mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-09 22:58:17 -05:00
Compare commits
93 Commits
precision_
...
docs_6.3.3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b12eb75be3 | ||
|
|
3d59247e7a | ||
|
|
d5b1fd4389 | ||
|
|
a05d9e2fa0 | ||
|
|
7ddb10a0fc | ||
|
|
63f9bc30bd | ||
|
|
b174ab767e | ||
|
|
f75ef9e2c1 | ||
|
|
e5bf76ead1 | ||
|
|
5393e90a8e | ||
|
|
fbc2815223 | ||
|
|
2b96a37b08 | ||
|
|
1e5ad14d86 | ||
|
|
f9d6bd4db8 | ||
|
|
23e78c8d55 | ||
|
|
0edd31bde6 | ||
|
|
4af488e27d | ||
|
|
7ae7046301 | ||
|
|
358092386e | ||
|
|
e071738908 | ||
|
|
cd79403931 | ||
|
|
e44499357e | ||
|
|
ce3bc46fcb | ||
|
|
7f66041b96 | ||
|
|
1d312ac9fd | ||
|
|
ebc39487a8 | ||
|
|
275ef1d511 | ||
|
|
065fe8b138 | ||
|
|
be36c1808e | ||
|
|
acee9ea228 | ||
|
|
1b36ab4850 | ||
|
|
be0d3a981b | ||
|
|
ba90b9e61b | ||
|
|
662a40a33f | ||
|
|
fd4ccb9372 | ||
|
|
64c362a961 | ||
|
|
d392eca232 | ||
|
|
2170c18828 | ||
|
|
1b58c08394 | ||
|
|
a89b135afb | ||
|
|
a61c2aeaf9 | ||
|
|
3b9f57166d | ||
|
|
062a1e069d | ||
|
|
6cc343f180 | ||
|
|
b75e5f2769 | ||
|
|
4fb9291d33 | ||
|
|
618b44ed23 | ||
|
|
c52aa329c8 | ||
|
|
1499f74c22 | ||
|
|
a9aaabcc68 | ||
|
|
35f4362e68 | ||
|
|
24603ac37a | ||
|
|
a6b1c656b0 | ||
|
|
82cf58912c | ||
|
|
c469e34b27 | ||
|
|
63b8d9da7b | ||
|
|
b6d19bd91c | ||
|
|
2751a17cf0 | ||
|
|
9b0ae86b1b | ||
|
|
16f7cb4c04 | ||
|
|
de007b6faf | ||
|
|
aa1333269c | ||
|
|
acb8f60304 | ||
|
|
faa67965dd | ||
|
|
73ab81fbaf | ||
|
|
ddfb5bda12 | ||
|
|
ae7f47a0a2 | ||
|
|
5e5f7d6bb7 | ||
|
|
da1125e228 | ||
|
|
e55b9f2a33 | ||
|
|
761a524d03 | ||
|
|
c895ee483c | ||
|
|
e049d952d4 | ||
|
|
ce41922bb5 | ||
|
|
2b53b40caa | ||
|
|
9250e1ba28 | ||
|
|
3c055ab65b | ||
|
|
44aaf1b57c | ||
|
|
822e789998 | ||
|
|
243ac78609 | ||
|
|
c2f483332f | ||
|
|
b35267b6bd | ||
|
|
deb4895b11 | ||
|
|
8c036531e8 | ||
|
|
484cbefc2e | ||
|
|
721b60d52f | ||
|
|
8ebe7be283 | ||
|
|
7e8947fdb4 | ||
|
|
66cac5301f | ||
|
|
9f3a1de117 | ||
|
|
0915fb17e8 | ||
|
|
0d3eb1d774 | ||
|
|
7a258cdba9 |
@@ -101,7 +101,7 @@ jobs:
|
||||
-DMIOPEN_BACKEND=HIP
|
||||
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/miopen-deps
|
||||
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DMIOPEN_ENABLE_AI_KERNEL_TUNING=OFF
|
||||
-DMIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK=OFF
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
@@ -129,6 +129,8 @@ jobs:
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
- name: ROCM_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm
|
||||
pool: $(JOB_TEST_POOL)
|
||||
workspace:
|
||||
clean: all
|
||||
|
||||
@@ -123,16 +123,13 @@ jobs:
|
||||
targetType: 'inline'
|
||||
workingDirectory: $(Build.SourcesDirectory)/rocrtst/suites/test_common
|
||||
script: |
|
||||
sudo rm -rf $(Agent.BuildDirectory)/external/llvm-project
|
||||
mkdir -p $(Agent.BuildDirectory)/external/llvm-project/clang/lib
|
||||
sudo ln -s $(Agent.BuildDirectory)/rocm/llvm/lib/clang/20/include $(Agent.BuildDirectory)/external/llvm-project/clang/lib/Headers
|
||||
mkdir build && cd build
|
||||
cmake .. \
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm \
|
||||
-DTARGET_DEVICES=$(JOB_GPU_TARGET) \
|
||||
-DROCM_DIR=$(Agent.BuildDirectory)/rocm \
|
||||
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin \
|
||||
-DOPENCL_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin
|
||||
-DOPENCL_INC_DIR=$(Agent.BuildDirectory)/rocm/llvm/lib/clang/21/include
|
||||
make
|
||||
make rocrtst_kernels
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
|
||||
|
||||
@@ -59,14 +59,10 @@ jobs:
|
||||
value: $(Build.BinariesDirectory)/rocm
|
||||
- name: TENSILE_ROCM_ASSEMBLER_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
|
||||
- name: CMAKE_CXX_COMPILER
|
||||
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
|
||||
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
|
||||
- name: TENSILE_ROCM_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
|
||||
- name: PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/llvm/bin:$(Agent.BuildDirectory)/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin
|
||||
- name: ROCM_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm
|
||||
- name: DAY_STRING
|
||||
value: $[format('{0:ddMMyyyy}', pipeline.startTime)]
|
||||
pool: ${{ variables.ULTRA_BUILD_POOL }}
|
||||
@@ -154,9 +150,8 @@ jobs:
|
||||
extraEnvVars:
|
||||
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
|
||||
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/amdclang
|
||||
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
|
||||
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
|
||||
- TENSILE_ROCM_PATH:::/home/user/workspace/rocm/bin/hipcc
|
||||
- ROCM_PATH:::/home/user/workspace/rocm
|
||||
extraCopyDirectories:
|
||||
- deps
|
||||
|
||||
|
||||
@@ -51,6 +51,7 @@ parameters:
|
||||
|
||||
jobs:
|
||||
- job: rccl
|
||||
timeoutInMinutes: 90
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
@@ -78,7 +79,6 @@ jobs:
|
||||
checkoutRef: ${{ parameters.checkoutRef }}
|
||||
dependencyList: ${{ parameters.rocmDependencies }}
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
- script: chmod +x $(Agent.BuildDirectory)/rocm/bin/hipify-perl
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
|
||||
parameters:
|
||||
extraBuildFlags: >-
|
||||
@@ -88,7 +88,7 @@ jobs:
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
|
||||
-DBUILD_TESTS=ON
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake/
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake;$(Agent.BuildDirectory)/rocm/libexec/hipify
|
||||
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-GNinja
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
|
||||
|
||||
@@ -64,10 +64,10 @@ jobs:
|
||||
value: $(Build.BinariesDirectory)/rocm
|
||||
- name: TENSILE_ROCM_ASSEMBLER_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang
|
||||
- name: CMAKE_CXX_COMPILER
|
||||
value: $(Agent.BuildDirectory)/rocm/bin/hipcc
|
||||
- name: TENSILE_ROCM_OFFLOAD_BUNDLER_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm/llvm/bin/clang-offload-bundler
|
||||
- name: ROCM_PATH
|
||||
value: $(Agent.BuildDirectory)/rocm
|
||||
pool: ${{ variables.MEDIUM_BUILD_POOL }}
|
||||
workspace:
|
||||
clean: all
|
||||
@@ -96,8 +96,8 @@ jobs:
|
||||
-DCMAKE_TOOLCHAIN_FILE=toolchain-linux.cmake
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
|
||||
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
|
||||
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang++
|
||||
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/amdclang
|
||||
-DGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DTensile_CODE_OBJECT_VERSION=default
|
||||
-DTensile_LOGIC=asm_full
|
||||
@@ -125,8 +125,8 @@ jobs:
|
||||
extraEnvVars:
|
||||
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
|
||||
- TENSILE_ROCM_ASSEMBLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang
|
||||
- CMAKE_CXX_COMPILER:::/home/user/workspace/rocm/bin/hipcc
|
||||
- TENSILE_ROCM_OFFLOAD_BUNDLER_PATH:::/home/user/workspace/rocm/llvm/bin/clang-offload-bundler
|
||||
- ROCM_PATH:::/home/user/workspace/rocm
|
||||
|
||||
- job: rocBLAS_testing
|
||||
dependsOn: rocBLAS
|
||||
|
||||
@@ -84,6 +84,7 @@ jobs:
|
||||
echo "##vso[task.setvariable variable=PYBIND11_PATH;]$(python3 -c 'import pybind11; print(pybind11.get_cmake_dir())')"
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
|
||||
parameters:
|
||||
installEnabled: false
|
||||
extraBuildFlags: >-
|
||||
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
|
||||
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(PYTHON_USER_SITE)/pybind11;$(PYTHON_DIST_PACKAGES)/pybind11;$(PYBIND11_PATH)
|
||||
@@ -91,6 +92,14 @@ jobs:
|
||||
-DGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DCMAKE_INSTALL_PREFIX_PYTHON=$(Build.BinariesDirectory)
|
||||
-GNinja
|
||||
- task: Bash@3
|
||||
displayName: 'rocPyDecode install'
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: |
|
||||
sudo cmake --build . --target install
|
||||
sudo chown -R $(whoami):$(id -gn) $(Build.BinariesDirectory)
|
||||
workingDirectory: $(Build.SourcesDirectory)/build
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
|
||||
parameters:
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
@@ -105,7 +114,8 @@ jobs:
|
||||
script: |
|
||||
export ROCM_PATH=$(Agent.BuildDirectory)/rocm
|
||||
export HIP_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include/hip
|
||||
python3 setup.py bdist_wheel
|
||||
sudo python3 setup.py bdist_wheel
|
||||
sudo chown -R $(whoami):$(id -gn) $(find . -name "*.whl")
|
||||
workingDirectory: $(Build.SourcesDirectory)
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
|
||||
parameters:
|
||||
|
||||
@@ -80,6 +80,7 @@ jobs:
|
||||
-DROCWMMA_BUILD_SAMPLES=OFF
|
||||
-DGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
|
||||
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
|
||||
-GNinja
|
||||
# gfx1030 not supported in documentation
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
|
||||
|
||||
@@ -56,6 +56,7 @@ jobs:
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
|
||||
parameters:
|
||||
aptPackages: ${{ parameters.aptPackages }}
|
||||
registerROCmPackages: true
|
||||
|
||||
- job: rocminfo_testing
|
||||
dependsOn: rocminfo
|
||||
@@ -102,5 +103,6 @@ jobs:
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
|
||||
parameters:
|
||||
aptPackages: ${{ parameters.aptPackages }}
|
||||
registerROCmPackages: true
|
||||
environment: test
|
||||
gpuTarget: $(JOB_GPU_TARGET)
|
||||
|
||||
@@ -55,9 +55,10 @@ parameters:
|
||||
- rocJPEG
|
||||
- rocm-core
|
||||
- rocminfo
|
||||
- ROCR-Runtime
|
||||
- rocm_smi_lib
|
||||
- rocprofiler-register
|
||||
- rocprofiler-sdk
|
||||
- ROCR-Runtime
|
||||
|
||||
jobs:
|
||||
- job: rocprofiler_systems
|
||||
|
||||
@@ -29,6 +29,7 @@ parameters:
|
||||
- clr
|
||||
- half
|
||||
- llvm-project
|
||||
- rocm-cmake
|
||||
- rocminfo
|
||||
- ROCR-Runtime
|
||||
- name: rocmTestDependencies
|
||||
@@ -79,6 +80,7 @@ jobs:
|
||||
-DHALF_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DGPU_TARGETS=$(JOB_GPU_TARGET)
|
||||
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
|
||||
-GNinja
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
|
||||
parameters:
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
variables:
|
||||
- group: common
|
||||
- template: /.azuredevops/variables-global.yml
|
||||
|
||||
parameters:
|
||||
- name: checkoutRef
|
||||
type: string
|
||||
default: refs/tags/$(LATEST_RELEASE_TAG)
|
||||
|
||||
resources:
|
||||
repositories:
|
||||
- repository: pipelines_repo
|
||||
type: github
|
||||
endpoint: ROCm
|
||||
name: ROCm/ROCm
|
||||
- repository: release_repo
|
||||
type: github
|
||||
endpoint: ROCm
|
||||
name: ROCm/TransferBench
|
||||
ref: ${{ parameters.checkoutRef }}
|
||||
|
||||
trigger: none
|
||||
pr: none
|
||||
|
||||
jobs:
|
||||
- template: ${{ variables.CI_COMPONENT_PATH }}/TransferBench.yml
|
||||
parameters:
|
||||
checkoutRepo: release_repo
|
||||
checkoutRef: ${{ parameters.checkoutRef }}
|
||||
@@ -20,41 +20,37 @@ steps:
|
||||
ARTIFACT_NAME="composablekernel.${{ parameters.gpuTarget }}"
|
||||
EXIT_CODE=0
|
||||
|
||||
# The commits that MIOpen reference are all merge commits from CK/develop to CK/amd-develop
|
||||
# These commits are present on CK/amd-develop but not on CK/develop
|
||||
# Ex-CI only builds CK/develop, so we need to find a commit present on both CK/develop and CK/amd-develop
|
||||
|
||||
# Try to find an Azure build for the specific CK commit called out in MIOpen's requirements.txt
|
