="hipFFT" />
<project groups="mathlibs" name="hipRAND" />
<project groups="mathlibs" name="hipSOLVER" />
<project groups="mathlibs" name="hipSPARSE" />
<project groups="mathlibs" name="hipSPARSELt" />
<project groups="mathlibs" name="hipTensor" />
<project groups="mathlibs" name="hipfort" />
<project groups="mathlibs" name="rccl" />
<project groups="mathlibs" name="rocAL" />
<project groups="mathlibs" name="rocALUTION" />
<project groups="mathlibs" name="rocBLAS" />
<project groups="mathlibs" name="rocDecode" />
<project groups="mathlibs" name="rocJPEG" />
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocFFT" />
<project groups="mathlibs" name="rocPRIM" />
<project groups="mathlibs" name="rocRAND" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocSPARSE" />
<project groups="mathlibs" name="rocThrust" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />
<project groups="mathlibs" name="rpp" />
<project groups="mathlibs" name="TransferBench" />
<!-- Projects for OpenMP-Extras -->
<project name="aomp" path="openmp-extras/aomp" />
<project name="aomp-extras" path="openmp-extras/aomp-extras" />
<project name="flang" path="openmp-extras/flang" />
</manifest>