||||
CK_COMMIT=$(grep 'ROCm/composable_kernel' requirements.txt | sed -E 's/.*@([a-f0-9]{40}).*/\1/')
|
||||
echo "Fetching CK build ID for commit $CK_COMMIT"
|
||||
CK_COMMIT_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}"
|
||||
PARENT_COMMIT=$(curl -s $CK_COMMIT_URL | jq '.parents[1].sha' | tr -d '"')
|
||||
echo "Found parent commit: $PARENT_COMMIT"
|
||||
PARENT_CHECKS_URL="$GH_API/composable_kernel/commits/${PARENT_COMMIT}/check-runs"
|
||||
CK_BUILD_ID=$(curl -s $PARENT_CHECKS_URL | \
|
||||
CK_CHECKS_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}/check-runs"
|
||||
CK_BUILD_ID=$(curl -s $CK_CHECKS_URL | \
|
||||
jq '.check_runs[] | select(.name == "composable_kernel" and .app.slug == "azure-pipelines") | .details_url' | \
|
||||
tr -d '"' | grep -oP 'buildId=\K\d+')
|
||||
|
||||
if [ -z "$CK_BUILD_ID" ]; then
|
||||
# If none found, use latest successful CK build instead
|
||||
if [[ -z "$CK_BUILD_ID" ]]; then
|
||||
echo "Did not find specific CK build ID"
|
||||
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
|
||||
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
|
||||
echo "Found latest CK build ID: $CK_BUILD_ID"
|
||||
EXIT_CODE=1
|
||||
else
|
||||
echo "Found specific CK build ID: $CK_BUILD_ID"
|
||||
fi
|
||||
|
||||
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
|
||||
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
|
||||
|
||||
if [ -z "$ARTIFACT_URL" ]; then
|
||||
echo "Did not find specific CK build artifact"
|
||||
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&status=completed&result=succeeded&\$top=1&api-version=7.1"
|
||||
# If using the specific CK commit and it doesn't have any valid artifacts, use latest successful CK build instead
|
||||
if { [[ -z "$ARTIFACT_URL" ]] || [[ "$ARTIFACT_URL" == "null" ]]; } && [[ $EXIT_CODE -eq 0 ]]; then
|
||||
echo "Did not find valid specific CK build artifact"
|
||||
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
|
||||
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
|
||||
echo "Found latest CK build ID: $CK_BUILD_ID"
|
||||
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
|
||||
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
|
||||
EXIT_CODE=2
|
||||
elif [ $EXIT_CODE -eq 0 ]; then
|
||||
echo "Found specific CK build ID: $CK_BUILD_ID"
|
||||
fi
|
||||
|
||||
echo "Downloading CK artifact from $ARTIFACT_URL"
|
||||
@@ -64,9 +60,13 @@ steps:
|
||||
tar -zxvf $(System.ArtifactsDirectory)/$ARTIFACT_NAME/*.tar.gz -C $(Agent.BuildDirectory)/rocm
|
||||
rm -r $(System.ArtifactsDirectory)/ck.zip $(System.ArtifactsDirectory)/$ARTIFACT_NAME
|
||||
|
||||
if [ $EXIT_CODE -ne 0 ]; then
|
||||
if [[ $EXIT_CODE -ne 0 ]]; then
|
||||
BUILD_COMMIT=$(curl -s $AZ_API/build/builds/$CK_BUILD_ID | jq '.sourceVersion' | tr -d '"')
|
||||
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
|
||||
if [[ $EXIT_CODE -eq 1 ]]; then
|
||||
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
|
||||
elif [[ $EXIT_CODE -eq 2 ]]; then
|
||||
echo "WARNING: couldn't find a valid CK artifact for commit $CK_COMMIT"
|
||||
fi
|
||||
echo "Instead used latest CK build $CK_BUILD_ID for commit $BUILD_COMMIT"
|
||||
fi
|
||||
exit $EXIT_CODE
|
||||
|
||||
4
.github/workflows/issue_retrieval.yml
vendored
4
.github/workflows/issue_retrieval.yml
vendored
@@ -2,7 +2,7 @@ name: Issue retrieval
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened]
|
||||
types: [opened, edited]
|
||||
|
||||
jobs:
|
||||
auto-retrieve:
|
||||
@@ -15,7 +15,7 @@ jobs:
|
||||
app_id: ${{ secrets.ACTION_APP_ID }}
|
||||
private_key: ${{ secrets.ACTION_PEM }}
|
||||
- name: 'Retrieve Issue'
|
||||
uses: abhimeda/rocm_issue_management@main
|
||||
uses: harkgill-amd/rocm_issue_management@main
|
||||
with:
|
||||
authentication-token: ${{ steps.generate_token.outputs.token }}
|
||||
github-organization: 'ROCm'
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -11,6 +11,7 @@ _toc.yml
|
||||
docBin/
|
||||
_doxygen/
|
||||
_readthedocs/
|
||||
__pycache__/
|
||||
|
||||
# avoid duplicating contributing.md due to conf.py
|
||||
docs/CHANGELOG.md
|
||||
|
||||
@@ -74,6 +74,7 @@ Conda
|
||||
ConnectX
|
||||
CuPy
|
||||
Dashboarding
|
||||
DBRX
|
||||
DDR
|
||||
DF
|
||||
DGEMM
|
||||
@@ -92,6 +93,7 @@ DataFrame
|
||||
DataLoader
|
||||
DataParallel
|
||||
Debian
|
||||
DeepSeek
|
||||
DeepSpeed
|
||||
Dependabot
|
||||
Deprecations
|
||||
@@ -115,6 +117,7 @@ FX
|
||||
Filesystem
|
||||
FindDb
|
||||
Flang
|
||||
FluxBenchmark
|
||||
Fortran
|
||||
Fuyu
|
||||
GALB
|
||||
@@ -129,6 +132,8 @@ GDS
|
||||
GEMM
|
||||
GEMMs
|
||||
GFortran
|
||||
GFXIP
|
||||
Gemma
|
||||
GiB
|
||||
GIM
|
||||
GL
|
||||
@@ -151,6 +156,7 @@ HCA
|
||||
HGX
|
||||
HIPCC
|
||||
HIPExtension
|
||||
HIPification
|
||||
HIPIFY
|
||||
HIPification
|
||||
HIPify
|
||||
@@ -313,6 +319,7 @@ PipelineParallel
|
||||
PnP
|
||||
PowerEdge
|
||||
PowerShell
|
||||
Pretraining
|
||||
Profiler's
|
||||
PyPi
|
||||
Pytest
|
||||
@@ -334,6 +341,7 @@ RNNs
|
||||
ROC
|
||||
ROCProfiler
|
||||
ROCT
|
||||
ROCTx
|
||||
ROCTracer
|
||||
ROCclr
|
||||
ROCdbgapi
|
||||
@@ -474,6 +482,7 @@ ZenDNN
|
||||
accuracies
|
||||
activations
|
||||
addr
|
||||
ai
|
||||
alloc
|
||||
allocatable
|
||||
allocator
|
||||
@@ -539,6 +548,7 @@ cTDP
|
||||
dataset
|
||||
datasets
|
||||
dataspace
|
||||
datatemplate
|
||||
datatype
|
||||
datatypes
|
||||
dbgapi
|
||||
@@ -567,6 +577,7 @@ el
|
||||
embeddings
|
||||
enablement
|
||||
encodings
|
||||
endfor
|
||||
endpgm
|
||||
enqueue
|
||||
env
|
||||
@@ -687,6 +698,7 @@ pageable
|
||||
pallas
|
||||
parallelization
|
||||
parallelizing
|
||||
param
|
||||
parameterization
|
||||
passthrough
|
||||
perfcounter
|
||||
@@ -711,6 +723,7 @@ preprocessing
|
||||
preprocessor
|
||||
prequantized
|
||||
prerequisites
|
||||
pretraining
|
||||
profiler
|
||||
profilers
|
||||
protobuf
|
||||
@@ -763,6 +776,7 @@ rocm
|
||||
rocminfo
|
||||
rocprim
|
||||
rocprof
|
||||
rocprofv
|
||||
rocprofiler
|
||||
rocr
|
||||
rocrand
|
||||
@@ -802,6 +816,7 @@ supercomputing
|
||||
symlink
|
||||
symlinks
|
||||
sys
|
||||
tabindex
|
||||
td
|
||||
tensorfloat
|
||||
th
|
||||
@@ -847,6 +862,7 @@ vectorizes
|
||||
virtualize
|
||||
virtualized
|
||||
vjxb
|
||||
vllm
|
||||
voxel
|
||||
walkthrough
|
||||
walkthroughs
|
||||
|
||||
@@ -50,7 +50,7 @@ The following example shows how to use the repo tool to download the ROCm source
|
||||
```bash
|
||||
mkdir -p ~/ROCm/
|
||||
cd ~/ROCm/
|
||||
export ROCM_VERSION=6.3.2
|
||||
export ROCM_VERSION=6.3.3
|
||||
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
|
||||
~/bin/repo sync
|
||||
```
|
||||
@@ -77,8 +77,8 @@ The Build time will reduce significantly if we limit the GPU Architecture/s agai
|
||||
|
||||
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
|
||||
cd ~/WORKSPACE/
|
||||
export ROCM_VERSION=6.3.2
|
||||
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b develop -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
|
||||
export ROCM_VERSION=6.3.3
|
||||
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
|
||||
~/bin/repo sync
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
245
RELEASE.md
245
RELEASE.md
@@ -10,7 +10,7 @@
|
||||
<!-- markdownlint-disable reference-links-images -->
|
||||
<!-- markdownlint-disable no-missing-space-atx -->
|
||||
<!-- spellcheck-disable -->
|
||||
# ROCm 6.3.2 release notes
|
||||
# ROCm 6.3.3 release notes
|
||||
|
||||
The release notes provide a summary of notable changes since the previous ROCm release.
|
||||
|
||||
@@ -24,46 +24,51 @@ The release notes provide a summary of notable changes since the previous ROCm r
|
||||
|
||||
- [ROCm known issues](#rocm-known-issues)
|
||||
|
||||
- [ROCm resolved issues](#rocm-resolved-issues)
|
||||
|
||||
- [ROCm upcoming changes](#rocm-upcoming-changes)
|
||||
|
||||
```{note}
|
||||
If you’re using Radeon™ PRO or Radeon GPUs in a workstation setting with a
|
||||
display connected, continue to use ROCm 6.2.3. See the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
|
||||
If you’re using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
|
||||
documentation to verify compatibility and system requirements.
|
||||
```
|
||||
## Release highlights
|
||||
|
||||
The following are notable improvements in ROCm 6.3.2. For changes to individual components, see
|
||||
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
|
||||
[Detailed component changes](#detailed-component-changes).
|
||||
|
||||
### ROCm Offline Installer Creator updates
|
||||
|
||||
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
|
||||
|
||||
### ROCm documentation updates
|
||||
|
||||
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
|
||||
|
||||
* Documentation about ROCm compatibility with deep learning frameworks has been added. These topics outline ROCm-enabled features for each deep learning framework, key ROCm libraries that can influence the capabilities, validated Docker image tags, and features supported across the available ROCm and framework versions. For more information, see:
|
||||
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
|
||||
|
||||
* [PyTorch compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/pytorch-compatibility.html)
|
||||
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
|
||||
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
|
||||
|
||||
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
|
||||
|
||||
* [TensorFlow compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/tensorflow-compatibility.html)
|
||||
|
||||
* [JAX compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/jax-compatibility.html)
|
||||
|
||||
* The [HIP C++ language extensions](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_cpp_language_extensions.html) and [Kernel language C++ support](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/kernel_language_cpp_support.html) topics have been reorganized to make them easier to find and review. The topics have also been enhanced with new content.
|
||||
* The following HIP documentation topics have been updated:
|
||||
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
|
||||
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
|
||||
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
|
||||
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
|
||||
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)
|
||||
|
||||
## Operating system and hardware support changes
|
||||
|
||||
ROCm 6.3.2 adds support for Azure Linux 3.0 (kernel: 6.6). Azure Linux is supported only on AMD Instinct accelerators. For more information, see [Azure Linux installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html).
|
||||
Operating system and hardware support remain unchanged in this release.
|
||||
|
||||
See the [Compatibility
|
||||
matrix](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html)
|
||||
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
|
||||
for more information about operating system and hardware compatibility.
|
||||
|
||||
## ROCm components
|
||||
|
||||
The following table lists the versions of ROCm components for ROCm 6.3.2, including any version
|
||||
changes from 6.3.1 to 6.3.2. Click the component's updated version to go to a list of its changes.
|
||||
The following table lists the versions of ROCm components for ROCm 6.3.3, including any version
|
||||
changes from 6.3.2 to 6.3.3. Click the component's updated version to go to a list of its changes.
|
||||
Click {fab}`github` to go to the component's source code on GitHub.
|
||||
|
||||
<div class="pst-scrollable-table-container">
|
||||
@@ -85,47 +90,47 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="9">Libraries</th>
|
||||
<th rowspan="9">Machine learning and computer vision</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.2/index.html">Composable Kernel</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.3/index.html">Composable Kernel</a></td>
|
||||
<td>1.1.0</td>
|
||||
<td><a href="https://github.com/ROCm/composable_kernel"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.2/index.html">MIGraphX</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.3/index.html">MIGraphX</a></td>
|
||||
<td>2.11.0</td>
|
||||
<td><a href="https://github.com/ROCm/AMDMIGraphX"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.2/index.html">MIOpen</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.3/index.html">MIOpen</a></td>
|
||||
<td>3.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/MIOpen"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.2/index.html">MIVisionX</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.3/index.html">MIVisionX</a></td>
|
||||
<td>3.1.0</td>
|
||||
<td><a href="https://github.com/ROCm/MIVisionX"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.2/index.html">rocAL</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.3/index.html">rocAL</a></td>
|
||||
<td>2.1.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocAL"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.2/index.html">rocDecode</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.3/index.html">rocDecode</a></td>
|
||||
<td>0.8.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocDecode"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.2/index.html">rocJPEG</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.3/index.html">rocJPEG</a></td>
|
||||
<td>0.6.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocJPEG"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.2/index.html">rocPyDecode</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.3/index.html">rocPyDecode</a></td>
|
||||
<td>0.2.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocPyDecode"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.2/index.html">RPP</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.3/index.html">RPP</a></td>
|
||||
<td>1.9.1</td>
|
||||
<td><a href="https://github.com/ROCm/rpp"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -134,7 +139,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="1"></th>
|
||||
<th rowspan="1">Communication</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.2/index.html">RCCL</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.3/index.html">RCCL</a></td>
|
||||
<td>2.21.5</td>
|
||||
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -143,82 +148,82 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="16"></th>
|
||||
<th rowspan="16">Math</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.2/index.html">hipBLAS</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.3/index.html">hipBLAS</a></td>
|
||||
<td>2.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/hipBLAS"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.2/index.html">hipBLASLt</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.3/index.html">hipBLASLt</a></td>
|
||||
<td>0.10.0</td>
|
||||
<td><a href="https://github.com/ROCm/hipBLASLt"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.2/index.html">hipFFT</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.3/index.html">hipFFT</a></td>
|
||||
<td>1.0.17</td>
|
||||
<td><a href="https://github.com/ROCm/hipFFT"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.2/index.html">hipfort</a></td>
|
||||
<td>0.5.0 ⇒ <a href="#hipfort-0-5-1">0.5.1</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.3/index.html">hipfort</a></td>
|
||||
<td>0.5.1</td>
|
||||
<td><a href="https://github.com/ROCm/hipfort"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.2/index.html">hipRAND</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.3/index.html">hipRAND</a></td>
|
||||
<td>2.11.1</td>
|
||||
<td><a href="https://github.com/ROCm/hipRAND"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.2/index.html">hipSOLVER</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.3/index.html">hipSOLVER</a></td>
|
||||
<td>2.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/hipSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.2/index.html">hipSPARSE</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.3/index.html">hipSPARSE</a></td>
|
||||
<td>3.1.2</td>
|
||||
<td><a href="https://github.com/ROCm/hipSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.2/index.html">hipSPARSELt</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.3/index.html">hipSPARSELt</a></td>
|
||||
<td>0.2.2</td>
|
||||
<td><a href="https://github.com/ROCm/hipSPARSELt"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.2/index.html">rocALUTION</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.3/index.html">rocALUTION</a></td>
|
||||
<td>3.2.1</td>
|
||||
<td><a href="https://github.com/ROCm/rocALUTION"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.2/index.html">rocBLAS</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.3/index.html">rocBLAS</a></td>
|
||||
<td>4.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocBLAS"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.2/index.html">rocFFT</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.3/index.html">rocFFT</a></td>
|
||||
<td>1.0.31</td>
|
||||
<td><a href="https://github.com/ROCm/rocFFT"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.2/index.html">rocRAND</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.3/index.html">rocRAND</a></td>
|
||||
<td>3.2.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocRAND"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.2/index.html">rocSOLVER</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.3/index.html">rocSOLVER</a></td>
|
||||
<td>3.27.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.2/index.html">rocSPARSE</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.3/index.html">rocSPARSE</a></td>
|
||||
<td>3.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.2/index.html">rocWMMA</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.3/index.html">rocWMMA</a></td>
|
||||
<td>1.6.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocWMMA"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.2/src/index.html">Tensile</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.3/src/index.html">Tensile</a></td>
|
||||
<td>4.42.0</td>
|
||||
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -227,22 +232,22 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="4"></th>
|
||||
<th rowspan="4">Primitives</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.2/index.html">hipCUB</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.3/index.html">hipCUB</a></td>
|
||||
<td>3.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/hipCUB"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.2/index.html">hipTensor</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.3/index.html">hipTensor</a></td>
|
||||
<td>1.4.0</td>
|
||||
<td><a href="https://github.com/ROCm/hipTensor"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.2/index.html">rocPRIM</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.3/index.html">rocPRIM</a></td>
|
||||
<td>3.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocPRIM"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.2/index.html">rocThrust</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.3/index.html">rocThrust</a></td>
|
||||
<td>3.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -251,27 +256,27 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="7">Tools</th>
|
||||
<th rowspan="7">System management</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.2/index.html">AMD SMI</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.3/index.html">AMD SMI</a></td>
|
||||
<td>24.7.1</td>
|
||||
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.2/index.html">ROCm Data Center Tool</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.3/index.html">ROCm Data Center Tool</a></td>
|
||||
<td>0.3.0</td>
|
||||
<td><a href="https://github.com/ROCm/rdc"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.2/index.html">rocminfo</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.3/index.html">rocminfo</a></td>
|
||||
<td>1.0.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocminfo"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.2/index.html">ROCm SMI</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.3/index.html">ROCm SMI</a></td>
|
||||
<td>7.4.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocm_smi_lib"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.2/index.html">ROCmValidationSuite</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.3/index.html">ROCmValidationSuite</a></td>
|
||||
<td>1.1.0</td>
|
||||
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -280,38 +285,38 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="6"></th>
|
||||
<th rowspan="6">Performance</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.2/index.html">ROCm Bandwidth
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.3/index.html">ROCm Bandwidth
|
||||
Test</a></td>
|
||||
<td>1.4.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocm_bandwidth_test/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.2/index.html">ROCm Compute Profiler</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.3/index.html">ROCm Compute Profiler</a></td>
|
||||
<td>3.0.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocprofiler-compute"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.2/index.html">ROCm Systems Profiler</a></td>
|
||||
<td>0.1.0 ⇒ <a href="#rocm-systems-profiler-0-1-1">0.1.1</td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.3/index.html">ROCm Systems Profiler</a></td>
|
||||
<td>0.1.1 ⇒ <a href="#rocm-systems-profiler-0-1-2">0.1.2</td>
|
||||
<td><a href="https://github.com/ROCm/rocprofiler-systems"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.2/index.html">ROCProfiler</a></td>
|
||||
<td>2.0.0 ⇒ <a href="#rocprofiler-2-0-0">2.0.0</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.3/index.html">ROCProfiler</a></td>
|
||||
<td>2.0.0</td>
|
||||
<td><a href="https://github.com/ROCm/ROCProfiler/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.2/index.html">ROCprofiler-SDK</a></td>
|
||||
<td>0.5.0 ⇒ <a href="#rocprofiler-sdk-0-5-0">0.5.0</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.3/index.html">ROCprofiler-SDK</a></td>
|
||||
<td>0.5.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocprofiler-sdk/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr >
|
||||
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.2/index.html">ROCTracer</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.3/index.html">ROCTracer</a></td>
|
||||
<td>4.1.0</td>
|
||||
<td><a href="https://github.com/ROCm/ROCTracer/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
@@ -321,32 +326,32 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tr>
|
||||
<th rowspan="5"></th>
|
||||
<th rowspan="5">Development</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.2/index.html">HIPIFY</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.3/index.html">HIPIFY</a></td>
|
||||
<td>18.0.0</td>
|
||||
<td><a href="https://github.com/ROCm/HIPIFY/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.2/index.html">ROCdbgapi</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.3/index.html">ROCdbgapi</a></td>
|
||||
<td>0.77.0</td>
|
||||
<td><a href="https://github.com/ROCm/ROCdbgapi/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.2/index.html">ROCm CMake</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.3/index.html">ROCm CMake</a></td>
|
||||
<td>0.14.0</td>
|
||||
<td><a href="https://github.com/ROCm/rocm-cmake/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.2/index.html">ROCm Debugger (ROCgdb)</a>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.3/index.html">ROCm Debugger (ROCgdb)</a>
|
||||
</td>
|
||||
<td>15.2</td>
|
||||
<td><a href="https://github.com/ROCm/ROCgdb/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.2/index.html">ROCr Debug Agent</a>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.3/index.html">ROCr Debug Agent</a>
|
||||
</td>
|
||||
<td>2.0.3</td>
|
||||
<td><a href="https://github.com/ROCm/rocr_debug_agent/"><i
|
||||
@@ -356,13 +361,13 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tbody class="rocm-components-compilers">
|
||||
<tr>
|
||||
<th rowspan="2" colspan="2">Compilers</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.2/index.html">HIPCC</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.3/index.html">HIPCC</a></td>
|
||||
<td>1.1.1</td>
|
||||
<td><a href="https://github.com/ROCm/llvm-project/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/index.html">llvm-project</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/index.html">llvm-project</a></td>
|
||||
<td>18.0.0</td>
|
||||
<td><a href="https://github.com/ROCm/llvm-project/"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
@@ -371,12 +376,12 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<tbody class="rocm-components-runtimes">
|
||||
<tr>
|
||||
<th rowspan="2" colspan="2">Runtimes</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.2/index.html">HIP</a></td>
|
||||
<td>6.3.1 ⇒ <a href="#hip-6-3-2">6.3.2</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.3/index.html">HIP</a></td>
|
||||
<td>6.3.2</td>
|
||||
<td><a href="https://github.com/ROCm/HIP/"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.2/index.html">ROCr Runtime</a></td>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.3/index.html">ROCr Runtime</a></td>
|
||||
<td>1.14.0</td>
|
||||
<td><a href="https://github.com/ROCm/ROCR-Runtime/"><i class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
@@ -388,112 +393,34 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
|
||||
The following sections describe key changes to ROCm components.
|
||||
|
||||
### **HIP** (6.3.2)
|
||||
|
||||
#### Added
|
||||
|
||||
* Tracking of Heterogeneous System Architecture (HSA) handlers:
|
||||
- Adds an atomic counter to track the outstanding HSA handlers.
|
||||
- Waits on CPU for the callbacks if the number exceeds the defined value.
|
||||
* Codes to capture Architected Queueing Language (AQL) packets for HIP graph memory copy node between host and device. HIP enqueues AQL packets during graph launch.
|
||||
* Control to use system pool implementation in runtime commands handling. By default, it is disabled.
|
||||
* A new path to avoid `WaitAny` calls in `AsyncEventsLoop`. The new path is selected by default.
|
||||
* Runtime control on decrement counter only if the event is popped. There is a new way to restore dead signals cleanup for the old path.
|
||||
* A new logic in runtime to track the age of events from the kernel mode driver.
|
||||
|
||||
#### Optimized
|
||||
|
||||
* HSA callback performance. The HIP runtime creates and submits commands in the queue and interacts with HSA through a callback function. HIP waits for the CPU status from HSA to optimize the handling of events, profiling, commands, and HSA signals for higher performance.
|
||||
* Runtime optimization which combines all logic of `WaitAny` in a single processing loop and avoids extra memory allocations or reference counting. The runtime won't spin on the CPU if all events are busy.
|
||||
* Multi-threaded dispatches for performance improvement.
|
||||
* Command submissions and processing between CPU and GPU by introducing a way to limit the software batch size.
|
||||
* Switch to `std::shared_mutex` in book/keep logic in streams from multiple threads simultaneously, for performance improvement in specific customer applications.
|
||||
* `std::shared_mutex` is used in memory object mapping, for performance improvement.
|
||||
### **ROCm Systems Profiler** (0.1.2)
|
||||
|
||||
#### Resolved issues
|
||||
|
||||
* Race condition in multi-threaded producer/consumer scenario with `hipMallocFromPoolAsync`.
|
||||
* Segmentation fault with `hipStreamLegacy` while using the API `hipStreamWaitEvent`.
|
||||
* Usage of `hipStreamLegacy` in HIP event record.
|
||||
* A soft hang in graph execution process from HIP user object. The fix handles the release of graph execution object properly considering synchronization on the device/stream. The user application now behaves the same with `hipUserObject` on both the AMD ROCm and NVIDIA CUDA platforms.
|
||||
|
||||
### **hipfort** (0.5.1)
|
||||
|
||||
#### Added
|
||||
|
||||
* Support for building with LLVM Flang.
|
||||
|
||||
#### Resolved issues
|
||||
|
||||
* Fixed the exported `hipfort::hipsparse` CMake target.
|
||||
|
||||
### **ROCm Systems Profiler** (0.1.1)
|
||||
|
||||
#### Resolved issues
|
||||
|
||||
* Fixed an error when building from source on some SUSE and RHEL systems when using the `ROCPROFSYS_BUILD_DYNINST` option.
|
||||
|
||||
### **ROCProfiler** (2.0.0)
|
||||
|
||||
#### Changed
|
||||
|
||||
* Replaced `CU_UTILIZATION` metric with `SIMD_UTILIZATION` for better accuracy.
|
||||
|
||||
#### Resolved issues
|
||||
|
||||
* Fixed the `VALUBusy` and `SALUBusy` activity metrics for accuracy on MI300.
|
||||
|
||||
### **ROCprofiler-SDK** (0.5.0)
|
||||
|
||||
#### Added
|
||||
|
||||
* Support for system-wide collection of SQ counters across all HSA processes.
|
||||
|
||||
#### Changed
|
||||
|
||||
* `rocprofiler_sample_device_counting_service` API updated to return counter output immediately, when called in synchronous mode.
|
||||
* Fixed an error that prevented GPU hardware activity from being presented in certain workloads.
|
||||
|
||||
## ROCm known issues
|
||||
|
||||
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
|
||||
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
|
||||
|
||||
## ROCm resolved issues
|
||||
### Zero value is displayed in ROCTx aggregated statistics
|
||||
|
||||
The following are previously known issues resolved in this release. For resolved issues related to
|
||||
individual components, review the [Detailed component changes](#detailed-component-changes).
|
||||
|
||||
### TransferBench packages not functional
|
||||
|
||||
Issue with TransferBench packages not being compiled properly has been fixed. For more information, See [GitHub issue #4081](https://github.com/ROCm/ROCm/issues/4081).
|
||||
|
||||
### ROCm Compute Profiler CTest failure in CI
|
||||
|
||||
When running the ROCm Compute Profiler (`rocprof-compute`) CTest in the Azure CI environment, the
|
||||
`rocprof-compute` execution test failed. This issue was due to an outdated test file that was not renamed
|
||||
(`omniperf` to `rocprof-compute`), and the `ROCM_PATH` environment variable not being set in
|
||||
the Azure CI environment, resulting in the tool being unable to extract chip information as expected.
|
||||
This issue has been fixed in the ROCm 6.3.2 release. See [GitHub issue #4085](https://github.com/ROCm/ROCm/issues/4085).
|
||||
|
||||
### MIVisionX memory access fault in Canny edge detection
|
||||
|
||||
An issue where Canny edge detection kernels accessed out-of-bounds memory locations while
|
||||
computing gradient intensities on edge pixels has been fixed. This issue was isolated to
|
||||
Canny-specific use cases on Instinct MI300 series accelerators. See [GitHub issue #4086](https://github.com/ROCm/ROCm/issues/4086).
|
||||
|
||||
### AMD VCN instability with rocDecode
|
||||
|
||||
A firmware crash on gfx942 devices when AMD Video Core Next (VCN) was used for rocDecode operations has been resolved.
|
||||
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior. See [GitHub issue #4396](https://github.com/ROCm/ROCm/issues/4396).
|
||||
|
||||
## ROCm upcoming changes
|
||||
|
||||
The following changes to the ROCm software stack are anticipated for future releases.
|
||||
|
||||
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
|
||||
|
||||
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
|
||||
|
||||
### AMDGPU wavefront size compiler macro deprecation
|
||||
|
||||
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
|
||||
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
|
||||
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/LLVM/clang/html/AMDGPUSupport.html).
|
||||
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
|
||||
|
||||
### HIPCC Perl scripts deprecation
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<manifest>
|
||||
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
|
||||
<default revision="refs/tags/rocm-6.3.2"
|
||||
<default revision="refs/tags/rocm-6.3.3"
|
||||
remote="rocm-org"
|
||||
sync-c="true"
|
||||
sync-j="4" />
|
||||
|
||||
@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
|
||||
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
|
||||
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
|
||||
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
|
||||
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
|
||||
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
|
||||
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
|
||||
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
|
||||
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
|
||||
|
||||
@@ -1,120 +1,120 @@
|
||||
ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
|
||||
,Debian 12 [#mi300x-past-60]_,Debian 12 [#mi300x-past-60]_,,,,,,,,,,
|
||||
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
|
||||
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
|
||||
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
|
||||
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
|
||||
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
|
||||
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
|
||||
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
|
||||
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
|
||||
,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
|
||||
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
|
||||
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
|
||||
,,,,,,,,,,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
|
||||
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
|
||||
,,,,,,,,,,,,
|
||||
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
Thrust,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
CUB,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
,,,,,,,,,,,,
|
||||
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
,,,,,,,,,,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
|
||||
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
|
||||
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
|
||||
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
|
||||
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
|
||||
,,,,,,,,,,,,
|
||||
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
|
||||
,,,,,,,,,,,,
|
||||
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
|
||||
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
|
||||
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
|
||||
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
|
||||
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
|
||||
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
|
||||
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
|
||||
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
|
||||
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
|
||||
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
|
||||
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
|
||||
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
|
||||
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
|
||||
,,,,,,,,,,,,
|
||||
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
|
||||
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
,,,,,,,,,,,,
|
||||
SUPPORT LIBS,,,,,,,,,,,,
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
|
||||
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
|
||||
,,,,,,,,,,,,
|
||||
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
|
||||
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
|
||||
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
|
||||
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
|
||||
,,,,,,,,,,,,
|
||||
PERFORMANCE TOOLS,,,,,,,,,,,,
|
||||
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
|
||||
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
|
||||
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
|
||||
,,,,,,,,,,,,
|
||||
DEVELOPMENT TOOLS,,,,,,,,,,,,
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
|
||||
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
|
||||
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
|
||||
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
|
||||
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
|
||||
,,,,,,,,,,,,
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
|
||||
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
,,,,,,,,,,,,
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
|
||||
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
|
||||
ROCm Version,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
|
||||
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,
|
||||
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
|
||||
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
|
||||
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
|
||||
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
|
||||
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
|
||||
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
|
||||
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
|
||||
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
|
||||
,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
|
||||
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
|
||||
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
|
||||
,,,,,,,,,,,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
|
||||
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
|
||||
,,,,,,,,,,,,,
|
||||
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
Thrust,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
CUB,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
,,,,,,,,,,,,,
|
||||
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
,,,,,,,,,,,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
|
||||
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
|
||||
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
|
||||
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
|
||||
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
|
||||
,,,,,,,,,,,,,
|
||||
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
|
||||
,,,,,,,,,,,,,
|
||||
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
|
||||
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
|
||||
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
|
||||
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
|
||||
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
|
||||
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
|
||||
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
|
||||
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
|
||||
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
|
||||
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
|
||||
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
|
||||
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
|
||||
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
|
||||
,,,,,,,,,,,,,
|
||||
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
|
||||
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
,,,,,,,,,,,,,
|
||||
SUPPORT LIBS,,,,,,,,,,,,,
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
|
||||
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
|
||||
,,,,,,,,,,,,,
|
||||
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
|
||||
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
|
||||
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
|
||||
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
|
||||
,,,,,,,,,,,,,
|
||||
PERFORMANCE TOOLS,,,,,,,,,,,,,
|
||||
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
|
||||
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
|
||||
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
|
||||
,,,,,,,,,,,,,
|
||||
DEVELOPMENT TOOLS,,,,,,,,,,,,,
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
|
||||
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
|
||||
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
|
||||
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
|
||||
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
|
||||
,,,,,,,,,,,,,
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
|
||||
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
,,,,,,,,,,,,,
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
|
||||
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
|
||||
|
||||
|
@@ -23,7 +23,7 @@ compatibility and system requirements.
|
||||
.. container:: format-big-table
|
||||
|
||||
.. csv-table::
|
||||
:header: "ROCm Version", "6.3.2", "6.3.1", "6.2.0"
|
||||
:header: "ROCm Version", "6.3.3", "6.3.2", "6.2.0"
|
||||
:stub-columns: 1
|
||||
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04
|
||||
@@ -32,8 +32,8 @@ compatibility and system requirements.
|
||||
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
|
||||
,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
|
||||
,Debian 12 [#mi300x]_,Debian 12 [#mi300x]_,
|
||||
,Azure Linux 3.0 [#mi300x]_,,
|
||||
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
|
||||
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
|
||||
,.. _architecture-support-compatibility-matrix:,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
|
||||
,CDNA2,CDNA2,CDNA2
|
||||
@@ -83,7 +83,7 @@ compatibility and system requirements.
|
||||
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.2.0
|
||||
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.8.0
|
||||
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.14
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.4.0
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.4.0
|
||||
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0
|
||||
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.2.0
|
||||
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.1
|
||||
@@ -104,8 +104,8 @@ compatibility and system requirements.
|
||||
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.0.1
|
||||
,,,
|
||||
SUPPORT LIBS,,,
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.2.41133
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.2.0
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.2.41133
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.2.0
|
||||
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,20240607.1.4246
|
||||
,,,
|
||||
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
|
||||
@@ -118,37 +118,39 @@ compatibility and system requirements.
|
||||
PERFORMANCE TOOLS,,,
|
||||
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
|
||||
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,2.0.1
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,1.11.2
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60200
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,1.11.2
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60200
|
||||
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.4.0
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60200
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60200
|
||||
,,,
|
||||
DEVELOPMENT TOOLS,,,
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
|
||||
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.13.0
|
||||
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.76.0
|
||||
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,14.2.0
|
||||
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
|
||||
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3
|
||||
,,,
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix:,..
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix:,,
|
||||
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
|
||||
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
|
||||
,,,
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix:,..
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.2.41133
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.2.41133
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.2.41133
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.2.41133
|
||||
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
|
||||
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.13.0
|
||||
|
||||
|
||||
|
||||
|
||||
.. rubric:: Footnotes
|
||||
|
||||
.. [#mi300x] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
|
||||
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
|
||||
@@ -215,7 +217,8 @@ Expand for full historical view of:
|
||||
|
||||
.. rubric:: Footnotes
|
||||
|
||||
.. [#mi300x-past-60] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
:description: JAX compatibility
|
||||
:keywords: GPU, JAX compatibility
|
||||
|
||||
.. version-set:: rocm_version latest
|
||||
|
||||
*******************************************************************************
|
||||
JAX compatibility
|
||||
*******************************************************************************
|
||||
@@ -119,7 +121,8 @@ Critical ROCm libraries for JAX
|
||||
|
||||
The functionality of JAX with ROCm is determined by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
performance, and feature set available to developers. The versions described
|
||||
are available in ROCm :version:`rocm_version`.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
@@ -129,7 +132,7 @@ performance, and feature set available to developers.
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipBLAS rocm_version`
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
|
||||
@@ -138,7 +141,7 @@ performance, and feature set available to developers.
|
||||
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
|
||||
operations.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- :version-ref:`hipBLASLt rocm_version`
|
||||
- hipBLASLt is an extension of hipBLAS, providing additional
|
||||
features like epilogues fused into the matrix multiplication kernel or
|
||||
use of integer tensor cores.
|
||||
@@ -147,7 +150,7 @@ performance, and feature set available to developers.
|
||||
operations, mixed-precision support, and hardware-specific
|
||||
optimizations.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`hipCUB rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
|
||||
@@ -155,23 +158,23 @@ performance, and feature set available to developers.
|
||||
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
|
||||
(``jax.numpy.sort``, ``jax.numpy.argsort``).
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- :version-ref:`hipFFT rocm_version`
|
||||
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
|
||||
- Used in functions like ``jax.numpy.fft``.
|
||||
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
|
||||
- 2.11.0
|
||||
- :version-ref:`hipRAND rocm_version`
|
||||
- Provides fast random number generation for GPUs.
|
||||
- The ``jax.random.uniform``, ``jax.random.normal``,
|
||||
``jax.random.randint`` and ``jax.random.split``.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipSOLVER rocm_version`
|
||||
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
|
||||
singular value decompositions (SVD).
|
||||
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
|
||||
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
|
||||
(``jax.numpy.linalg.eig``).
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- :version-ref:`hipSPARSE rocm_version`
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
|
||||
@@ -179,28 +182,28 @@ performance, and feature set available to developers.
|
||||
(``jax.experimental.sparse.dot``), sparse linear system solvers and
|
||||
sparse data handling.
|
||||
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
|
||||
- 0.2.2
|
||||
- :version-ref:`hipSPARSELt rocm_version`
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
|
||||
matrix-vector and matrix-matrix products
|
||||
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`MIOpen rocm_version`
|
||||
- Optimized for deep learning primitives such as convolutions, pooling,
|
||||
normalization, and activation functions.
|
||||
- Speeds up convolutional neural networks (CNNs), recurrent neural
|
||||
networks (RNNs), and other layers. Used in operations like
|
||||
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- :version-ref:`RCCL rocm_version`
|
||||
- Optimized for multi-GPU communication for operations like all-reduce,
|
||||
broadcast, and scatter.
|
||||
- Distribute computations across multiple GPU with ``pmap`` and
|
||||
``jax.distributed``. XLA automatically uses rccl when executing
|
||||
operations across multiple GPUs on AMD hardware.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`rocThrust rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
:description: PyTorch compatibility
|
||||
:keywords: GPU, PyTorch compatibility
|
||||
|
||||
.. version-set:: rocm_version latest
|
||||
|
||||
********************************************************************************
|
||||
PyTorch compatibility
|
||||
********************************************************************************
|
||||
@@ -56,7 +58,7 @@ Docker image compatibility
|
||||
|
||||
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
|
||||
with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
|
||||
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
|
||||
Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
.. list-table:: PyTorch Docker image components
|
||||
@@ -77,26 +79,26 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 24.04
|
||||
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
|
||||
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
@@ -107,11 +109,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.9.18 <https://www.python.org/downloads/release/python-3918/>`_
|
||||
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
@@ -122,11 +124,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
|
||||
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
@@ -137,7 +139,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 22.04
|
||||
@@ -152,7 +154,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 20.04
|
||||
@@ -167,14 +169,14 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 22.04
|
||||
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
|
||||
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
|
||||
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
|
||||
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
@@ -182,7 +184,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 20.04
|
||||
@@ -200,7 +202,8 @@ Critical ROCm libraries for PyTorch
|
||||
|
||||
The functionality of PyTorch with ROCm is determined by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
performance, and feature set available to developers. The versions described
|
||||
are available in ROCm :version:`rocm_version`.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
@@ -210,28 +213,28 @@ performance, and feature set available to developers.
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
|
||||
- 1.1.0
|
||||
- :version-ref:`"Composable Kernel" rocm_version`
|
||||
- Enables faster execution of core operations like matrix multiplication
|
||||
(GEMM), convolutions and transformations.
|
||||
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
|
||||
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
|
||||
and ``torch.nn.MultiheadAttention``.
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipBLAS rocm_version`
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Supports operations like matrix multiplication, matrix-vector products,
|
||||
and tensor contractions. Utilized in both dense and batched linear
|
||||
algebra operations.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- :version-ref:`hipBLASLt rocm_version`
|
||||
- hipBLASLt is an extension of the hipBLAS library, providing additional
|
||||
features like epilogues fused into the matrix multiplication kernel or
|
||||
use of integer tensor cores.
|
||||
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
|
||||
matrix multiplications used in convolutional and linear layers.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`hipCUB rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
|
||||
@@ -239,93 +242,93 @@ performance, and feature set available to developers.
|
||||
irregular shapes often involve scanning, sorting, and filtering, which
|
||||
hipCUB handles efficiently.
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- :version-ref:`hipFFT rocm_version`
|
||||
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
|
||||
- Used in functions like the ``torch.fft`` module.
|
||||
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
|
||||
- 2.11.0
|
||||
- :version-ref:`hipRAND rocm_version`
|
||||
- Provides fast random number generation for GPUs.
|
||||
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
|
||||
``torch.nn.Dropout``.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipSOLVER rocm_version`
|
||||
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
|
||||
singular value decompositions (SVD).
|
||||
- Supports functions like ``torch.linalg.solve``,
|
||||
``torch.linalg.eig``, and ``torch.linalg.svd``.
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- :version-ref:`hipSPARSE rocm_version`
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
|
||||
- 0.2.2
|
||||
- :version-ref:`hipSPARSELt rocm_version`
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
|
||||
- 1.4.0
|
||||
- :version-ref:`hipTensor rocm_version`
|
||||
- Optimizes for high-performance tensor operations, such as contractions.
|
||||
- Accelerates tensor algebra, especially in deep learning and scientific
|
||||
computing.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`MIOpen rocm_version`
|
||||
- Optimizes deep learning primitives such as convolutions, pooling,
|
||||
normalization, and activation functions.
|
||||
- Speeds up convolutional neural networks (CNNs), recurrent neural
|
||||
networks (RNNs), and other layers. Used in operations like
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
|
||||
- 2.11.0
|
||||
- :version-ref:`MIGraphX rocm_version`
|
||||
- Adds graph-level optimizations, ONNX models and mixed precision support
|
||||
and enable Ahead-of-Time (AOT) Compilation.
|
||||
- Speeds up inference models and executes ONNX models for
|
||||
compatibility with other frameworks.
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
|
||||
- 3.1.0
|
||||
- :version-ref:`MIVisionX rocm_version`
|
||||
- Optimizes acceleration for computer vision and AI workloads like
|
||||
preprocessing, augmentation, and inferencing.
|
||||
- Faster data preprocessing and augmentation pipelines for datasets like
|
||||
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
|
||||
and ``torchvision`` workflows.
|
||||
* - `rocAL <https://github.com/ROCm/rocAL>`_
|
||||
- 2.1.0
|
||||
- :version-ref:`rocAL rocm_version`
|
||||
- Accelerates the data pipeline by offloading intensive preprocessing and
|
||||
augmentation tasks. rocAL is part of MIVisionX.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- :version-ref:`RCCL rocm_version`
|
||||
- Optimizes for multi-GPU communication for operations like AllReduce and
|
||||
Broadcast.
|
||||
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
|
||||
Handles communication in multi-GPU setups.
|
||||
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
|
||||
- 0.8.0
|
||||
- :version-ref:`rocDecode rocm_version`
|
||||
- Provides hardware-accelerated data decoding capabilities, particularly
|
||||
for image, video, and other dataset formats.
|
||||
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
|
||||
and ``torch.distributed``.
|
||||
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
|
||||
- 0.6.0
|
||||
- :version-ref:`rocJPEG rocm_version`
|
||||
- Provides hardware-accelerated JPEG image decoding and encoding.
|
||||
- GPU accelerated ``torchvision.io.decode_jpeg`` and
|
||||
``torchvision.io.encode_jpeg`` and can be integrated in
|
||||
``torch.utils.data`` and ``torchvision``.
|
||||
* - `RPP <https://github.com/ROCm/RPP>`_
|
||||
- 1.9.1
|
||||
- :version-ref:`RPP rocm_version`
|
||||
- Speeds up data augmentation, transformation, and other preprocessing steps.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`rocThrust rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Utilized in backend operations for tensor computations requiring
|
||||
parallel processing.
|
||||
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
|
||||
- 1.6.0
|
||||
- :version-ref:`rocWMMA rocm_version`
|
||||
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
|
||||
multiplication (GEMM) and accumulation operations with mixed precision
|
||||
support.
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
:description: TensorFlow compatibility
|
||||
:keywords: GPU, TensorFlow compatibility
|
||||
|
||||
.. version-set:: rocm_version latest
|
||||
|
||||
*******************************************************************************
|
||||
TensorFlow compatibility
|
||||
*******************************************************************************
|
||||
@@ -54,7 +56,7 @@ Docker image compatibility
|
||||
AMD validates and publishes ready-made `TensorFlow images
|
||||
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
|
||||
Docker Hub. The following Docker image tags and associated inventories are
|
||||
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
|
||||
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
|
||||
the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
.. list-table:: TensorFlow Docker image components
|
||||
@@ -68,47 +70,47 @@ the |docker-icon| icon to view the image on Docker Hub.
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
|
||||
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
|
||||
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
|
||||
- dev
|
||||
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
|
||||
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
|
||||
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
|
||||
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
|
||||
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
|
||||
- dev
|
||||
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
|
||||
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
|
||||
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
|
||||
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
|
||||
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
|
||||
- dev
|
||||
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
|
||||
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
|
||||
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
|
||||
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
|
||||
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
|
||||
- dev
|
||||
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
|
||||
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
|
||||
|
||||
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
|
||||
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
|
||||
- dev
|
||||
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
|
||||
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
|
||||
|
||||
Critical ROCm libraries for TensorFlow
|
||||
@@ -117,7 +119,8 @@ Critical ROCm libraries for TensorFlow
|
||||
TensorFlow depends on multiple components and the supported features of those
|
||||
components can affect the TensorFlow ROCm supported feature set. The versions
|
||||
in the following table refer to the first TensorFlow version where the ROCm
|
||||
library was introduced as a dependency.
|
||||
library was introduced as a dependency. The versions described
|
||||
are available in ROCm :version:`rocm_version`.
|
||||
|
||||
.. list-table::
|
||||
:widths: 25, 10, 35, 30
|
||||
@@ -128,43 +131,43 @@ library was introduced as a dependency.
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipBLAS rocm_version`
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Accelerates operations like ``tf.matmul``, ``tf.linalg.matmul``, and
|
||||
other matrix multiplications commonly used in neural network layers.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- :version-ref:`hipBLASLt rocm_version`
|
||||
- Extends hipBLAS with additional optimizations like fused kernels and
|
||||
integer tensor cores.
|
||||
- Optimizes matrix multiplications and linear algebra operations used in
|
||||
layers like dense, convolutional, and RNNs in TensorFlow.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`hipCUB rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Supports operations like ``tf.reduce_sum``, ``tf.cumsum``, ``tf.sort``
|
||||
and other tensor operations in TensorFlow, especially those involving
|
||||
scanning, sorting, and filtering.
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- :version-ref:`hipFFT rocm_version`
|
||||
- Accelerates Fast Fourier Transforms (FFT) for signal processing tasks.
|
||||
- Used for operations like signal processing, image filtering, and
|
||||
certain types of neural networks requiring FFT-based transformations.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- :version-ref:`hipSOLVER rocm_version`
|
||||
- Provides GPU-accelerated direct linear solvers for dense and sparse
|
||||
systems.
|
||||
- Optimizes linear algebra functions such as solving systems of linear
|
||||
equations, often used in optimization and training tasks.
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- :version-ref:`hipSPARSE rocm_version`
|
||||
- Optimizes sparse matrix operations for efficient computations on sparse
|
||||
data.
|
||||
- Accelerates sparse matrix operations in models with sparse weight
|
||||
matrices or activations, commonly used in neural networks.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`MIOpen rocm_version`
|
||||
- Provides optimized deep learning primitives such as convolutions,
|
||||
pooling,
|
||||
normalization, and activation functions.
|
||||
@@ -172,13 +175,13 @@ library was introduced as a dependency.
|
||||
in TensorFlow for layers like ``tf.nn.conv2d``, ``tf.nn.relu``, and
|
||||
``tf.nn.lstm_cell``.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- :version-ref:`RCCL rocm_version`
|
||||
- Optimizes for multi-GPU communication for operations like AllReduce and
|
||||
Broadcast.
|
||||
- Distributed data parallel training (``tf.distribute.MirroredStrategy``).
|
||||
Handles communication in multi-GPU setups.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- :version-ref:`rocThrust rocm_version`
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Reduction operations like ``tf.reduce_sum``, ``tf.cumsum`` for computing
|
||||
|
||||
916
docs/compatibility/pytorch-compatibility.rst
Normal file
916
docs/compatibility/pytorch-compatibility.rst
Normal file
@@ -0,0 +1,916 @@
|
||||
.. meta::
|
||||
:description: PyTorch compatibility
|
||||
:keywords: GPU, PyTorch compatibility
|
||||
|
||||
********************************************************************************
|
||||
PyTorch compatibility
|
||||
********************************************************************************
|
||||
|
||||
`PyTorch <https://pytorch.org/>`_ is an open-source tensor library designed for
|
||||
deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
|
||||
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
|
||||
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
|
||||
|
||||
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
|
||||
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
|
||||
|
||||
- ROCm PyTorch release:
|
||||
|
||||
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
|
||||
version.
|
||||
|
||||
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
|
||||
pre-installed.
|
||||
|
||||
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
|
||||
|
||||
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
|
||||
|
||||
- Official PyTorch release:
|
||||
|
||||
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
|
||||
|
||||
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
|
||||
|
||||
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
|
||||
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
|
||||
|
||||
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
|
||||
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
|
||||
manual code modifications.
|
||||
|
||||
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
|
||||
the stable release of ROCm to maintain consistency.
|
||||
|
||||
.. _pytorch-docker-compat:
|
||||
|
||||
Docker image compatibility
|
||||
================================================================================
|
||||
|
||||
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
|
||||
images with ROCm backends on Docker Hub. The following Docker image tags and
|
||||
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
|
||||
|
||||
.. list-table:: PyTorch Docker image components
|
||||
:header-rows: 1
|
||||
:class: docker-image-compatibility
|
||||
|
||||
* - Docker
|
||||
- PyTorch
|
||||
- Ubuntu
|
||||
- Python
|
||||
- Apex
|
||||
- torchvision
|
||||
- TensorBoard
|
||||
- MAGMA
|
||||
- UCX
|
||||
- OMPI
|
||||
- OFED
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 24.04
|
||||
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
|
||||
- 22.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3918/>`_
|
||||
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
|
||||
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
|
||||
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 22.04
|
||||
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
|
||||
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
|
||||
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
|
||||
- 20.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
|
||||
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
|
||||
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 22.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
|
||||
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
|
||||
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
|
||||
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
* - .. raw:: html
|
||||
|
||||
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
|
||||
|
||||
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
|
||||
- 20.04
|
||||
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
|
||||
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
|
||||
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
|
||||
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
|
||||
- `master <https://bitbucket.org/icl/magma/src/master/>`_
|
||||
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
|
||||
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
|
||||
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
|
||||
|
||||
Critical ROCm libraries for PyTorch
|
||||
================================================================================
|
||||
|
||||
The functionality of PyTorch with ROCm is shaped by its underlying library
|
||||
dependencies. These critical ROCm components affect the capabilities,
|
||||
performance, and feature set available to developers.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - ROCm library
|
||||
- Version
|
||||
- Purpose
|
||||
- Used in
|
||||
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
|
||||
- 1.1.0
|
||||
- Enables faster execution of core operations like matrix multiplication
|
||||
(GEMM), convolutions and transformations.
|
||||
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
|
||||
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
|
||||
and ``torch.nn.MultiheadAttention``.
|
||||
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
|
||||
matrix and vector operations.
|
||||
- Supports operations like matrix multiplication, matrix-vector products,
|
||||
and tensor contractions. Utilized in both dense and batched linear
|
||||
algebra operations.
|
||||
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
|
||||
- 0.10.0
|
||||
- hipBLASLt is an extension of the hipBLAS library, providing additional
|
||||
features like epilogues fused into the matrix multiplication kernel or
|
||||
use of integer tensor cores.
|
||||
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
|
||||
matrix multiplications used in convolutional and linear layers.
|
||||
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms for reduction,
|
||||
scan, sort and select.
|
||||
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
|
||||
and ``torch.topk``. Operations on sparse tensors or tensors with
|
||||
irregular shapes often involve scanning, sorting, and filtering, which
|
||||
hipCUB handles efficiently.
|
||||
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
|
||||
- 1.0.17
|
||||
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
|
||||
- Used in functions like the ``torch.fft`` module.
|
||||
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
|
||||
- 2.11.0
|
||||
- Provides fast random number generation for GPUs.
|
||||
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
|
||||
``torch.nn.Dropout``.
|
||||
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
|
||||
- 2.3.0
|
||||
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
|
||||
singular value decompositions (SVD).
|
||||
- Supports functions like ``torch.linalg.solve``,
|
||||
``torch.linalg.eig``, and ``torch.linalg.svd``.
|
||||
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
|
||||
- 3.1.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
|
||||
- 0.2.2
|
||||
- Accelerates operations on sparse matrices, such as sparse matrix-vector
|
||||
or matrix-matrix products.
|
||||
- Sparse tensor operations ``torch.sparse``.
|
||||
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
|
||||
- 1.4.0
|
||||
- Optimizes for high-performance tensor operations, such as contractions.
|
||||
- Accelerates tensor algebra, especially in deep learning and scientific
|
||||
computing.
|
||||
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
|
||||
- 3.3.0
|
||||
- Optimizes deep learning primitives such as convolutions, pooling,
|
||||
normalization, and activation functions.
|
||||
- Speeds up convolutional neural networks (CNNs), recurrent neural
|
||||
networks (RNNs), and other layers. Used in operations like
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
|
||||
- 2.11.0
|
||||
- Add graph-level optimizations, ONNX models and mixed precision support
|
||||
and enable Ahead-of-Time (AOT) Compilation.
|
||||
- Speeds up inference models and executes ONNX models for
|
||||
compatibility with other frameworks.
|
||||
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
|
||||
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
|
||||
- 3.1.0
|
||||
- Optimizes acceleration for computer vision and AI workloads like
|
||||
preprocessing, augmentation, and inferencing.
|
||||
- Faster data preprocessing and augmentation pipelines for datasets like
|
||||
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
|
||||
and ``torchvision`` workflows.
|
||||
* - `rocAL <https://github.com/ROCm/rocAL>`_
|
||||
- 2.1.0
|
||||
- Accelerates the data pipeline by offloading intensive preprocessing and
|
||||
augmentation tasks. rocAL is part of MIVisionX.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `RCCL <https://github.com/ROCm/rccl>`_
|
||||
- 2.21.5
|
||||
- Optimizes for multi-GPU communication for operations like AllReduce and
|
||||
Broadcast.
|
||||
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
|
||||
Handles communication in multi-GPU setups.
|
||||
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
|
||||
- 0.8.0
|
||||
- Provide hardware-accelerated data decoding capabilities, particularly
|
||||
for image, video, and other dataset formats.
|
||||
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
|
||||
and ``torch.distributed``.
|
||||
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
|
||||
- 0.6.0
|
||||
- Provide hardware-accelerated JPEG image decoding and encoding.
|
||||
- GPU accelerated ``torchvision.io.decode_jpeg`` and
|
||||
``torchvision.io.encode_jpeg`` and can be integrated in
|
||||
``torch.utils.data`` and ``torchvision``.
|
||||
* - `RPP <https://github.com/ROCm/RPP>`_
|
||||
- 1.9.1
|
||||
- Speed up data augmentation, transformation, and other preprocessing step.
|
||||
- Easy to integrate into PyTorch's ``torch.utils.data`` and
|
||||
``torchvision`` data load workloads.
|
||||
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
|
||||
- 3.3.0
|
||||
- Provides a C++ template library for parallel algorithms like sorting,
|
||||
reduction, and scanning.
|
||||
- Utilized in backend operations for tensor computations requiring
|
||||
parallel processing.
|
||||
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
|
||||
- 1.6.0
|
||||
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
|
||||
multiplication (GEMM) and accumulation operations with mixed precision
|
||||
support.
|
||||
- Linear layers (``torch.nn.Linear``), convolutional layers
|
||||
(``torch.nn.Conv2d``), attention layers, general tensor operations that
|
||||
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
|
||||
more.
|
||||
|
||||
Supported and unsupported features
|
||||
================================================================================
|
||||
|
||||
The following section maps GPU-accelerated PyTorch features to their supported
|
||||
ROCm and PyTorch versions.
|
||||
|
||||
torch
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
|
||||
PyTorch, providing data structures for multi-dimensional tensors and
|
||||
implementing mathematical operations on them. It also includes utilities for
|
||||
efficient serialization of tensors and arbitrary data types, along with various
|
||||
other tools.
|
||||
|
||||
Tensor data types
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
|
||||
|
||||
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``torch.float8_e4m3fn``
|
||||
- 8-bit floating point, e4m3
|
||||
- 2.3
|
||||
- 5.5
|
||||
* - ``torch.float8_e5m2``
|
||||
- 8-bit floating point, e5m2
|
||||
- 2.3
|
||||
- 5.5
|
||||
* - ``torch.float16`` or ``torch.half``
|
||||
- 16-bit floating point
|
||||
- 0.1.6
|
||||
- 2.0
|
||||
* - ``torch.bfloat16``
|
||||
- 16-bit floating point
|
||||
- 1.6
|
||||
- 2.6
|
||||
* - ``torch.float32`` or ``torch.float``
|
||||
- 32-bit floating point
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.float64`` or ``torch.double``
|
||||
- 64-bit floating point
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.complex32`` or ``torch.chalf``
|
||||
- PyTorch provides native support for 32-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.complex64`` or ``torch.cfloat``
|
||||
- PyTorch provides native support for 64-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.complex128`` or ``torch.cdouble``
|
||||
- PyTorch provides native support for 128-bit complex numbers
|
||||
- 1.6
|
||||
- 2.0
|
||||
* - ``torch.uint8``
|
||||
- 8-bit integer (unsigned)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.uint16``
|
||||
- 16-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.uint32``
|
||||
- 32-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.uint64``
|
||||
- 32-bit integer (unsigned)
|
||||
- 2.3
|
||||
- Not natively supported
|
||||
* - ``torch.int8``
|
||||
- 8-bit integer (signed)
|
||||
- 1.12
|
||||
- 5.0
|
||||
* - ``torch.int16`` or ``torch.short``
|
||||
- 16-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.int32`` or ``torch.int``
|
||||
- 32-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.int64`` or ``torch.long``
|
||||
- 64-bit integer (signed)
|
||||
- 0.1.12_2
|
||||
- 2.0
|
||||
* - ``torch.bool``
|
||||
- Boolean
|
||||
- 1.2
|
||||
- 2.0
|
||||
* - ``torch.quint8``
|
||||
- Quantized 8-bit integer (unsigned)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.qint8``
|
||||
- Quantized 8-bit integer (signed)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.qint32``
|
||||
- Quantized 32-bit integer (signed)
|
||||
- 1.8
|
||||
- 5.0
|
||||
* - ``torch.quint4x2``
|
||||
- Quantized 4-bit integer (unsigned)
|
||||
- 1.8
|
||||
- 5.0
|
||||
|
||||
.. note::
|
||||
|
||||
Unsigned types aside from ``uint8`` are currently only have limited support in
|
||||
eager mode (they primarily exist to assist usage with ``torch.compile``).
|
||||
|
||||
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
|
||||
collected the native HW support of different data types.
|
||||
|
||||
torch.cuda
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
|
||||
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
|
||||
computations, memory management, and efficient execution of tensor operations,
|
||||
leveraging ROCm and CUDA as the underlying frameworks.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - Device management
|
||||
- Utilities for managing and interacting with GPUs.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Tensor operations on GPU
|
||||
- Perform tensor operations such as addition and matrix multiplications on
|
||||
the GPU.
|
||||
- 0.4.0
|
||||
- 3.8
|
||||
* - Streams and events
|
||||
- Streams allow overlapping computation and communication for optimized
|
||||
performance, events enable synchronization.
|
||||
- 1.6.0
|
||||
- 3.8
|
||||
* - Memory management
|
||||
- Functions to manage and inspect memory usage like
|
||||
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
|
||||
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
|
||||
- 0.3.0
|
||||
- 1.9.2
|
||||
* - Running process lists of memory management
|
||||
- Return a human-readable printout of the running processes and their GPU
|
||||
memory use for a given device with functions like
|
||||
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
|
||||
- 1.8.0
|
||||
- 4.0
|
||||
* - Communication collectives
|
||||
- A set of APIs that enable efficient communication between multiple GPUs,
|
||||
allowing for distributed computing and data parallelism.
|
||||
- 1.9.0
|
||||
- 5.0
|
||||
* - ``torch.cuda.CUDAGraph``
|
||||
- Graphs capture sequences of GPU operations to minimize kernel launch
|
||||
overhead and improve performance.
|
||||
- 1.10.0
|
||||
- 5.3
|
||||
* - TunableOp
|
||||
- A mechanism that allows certain operations to be more flexible and
|
||||
optimized for performance. It enables automatic tuning of kernel
|
||||
configurations and other settings to achieve the best possible
|
||||
performance based on the specific hardware (GPU) and workload.
|
||||
- 2.0
|
||||
- 5.4
|
||||
* - NVIDIA Tools Extension (NVTX)
|
||||
- Integration with NVTX for profiling and debugging GPU performance using
|
||||
NVIDIA's Nsight tools.
|
||||
- 1.8.0
|
||||
- ❌
|
||||
* - Lazy loading NVRTC
|
||||
- Delays JIT compilation with NVRTC until the code is explicitly needed.
|
||||
- 1.13.0
|
||||
- ❌
|
||||
* - Jiterator (beta)
|
||||
- Jiterator allows asynchronous data streaming into computation streams
|
||||
during training loops.
|
||||
- 1.13.0
|
||||
- 5.2
|
||||
|
||||
.. Need to validate and extend.
|
||||
|
||||
torch.backends.cuda
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
``torch.backends.cuda`` is a PyTorch module that provides configuration options
|
||||
and flags to control the behavior of CUDA or ROCm operations. It is part of the
|
||||
PyTorch backend configuration system, which allows users to fine-tune how
|
||||
PyTorch interacts with the CUDA or ROCm environment.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``cufft_plan_cache``
|
||||
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
|
||||
- 1.7.0
|
||||
- 5.0
|
||||
* - ``matmul.allow_tf32``
|
||||
- Enables or disables the use of TensorFloat-32 (TF32) precision for
|
||||
faster matrix multiplications on GPUs with Tensor Cores.
|
||||
- 1.10.0
|
||||
- ❌
|
||||
* - ``matmul.allow_fp16_reduced_precision_reduction``
|
||||
- Reduced precision reductions (e.g., with fp16 accumulation type) are
|
||||
allowed with fp16 GEMMs.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``matmul.allow_bf16_reduced_precision_reduction``
|
||||
- Reduced precision reductions are allowed with bf16 GEMMs.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``enable_cudnn_sdp``
|
||||
- Globally enables cuDNN SDPA's kernels within SDPA.
|
||||
- 2.0
|
||||
- ❌
|
||||
* - ``enable_flash_sdp``
|
||||
- Globally enables or disables FlashAttention for SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
* - ``enable_mem_efficient_sdp``
|
||||
- Globally enables or disables Memory-Efficient Attention for SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
* - ``enable_math_sdp``
|
||||
- Globally enables or disables the PyTorch C++ implementation within SDPA.
|
||||
- 2.1
|
||||
- ❌
|
||||
|
||||
.. Need to validate and extend.
|
||||
|
||||
torch.backends.cudnn
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Supported ``torch`` options:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``allow_tf32``
|
||||
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
|
||||
Ampere or newer GPUs.
|
||||
- 1.12.0
|
||||
- ❌
|
||||
* - ``deterministic``
|
||||
- A bool that, if True, causes cuDNN to only use deterministic
|
||||
convolution algorithms.
|
||||
- 1.12.0
|
||||
- 6.0
|
||||
|
||||
Automatic mixed precision: torch.amp
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
PyTorch that automates the process of using both 16-bit (half-precision,
|
||||
float16) and 32-bit (single-precision, float32) floating-point types in model
|
||||
training and inference.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - Autocasting
|
||||
- Instances of autocast serve as context managers or decorators that allow
|
||||
regions of your script to run in mixed precision.
|
||||
- 1.9
|
||||
- 2.5
|
||||
* - Gradient scaling
|
||||
- To prevent underflow, “gradient scaling” multiplies the network’s
|
||||
loss(es) by a scale factor and invokes a backward pass on the scaled
|
||||
loss(es). Gradients flowing backward through the network are then
|
||||
scaled by the same factor. In other words, gradient values have a
|
||||
larger magnitude, so they don’t flush to zero.
|
||||
- 1.9
|
||||
- 2.5
|
||||
* - CUDA op-specific behavior
|
||||
- These ops always go through autocasting whether they are invoked as part
|
||||
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
|
||||
functions are exposed in multiple namespaces, they go through
|
||||
autocasting regardless of the namespace.
|
||||
- 1.9
|
||||
- 2.5
|
||||
|
||||
Distributed library features
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The PyTorch distributed library includes a collective of parallelism modules, a
|
||||
communications layer, and infrastructure for launching and debugging large
|
||||
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
|
||||
|
||||
The Distributed Library feature in PyTorch provides tools and APIs for building
|
||||
and running distributed machine learning workflows. It allows training models
|
||||
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
|
||||
of computational resources and scalability for large-scale tasks.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - TensorPipe
|
||||
- TensorPipe is a point-to-point communication library integrated into
|
||||
PyTorch for distributed training. It is designed to handle tensor data
|
||||
transfers efficiently between different processes or devices, including
|
||||
those on separate machines.
|
||||
- 1.8
|
||||
- 5.4
|
||||
* - Gloo
|
||||
- Gloo is designed for multi-machine and multi-GPU setups, enabling
|
||||
efficient communication and synchronization between processes. Gloo is
|
||||
one of the default backends for PyTorch's Distributed Data Parallel
|
||||
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
|
||||
- 1.0
|
||||
- 2.0
|
||||
|
||||
torch.compiler
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since PyTorch
|
||||
- Since ROCm
|
||||
* - ``torch.compiler`` (AOT Autograd)
|
||||
- Autograd captures not only the user-level code, but also backpropagation,
|
||||
which results in capturing the backwards pass “ahead-of-time”. This
|
||||
enables acceleration of both forwards and backwards pass using
|
||||
``TorchInductor``.
|
||||
- 2.0
|
||||
- 5.3
|
||||
* - ``torch.compiler`` (TorchInductor)
|
||||
- The default ``torch.compile`` deep learning compiler that generates fast
|
||||
code for multiple accelerators and backends. You need to use a backend
|
||||
compiler to make speedups through ``torch.compile`` possible. For AMD,
|
||||
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
|
||||
- 2.0
|
||||
- 5.3
|
||||
|
||||
torchaudio
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
|
||||
utilities for processing audio data in PyTorch, such as audio loading,
|
||||
transformations, and feature extraction.
|
||||
|
||||
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
|
||||
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
|
||||
|
||||
The following ``torchaudio`` features are GPU-accelerated.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since torchaudio version
|
||||
- Since ROCm
|
||||
* - ``torchaudio.transforms.Spectrogram``
|
||||
- Generate spectrogram of an input waveform using STFT.
|
||||
- 0.6.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MelSpectrogram``
|
||||
- Generate the mel-scale spectrogram of raw audio signals.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.MFCC``
|
||||
- Extract of MFCC features.
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
* - ``torchaudio.transforms.Resample``
|
||||
- Resample a signal from one frequency to another
|
||||
- 0.9.0
|
||||
- 4.5
|
||||
|
||||
torchvision
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
|
||||
provide datasets, model architectures, and common image transformations for
|
||||
computer vision.
|
||||
|
||||
The following ``torchvision`` features are GPU-accelerated.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Features
|
||||
- Description
|
||||
- Since torchvision version
|
||||
- Since ROCm
|
||||
* - ``torchvision.transforms.functional``
|
||||
- Provides GPU-compatible transformations for image preprocessing like
|
||||
resize, normalize, rotate and crop.
|
||||
- 0.2.0
|
||||
- 4.0
|
||||
* - ``torchvision.ops``
|
||||
- GPU-accelerated operations for object detection and segmentation tasks.
|
||||
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
|
||||
``box_convert``.
|
||||
- 0.6.0
|
||||
- 3.3
|
||||
* - ``torchvision.models`` with ``.to('cuda')``
|
||||
- ``torchvision`` provides several pre-trained models (ResNet, Faster
|
||||
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
|
||||
training.
|
||||
- 0.1.6
|
||||
- 2.x
|
||||
* - ``torchvision.io``
|
||||
- Video decoding and frame extraction using GPU acceleration with NVIDIA’s
|
||||
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
|
||||
- 0.4.0
|
||||
- 6.3
|
||||
|
||||
torchtext
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
|
||||
utilities for processing and working with text data in PyTorch, including
|
||||
tokenization, vocabulary management, and text embeddings. torchtext supports
|
||||
preprocessing pipelines and integration with PyTorch models, simplifying the
|
||||
implementation of natural language processing (NLP) tasks.
|
||||
|
||||
To leverage GPU acceleration in torchtext, you need to move tensors
|
||||
explicitly to the GPU using ``.to('cuda')``.
|
||||
|
||||
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchtune
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
|
||||
authoring, fine-tuning and experimenting with LLMs.
|
||||
|
||||
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchserve
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchserve <https://pytorch.org/torchserve/>`_ is a PyTorch domain library
|
||||
for common sparsity and parallelism primitives needed for large-scale recommender
|
||||
systems.
|
||||
|
||||
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
torchrec
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
|
||||
common sparsity and parallelism primitives needed for large-scale recommender
|
||||
systems.
|
||||
|
||||
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
|
||||
|
||||
* Only official release exists.
|
||||
|
||||
Unsupported PyTorch features
|
||||
----------------------------
|
||||
|
||||
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
|
||||
|
||||
.. list-table::
|
||||
:widths: 30, 60, 10
|
||||
:header-rows: 1
|
||||
|
||||
* - Data type
|
||||
- Description
|
||||
- Since PyTorch
|
||||
* - APEX batch norm
|
||||
- Use APEX batch norm instead of PyTorch batch norm.
|
||||
- 1.6.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
|
||||
- A bool that controls whether TensorFloat-32 tensor cores may be used in
|
||||
matrix multiplications.
|
||||
- 1.7
|
||||
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
|
||||
- Integration with NVTX for profiling and debugging GPU performance using
|
||||
NVIDIA's Nsight tools.
|
||||
- 1.7.0
|
||||
* - ``torch.cuda`` / Lazy loading NVRTC
|
||||
- Delays JIT compilation with NVRTC until the code is explicitly needed.
|
||||
- 1.8.0
|
||||
* - ``torch-tensorrt``
|
||||
- Integrate TensorRT library for optimizing and deploying PyTorch models.
|
||||
ROCm does not have equialent library for TensorRT.
|
||||
- 1.9.0
|
||||
* - ``torch.backends`` / ``cudnn.allow_tf32``
|
||||
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
|
||||
- 1.10.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
|
||||
- Reduced precision reductions with fp16 accumulation type are
|
||||
allowed with fp16 GEMMs.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
|
||||
- Reduced precision reductions are allowed with bf16 GEMMs.
|
||||
- 2.0
|
||||
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
|
||||
- Flash attention backend for SDPA to accelerate attention computation in
|
||||
transformer-based models.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
|
||||
- Globally enables cuDNN SDPA's kernels within SDPA.
|
||||
- 2.0
|
||||
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
|
||||
- Globally enables or disables FlashAttention for SDPA.
|
||||
- 2.1
|
||||
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
|
||||
- Globally enables or disables Memory-Efficient Attention for SDPA.
|
||||
- 2.1
|
||||
* - ``torch.backends.cuda`` / ``enable_math_sdp``
|
||||
- Globally enables or disables the PyTorch C++ implementation within SDPA.
|
||||
- 2.1
|
||||
* - Dynamic parallelism
|
||||
- PyTorch itself does not directly expose dynamic parallelism as a core
|
||||
feature. Dynamic parallelism allow GPU threads to launch additional
|
||||
threads which can be reached using custom operations via the
|
||||
``torch.utils.cpp_extension`` module.
|
||||
- Not a core feature
|
||||
* - Unified memory support in PyTorch
|
||||
- Unified Memory is not directly exposed in PyTorch's core API, it can be
|
||||
utilized effectively through custom CUDA extensions or advanced
|
||||
workflows.
|
||||
- Not a core feature
|
||||
|
||||
Use cases and recommendations
|
||||
================================================================================
|
||||
|
||||
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/train-a-model>` provides
|
||||
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
|
||||
for optimizing training workflows on AMD GPUs using PyTorch features.
|
||||
|
||||
* :doc:`Single-GPU fine-tuning and inference </how-to/llm-fine-tuning-optimization/single-gpu-fine-tuning-and-inference>`
|
||||
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
|
||||
machine learning models, particularly large language models (LLMs), on systems with a single AMD
|
||||
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
|
||||
executing fine-tuning and inference workflows in such environments.
|
||||
|
||||
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/llm-fine-tuning-optimization/multi-gpu-fine-tuning-and-inference>`
|
||||
describes and demonstrates the fine-tuning and inference of machine learning models on systems
|
||||
with multi MI300X accelerators.
|
||||
|
||||
* The :doc:`Instinct MI300X workload optimization guide </how-to/tuning-guides/mi300x/workload>` provides detailed
|
||||
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
|
||||
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
|
||||
accelerator.
|
||||
|
||||
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
|
||||
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
|
||||
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
|
||||
|
||||
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_
|
||||
@@ -32,7 +32,7 @@ architecture.
|
||||
|
||||
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
|
||||
* [AMD Instinct MI200/CDNA2 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf)
|
||||
* [White paper](https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf)
|
||||
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf)
|
||||
* [Performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
|
||||
|
||||
:::
|
||||
@@ -45,7 +45,7 @@ architecture.
|
||||
|
||||
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)
|
||||
* [AMD Instinct MI100/CDNA1 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf)
|
||||
* [White paper](https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf)
|
||||
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf)
|
||||
|
||||
:::
|
||||
|
||||
@@ -55,7 +55,6 @@ architecture.
|
||||
* [AMD RDNA3 ISA](https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf)
|
||||
* [AMD RDNA2 ISA](https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf)
|
||||
* [AMD RDNA ISA](https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf)
|
||||
* [AMD RDNA Architecture White Paper](https://www.amd.com/system/files/documents/rdna-whitepaper.pdf)
|
||||
|
||||
:::
|
||||
|
||||
|
||||
27
docs/conf.py
27
docs/conf.py
@@ -6,6 +6,8 @@
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
shutil.copy2("../RELEASE.md", "./about/release-notes.md")
|
||||
|
||||
@@ -30,15 +32,15 @@ if os.environ.get("READTHEDOCS", "") == "True":
|
||||
project = "ROCm Documentation"
|
||||
author = "Advanced Micro Devices, Inc."
|
||||
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
|
||||
version = "6.3.2"
|
||||
release = "6.3.2"
|
||||
version = "6.3.3"
|
||||
release = "6.3.3"
|
||||
setting_all_article_info = True
|
||||
all_article_info_os = ["linux", "windows"]
|
||||
all_article_info_author = ""
|
||||
|
||||
# pages with specific settings
|
||||
article_pages = [
|
||||
{"file": "about/release-notes", "os": ["linux"], "date": "2025-01-28"},
|
||||
{"file": "about/release-notes", "os": ["linux"], "date": "2025-02-19"},
|
||||
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
|
||||
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
|
||||
{"file": "compatibility/ml-compatibility/tensorflow-compatibility", "os": ["linux"]},
|
||||
@@ -49,6 +51,9 @@ article_pages = [
|
||||
|
||||
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
|
||||
|
||||
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
|
||||
@@ -63,7 +68,7 @@ article_pages = [
|
||||
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
|
||||
|
||||
|
||||
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference-optimization/model-quantization", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries", "os": ["linux"]},
|
||||
@@ -86,11 +91,16 @@ article_pages = [
|
||||
|
||||
external_toc_path = "./sphinx/_toc.yml"
|
||||
|
||||
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap"]
|
||||
# Add the _extensions directory to Python's search path
|
||||
sys.path.append(str(Path(__file__).parent / 'extension'))
|
||||
|
||||
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref"]
|
||||
|
||||
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
|
||||
|
||||
external_projects_current_project = "rocm"
|
||||
|
||||
# Uncomment if facing rate limit exceed issue with local build
|
||||
# Uncomment if facing rate limit exceed issue with local build
|
||||
# external_projects_remote_repository = ""
|
||||
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
|
||||
@@ -101,8 +111,9 @@ if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_theme = "rocm_docs_theme"
|
||||
html_theme_options = {"flavor": "rocm-docs-home"}
|
||||
|
||||
html_static_path = ["sphinx/static/css"]
|
||||
html_css_files = ["rocm_custom.css", "rocm_rn.css"]
|
||||
html_static_path = ["sphinx/static/css", "extension/how-to/rocm-for-ai/inference"]
|
||||
html_css_files = ["rocm_custom.css", "rocm_rn.css", "vllm-benchmark.css"]
|
||||
html_js_files = ["vllm-benchmark.js"]
|
||||
|
||||
html_title = "ROCm Documentation"
|
||||
|
||||
|
||||
@@ -0,0 +1,153 @@
|
||||
vllm_benchmark:
|
||||
unified_docker:
|
||||
latest:
|
||||
pull_tag: rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9
|
||||
rocm_version: 6.3.1
|
||||
vllm_version: 0.6.6
|
||||
pytorch_version: 2.7.0 (2.7.0a0+git3a58512)
|
||||
model_groups:
|
||||
- group: Llama
|
||||
tag: llama
|
||||
models:
|
||||
- model: Llama 3.1 8B
|
||||
mad_tag: pyt_vllm_llama-3.1-8b
|
||||
model_repo: meta-llama/Llama-3.1-8B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-8B
|
||||
precision: float16
|
||||
- model: Llama 3.1 70B
|
||||
mad_tag: pyt_vllm_llama-3.1-70b
|
||||
model_repo: meta-llama/Llama-3.1-70B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
|
||||
precision: float16
|
||||
- model: Llama 3.1 405B
|
||||
mad_tag: pyt_vllm_llama-3.1-405b
|
||||
model_repo: meta-llama/Llama-3.1-405B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
|
||||
precision: float16
|
||||
- model: Llama 3.2 11B Vision
|
||||
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
|
||||
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
precision: float16
|
||||
- model: Llama 2 7B
|
||||
mad_tag: pyt_vllm_llama-2-7b
|
||||
model_repo: meta-llama/Llama-2-7b-chat-hf
|
||||
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
|
||||
precision: float16
|
||||
- model: Llama 2 70B
|
||||
mad_tag: pyt_vllm_llama-2-70b
|
||||
model_repo: meta-llama/Llama-2-70b-chat-hf
|
||||
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
|
||||
precision: float16
|
||||
- model: Llama 3.1 70B FP8
|
||||
mad_tag: pyt_vllm_llama-3.1-70b_fp8
|
||||
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
|
||||
precision: float8
|
||||
- model: Llama 3.1 405B FP8
|
||||
mad_tag: pyt_vllm_llama-3.1-405b_fp8
|
||||
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
|
||||
precision: float8
|
||||
- group: Mistral
|
||||
tag: mistral
|
||||
models:
|
||||
- model: Mixtral MoE 8x7B
|
||||
mad_tag: pyt_vllm_mixtral-8x7b
|
||||
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
|
||||
precision: float16
|
||||
- model: Mixtral MoE 8x22B
|
||||
mad_tag: pyt_vllm_mixtral-8x22b
|
||||
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
|
||||
precision: float16
|
||||
- model: Mistral 7B
|
||||
mad_tag: pyt_vllm_mistral-7b
|
||||
model_repo: mistralai/Mistral-7B-Instruct-v0.3
|
||||
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
|
||||
precision: float16
|
||||
- model: Mixtral MoE 8x7B FP8
|
||||
mad_tag: pyt_vllm_mixtral-8x7b_fp8
|
||||
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- model: Mixtral MoE 8x22B FP8
|
||||
mad_tag: pyt_vllm_mixtral-8x22b_fp8
|
||||
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- model: Mistral 7B FP8
|
||||
mad_tag: pyt_vllm_mistral-7b_fp8
|
||||
model_repo: amd/Mistral-7B-v0.1-FP8-KV
|
||||
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
|
||||
precision: float8
|
||||
- group: Qwen
|
||||
tag: qwen
|
||||
models:
|
||||
- model: Qwen2 7B
|
||||
mad_tag: pyt_vllm_qwen2-7b
|
||||
model_repo: Qwen/Qwen2-7B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
|
||||
precision: float16
|
||||
- model: Qwen2 72B
|
||||
mad_tag: pyt_vllm_qwen2-72b
|
||||
model_repo: Qwen/Qwen2-72B-Instruct
|
||||
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
|
||||
precision: float16
|
||||
- group: JAIS
|
||||
tag: jais
|
||||
models:
|
||||
- model: JAIS 13B
|
||||
mad_tag: pyt_vllm_jais-13b
|
||||
model_repo: core42/jais-13b-chat
|
||||
url: https://huggingface.co/core42/jais-13b-chat
|
||||
precision: float16
|
||||
- model: JAIS 30B
|
||||
mad_tag: pyt_vllm_jais-30b
|
||||
model_repo: core42/jais-30b-chat-v3
|
||||
url: https://huggingface.co/core42/jais-30b-chat-v3
|
||||
precision: float16
|
||||
- group: DBRX
|
||||
tag: dbrx
|
||||
models:
|
||||
- model: DBRX Instruct
|
||||
mad_tag: pyt_vllm_dbrx-instruct
|
||||
model_repo: databricks/dbrx-instruct
|
||||
url: https://huggingface.co/databricks/dbrx-instruct
|
||||
precision: float16
|
||||
- model: DBRX Instruct FP8
|
||||
mad_tag: pyt_vllm_dbrx_fp8
|
||||
model_repo: amd/dbrx-instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
|
||||
precision: float8
|
||||
- group: Gemma
|
||||
tag: gemma
|
||||
models:
|
||||
- model: Gemma 2 27B
|
||||
mad_tag: pyt_vllm_gemma-2-27b
|
||||
model_repo: google/gemma-2-27b
|
||||
url: https://huggingface.co/google/gemma-2-27b
|
||||
precision: float16
|
||||
- group: Cohere
|
||||
tag: cohere
|
||||
models:
|
||||
- model: C4AI Command R+ 08-2024
|
||||
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
|
||||
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
|
||||
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
|
||||
precision: float16
|
||||
- model: C4AI Command R+ 08-2024 FP8
|
||||
mad_tag: pyt_vllm_command-r-plus_fp8
|
||||
model_repo: amd/c4ai-command-r-plus-FP8-KV
|
||||
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
|
||||
precision: float8
|
||||
- group: DeepSeek
|
||||
tag: deepseek
|
||||
models:
|
||||
- model: DeepSeek MoE 16B
|
||||
mad_tag: pyt_vllm_deepseek-moe-16b-chat
|
||||
model_repo: deepseek-ai/deepseek-moe-16b-chat
|
||||
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
|
||||
precision: float16
|
||||
0
docs/extension/__init__.py
Normal file
0
docs/extension/__init__.py
Normal file
212
docs/extension/how-to/rocm-for-ai/inference/vllm-benchmark.js
Normal file
212
docs/extension/how-to/rocm-for-ai/inference/vllm-benchmark.js
Normal file
@@ -0,0 +1,212 @@
|
||||
function ready(proc) {
|
||||
// Check if page is loaded. If so, init.
|
||||
if (document.readyState !== "loading") {
|
||||
proc();
|
||||
} else {
|
||||
// Otherwise, wait for DOMContentLoaded event.
|
||||
document.addEventListener("DOMContentLoaded", proc);
|
||||
}
|
||||
}
|
||||
|
||||
ready(() => {
|
||||
const ModelPicker = {
|
||||
// Selector strings for DOM elements
|
||||
SELECTORS: {
|
||||
CONTAINER: "#vllm-benchmark-ud-params-picker",
|
||||
MODEL_GROUP_BTN: 'div[data-param-k="model-group"][data-param-v]',
|
||||
MODEL_PARAM_BTN: 'div[data-param-k="model"][data-param-v]',
|
||||
MODEL_DOC: "div.model-doc",
|
||||
},
|
||||
CSS_CLASSES: {
|
||||
HIDDEN: "hidden",
|
||||
},
|
||||
ATTRIBUTES: {
|
||||
PARAM_KEY: "data-param-k", // URL search parameter key (i.e., "model")
|
||||
PARAM_VALUE: "data-param-v", // URL search param value (e.g., "pyt_vllm_llama-3.1-8b", "pyt_vllm_llama-3.1-70b") -- these are MAD model tags
|
||||
PARAM_GROUP: "data-param-group", // Model group (e.g., "llama", "mistral")
|
||||
PARAM_STATE: "data-param-state", // Selection state
|
||||
},
|
||||
|
||||
// Cache DOM elements
|
||||
elements: {
|
||||
container: null,
|
||||
modelGroups: null,
|
||||
modelParams: null,
|
||||
modelDocs: null,
|
||||
},
|
||||
|
||||
data: {
|
||||
availableModels: new Set(),
|
||||
modelsByGroup: new Map(),
|
||||
modelToGroupMap: new Map(),
|
||||
formattedModelClassMap: new Map(), //TODO
|
||||
},
|
||||
|
||||
init() {
|
||||
this.elements.container = document.querySelector(
|
||||
this.SELECTORS.CONTAINER,
|
||||
);
|
||||
if (!this.elements.container) return;
|
||||
|
||||
this.cacheDOMElements();
|
||||
if (!this.validateElements()) return;
|
||||
|
||||
this.buildModelData();
|
||||
this.bindEvents();
|
||||
this.initializeState();
|
||||
},
|
||||
|
||||
cacheDOMElements() {
|
||||
const { CONTAINER, MODEL_GROUP_BTN, MODEL_PARAM_BTN, MODEL_DOC } =
|
||||
this.SELECTORS;
|
||||
this.elements = {
|
||||
container: document.querySelector(CONTAINER),
|
||||
modelGroups: document.querySelectorAll(MODEL_GROUP_BTN),
|
||||
modelParams: document.querySelectorAll(MODEL_PARAM_BTN),
|
||||
modelDocs: document.querySelectorAll(MODEL_DOC),
|
||||
};
|
||||
},
|
||||
|
||||
validateElements() {
|
||||
const { modelGroups, modelParams } = this.elements;
|
||||
if (!modelGroups.length || !modelParams.length) {
|
||||
console.warn("Model picker is missing required elements");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
},
|
||||
|
||||
buildModelData() {
|
||||
const { PARAM_VALUE, PARAM_GROUP } = this.ATTRIBUTES;
|
||||
|
||||
this.elements.modelParams.forEach((model) => {
|
||||
const modelTag = model.getAttribute(PARAM_VALUE);
|
||||
const groupTag = model.getAttribute(PARAM_GROUP);
|
||||
|
||||
if (!modelTag || !groupTag) return;
|
||||
|
||||
this.data.availableModels.add(modelTag);
|
||||
this.data.modelToGroupMap.set(modelTag, groupTag);
|
||||
|
||||
// FIXME: this is because Sphinx auto-formats class names to use dashes
|
||||
this.data.formattedModelClassMap.set(
|
||||
modelTag,
|
||||
modelTag.replace(/[^a-zA-Z0-9]/g, "-"),
|
||||
);
|
||||
|
||||
if (!this.data.modelsByGroup.has(groupTag)) {
|
||||
this.data.modelsByGroup.set(groupTag, []);
|
||||
}
|
||||
this.data.modelsByGroup.get(groupTag).push(modelTag);
|
||||
});
|
||||
},
|
||||
|
||||
// Event listeners for user interactions
|
||||
bindEvents() {
|
||||
const handleInteraction = (event) => {
|
||||
const target = event.target.closest(`[${this.ATTRIBUTES.PARAM_KEY}]`);
|
||||
if (!target) return;
|
||||
|
||||
const paramType = target.getAttribute(this.ATTRIBUTES.PARAM_KEY);
|
||||
const paramValue = target.getAttribute(this.ATTRIBUTES.PARAM_VALUE);
|
||||
|
||||
if (paramType === "model") {
|
||||
const groupTag = target.getAttribute(this.ATTRIBUTES.PARAM_GROUP);
|
||||
if (groupTag) this.updateUI(paramValue, groupTag);
|
||||
} else if (paramType === "model-group") {
|
||||
const firstModelInGroup = this.data.modelsByGroup.get(paramValue)
|
||||
?.[0];
|
||||
if (firstModelInGroup) this.updateUI(firstModelInGroup, paramValue);
|
||||
}
|
||||
};
|
||||
|
||||
this.elements.container.addEventListener("click", handleInteraction);
|
||||
this.elements.container.addEventListener("keydown", (event) => {
|
||||
if (event.key === "Enter" || event.key === " ") {
|
||||
event.preventDefault();
|
||||
handleInteraction(event);
|
||||
}
|
||||
});
|
||||
},
|
||||
|
||||
// Update the page based on the selected model
|
||||
updateUI(modelTag, groupTag) {
|
||||
const validModel = this.setModelSearchParam(modelTag);
|
||||
|
||||
// Update model group buttons
|
||||
this.elements.modelGroups.forEach((group) => {
|
||||
const isSelected =
|
||||
group.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === groupTag;
|
||||
group.setAttribute(
|
||||
this.ATTRIBUTES.PARAM_STATE,
|
||||
isSelected ? "selected" : "",
|
||||
);
|
||||
group.setAttribute("aria-selected", isSelected.toString());
|
||||
});
|
||||
|
||||
// Update model buttons
|
||||
this.elements.modelParams.forEach((model) => {
|
||||
const isInSelectedGroup =
|
||||
model.getAttribute(this.ATTRIBUTES.PARAM_GROUP) === groupTag;
|
||||
const isSelectedModel =
|
||||
model.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === validModel;
|
||||
|
||||
model.classList.toggle(this.CSS_CLASSES.HIDDEN, !isInSelectedGroup);
|
||||
model.setAttribute(
|
||||
this.ATTRIBUTES.PARAM_STATE,
|
||||
isSelectedModel ? "selected" : "",
|
||||
);
|
||||
model.setAttribute("aria-selected", isSelectedModel.toString());
|
||||
});
|
||||
|
||||
// Update visibility of doc sections
|
||||
const formattedClass = this.data.formattedModelClassMap.get(validModel);
|
||||
if (formattedClass) {
|
||||
this.elements.modelDocs.forEach((doc) => {
|
||||
doc.classList.toggle(
|
||||
this.CSS_CLASSES.HIDDEN,
|
||||
!doc.classList.contains(formattedClass),
|
||||
);
|
||||
});
|
||||
}
|
||||
},
|
||||
|
||||
// Get the current model from the URL search parameters.
|
||||
getModelSearchParam() {
|
||||
return new URLSearchParams(location.search).get("model");
|
||||
},
|
||||
|
||||
// Set the model in the URL search parameters, or fallback to the first available one.
|
||||
setModelSearchParam(modelTag) {
|
||||
const defaultModel = [...this.data.availableModels][0];
|
||||
const model = this.data.availableModels.has(modelTag)
|
||||
? modelTag
|
||||
: defaultModel;
|
||||
|
||||
const searchParams = new URLSearchParams(location.search);
|
||||
searchParams.set("model", model);
|
||||
|
||||
history.replaceState(
|
||||
{},
|
||||
"",
|
||||
`${location.pathname}?${searchParams.toString()}`,
|
||||
);
|
||||
return model;
|
||||
},
|
||||
|
||||
// Initialize the UI state based on the current URL search parameter or default values.
|
||||
initializeState() {
|
||||
const currentModel = this.getModelSearchParam();
|
||||
const validModel = this.setModelSearchParam(currentModel);
|
||||
|
||||
const initialGroup = this.data.modelToGroupMap.get(validModel) ??
|
||||
[...this.data.modelsByGroup.keys()][0];
|
||||
|
||||
if (initialGroup) {
|
||||
this.updateUI(validModel, initialGroup);
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
ModelPicker.init();
|
||||
});
|
||||
266
docs/extension/version-ref.py
Normal file
266
docs/extension/version-ref.py
Normal file
@@ -0,0 +1,266 @@
|
||||
from docutils import nodes
|
||||
from docutils.parsers.rst import Directive
|
||||
from sphinx.util import logging
|
||||
import csv
|
||||
from io import StringIO
|
||||
import re
|
||||
import shlex
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class VersionReference(nodes.Inline, nodes.TextElement):
|
||||
"""Represents an inline version reference."""
|
||||
pass
|
||||
|
||||
class VersionSetDirective(Directive):
|
||||
"""Directive for setting version references within a page scope."""
|
||||
required_arguments = 2 # name and value
|
||||
optional_arguments = 0
|
||||
|
||||
def run(self):
|
||||
env = self.state.document.settings.env
|
||||
if not hasattr(env, 'doc_version_refs'):
|
||||
env.doc_version_refs = {}
|
||||
current_doc = env.docname
|
||||
if current_doc not in env.doc_version_refs:
|
||||
env.doc_version_refs[current_doc] = {}
|
||||
|
||||
name, value = self.arguments
|
||||
if name.lower() == 'latest':
|
||||
logger.warning('Cannot override the "latest" keyword with version-set')
|
||||
return []
|
||||
|
||||
# Handle 'latest' value by getting the actual version
|
||||
if value.lower() == 'latest':
|
||||
data = getattr(env, 'compatibility_matrix', None)
|
||||
if data:
|
||||
latest_version = get_latest_rocm_version(data)
|
||||
if latest_version:
|
||||
value = latest_version
|
||||
|
||||
env.doc_version_refs[current_doc][name] = value
|
||||
return []
|
||||
|
||||
def clean_library_name(name):
|
||||
"""Extract library name from RST formatting."""
|
||||
# Handle :doc: format
|
||||
doc_match = re.search(r':doc:`([^<]+)(?:\s+<[^>]+>)?`', name)
|
||||
if doc_match:
|
||||
return doc_match.group(1).strip()
|
||||
|
||||
# Handle other link formats
|
||||
link_match = re.search(r'`([^<]+)(?:\s+<[^>]+>)?`_?', name)
|
||||
if link_match:
|
||||
return link_match.group(1).strip()
|
||||
|
||||
return name.strip()
|
||||
|
||||
def get_latest_rocm_version(data):
|
||||
"""Get the latest ROCm version from the matrix headers."""
|
||||
if not data or len(data) == 0:
|
||||
return None
|
||||
|
||||
# Get all column names except 'ROCm Version'
|
||||
columns = [col for col in data[0].keys() if col != 'ROCm Version']
|
||||
# Return the first column name (assumed to be the latest version)
|
||||
return columns[0] if columns else None
|
||||
|
||||
def version_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
|
||||
"""
|
||||
Role function to print version value.
|
||||
Usage: :version:`version_name`
|
||||
"""
|
||||
try:
|
||||
version_name = text.strip()
|
||||
env = inliner.document.settings.env
|
||||
|
||||
if hasattr(env, 'doc_version_refs'):
|
||||
current_doc = env.docname
|
||||
if current_doc in env.doc_version_refs:
|
||||
doc_refs = env.doc_version_refs[current_doc]
|
||||
if version_name in doc_refs:
|
||||
version = doc_refs[version_name]
|
||||
node = nodes.Text(version)
|
||||
return [node], []
|
||||
|
||||
msg = inliner.reporter.warning(
|
||||
f'No version defined for name {version_name}',
|
||||
line=lineno
|
||||
)
|
||||
return [], [msg]
|
||||
|
||||
except Exception as e:
|
||||
msg = inliner.reporter.error(
|
||||
f'Error looking up version: {str(e)}',
|
||||
line=lineno
|
||||
)
|
||||
prb = inliner.problematic(rawtext, rawtext, msg)
|
||||
return [prb], [msg]
|
||||
|
||||
def version_ref_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
|
||||
"""
|
||||
Role function for version references.
|
||||
Usage: :version-ref:`library_name release`
|
||||
:version-ref:`"library name" release`
|
||||
:version-ref:`library_name latest`
|
||||
:version-ref:`rocm latest`
|
||||
"""
|
||||
try:
|
||||
# Parse the text - handle both quoted and unquoted formats
|
||||
if '"' in text:
|
||||
parts = shlex.split(text)
|
||||
else:
|
||||
parts = text.split()
|
||||
|
||||
if len(parts) != 2:
|
||||
msg = inliner.reporter.error(
|
||||
'Version reference must be in format "library_name release" or "\\"library name\\" release"',
|
||||
line=lineno
|
||||
)
|
||||
prb = inliner.problematic(rawtext, rawtext, msg)
|
||||
return [prb], [msg]
|
||||
|
||||
library_name, release = parts
|
||||
env = inliner.document.settings.env
|
||||
|
||||
# Check if release is a version reference in current document
|
||||
if hasattr(env, 'doc_version_refs'):
|
||||
current_doc = env.docname
|
||||
if current_doc in env.doc_version_refs:
|
||||
doc_refs = env.doc_version_refs[current_doc]
|
||||
if release in doc_refs:
|
||||
release = doc_refs[release]
|
||||
|
||||
# Handle special case for "rocm latest"
|
||||
if library_name.lower() == 'rocm' and release.lower() == 'latest':
|
||||
data = getattr(env, 'compatibility_matrix', None)
|
||||
if not data:
|
||||
raise ValueError("Compatibility matrix not found in environment")
|
||||
|
||||
latest_version = get_latest_rocm_version(data)
|
||||
if latest_version:
|
||||
node = VersionReference()
|
||||
node += nodes.Text(latest_version)
|
||||
return [node], []
|
||||
else:
|
||||
msg = inliner.reporter.warning(
|
||||
'No ROCm versions found in compatibility matrix',
|
||||
line=lineno
|
||||
)
|
||||
return [], [msg]
|
||||
|
||||
version = lookup_version(inliner, library_name, release)
|
||||
|
||||
if version:
|
||||
node = VersionReference()
|
||||
node += nodes.Text(version)
|
||||
return [node], []
|
||||
else:
|
||||
msg = inliner.reporter.warning(
|
||||
f'No version found for library {library_name} in release {release}',
|
||||
line=lineno
|
||||
)
|
||||
return [], [msg]
|
||||
|
||||
except Exception as e:
|
||||
msg = inliner.reporter.error(
|
||||
f'Error looking up version: {str(e)}',
|
||||
line=lineno
|
||||
)
|
||||
prb = inliner.problematic(rawtext, rawtext, msg)
|
||||
return [prb], [msg]
|
||||
|
||||
def lookup_version(inliner, library_name, release):
|
||||
"""Look up the version in the compatibility matrix."""
|
||||
env = inliner.document.settings.env
|
||||
data = getattr(env, 'compatibility_matrix', None)
|
||||
|
||||
if not data:
|
||||
raise ValueError("Compatibility matrix not found in environment")
|
||||
|
||||
# Handle the 'latest' keyword
|
||||
if release.lower() == 'latest':
|
||||
latest_version = get_latest_rocm_version(data)
|
||||
if not latest_version:
|
||||
return None
|
||||
release = latest_version
|
||||
|
||||
# For ROCm, check if the version exists in column headers
|
||||
if library_name.lower() == 'rocm':
|
||||
columns = [col for col in data[0].keys() if col != 'ROCm Version']
|
||||
if release in columns:
|
||||
return release
|
||||
return None
|
||||
|
||||
# Find the library version
|
||||
for row in data:
|
||||
row_lib_name = clean_library_name(row['ROCm Version'])
|
||||
if row_lib_name == library_name:
|
||||
# Get the version, removing any whitespace
|
||||
version = row.get(release, '').strip()
|
||||
if version:
|
||||
return version
|
||||
|
||||
# If not found, try a case-insensitive search
|
||||
for row in data:
|
||||
row_lib_name = clean_library_name(row['ROCm Version'])
|
||||
if row_lib_name.lower() == library_name.lower():
|
||||
version = row.get(release, '').strip()
|
||||
if version:
|
||||
return version
|
||||
|
||||
return None
|
||||
|
||||
def visit_version_reference(self, node):
|
||||
self.body.append(f'<span class="version-reference">')
|
||||
|
||||
def depart_version_reference(self, node):
|
||||
self.body.append('</span>')
|
||||
|
||||
def load_compatibility_matrix(app):
|
||||
"""Load the compatibility matrix content from CSV."""
|
||||
if not app.config.compatibility_matrix_file:
|
||||
logger.warning('No compatibility matrix file configured')
|
||||
return
|
||||
|
||||
try:
|
||||
with open(app.config.compatibility_matrix_file, 'r', encoding='utf-8') as f:
|
||||
reader = csv.DictReader(f)
|
||||
app.env.compatibility_matrix = list(reader)
|
||||
logger.info('Successfully loaded compatibility matrix')
|
||||
|
||||
# Debug: print first few rows with their library names
|
||||
for row in list(app.env.compatibility_matrix)[:5]:
|
||||
if 'ROCm Version' in row:
|
||||
lib_name = clean_library_name(row['ROCm Version'])
|
||||
logger.debug(f"Loaded library: {lib_name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f'Error loading compatibility matrix: {str(e)}')
|
||||
|
||||
def purge_version_refs(app, env, docname):
|
||||
"""Remove version references for a document when it is purged"""
|
||||
if hasattr(env, 'doc_version_refs'):
|
||||
if docname in env.doc_version_refs:
|
||||
del env.doc_version_refs[docname]
|
||||
|
||||
def setup(app):
|
||||
app.add_node(VersionReference,
|
||||
html=(visit_version_reference, depart_version_reference))
|
||||
app.add_role('version-ref', version_ref_role)
|
||||
app.add_role('version', version_role)
|
||||
app.add_directive('version-set', VersionSetDirective)
|
||||
|
||||
# Add a config value for the compatibility matrix file path
|
||||
app.add_config_value('compatibility_matrix_file', None, 'env')
|
||||
|
||||
# Connect to the builder-inited event to load the matrix
|
||||
app.connect('builder-inited', load_compatibility_matrix)
|
||||
|
||||
# Connect to env-purge-doc event to clean up document-specific version refs
|
||||
app.connect('env-purge-doc', purge_version_refs)
|
||||
|
||||
return {
|
||||
'parallel_read_safe': True,
|
||||
'parallel_write_safe': True,
|
||||
}
|
||||
@@ -9,377 +9,266 @@ LLM inference performance validation on AMD Instinct MI300X
|
||||
|
||||
.. _vllm-benchmark-unified-docker:
|
||||
|
||||
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
|
||||
a prebuilt, optimized environment designed for validating large language model
|
||||
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
|
||||
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
|
||||
MI300X accelerator and includes the following components:
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
|
||||
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
|
||||
{% set model_groups = data.vllm_benchmark.model_groups %}
|
||||
|
||||
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
|
||||
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
|
||||
a prebuilt, optimized environment for validating large language model (LLM)
|
||||
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
|
||||
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
|
||||
accelerator and includes the following components:
|
||||
|
||||
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
|
||||
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
|
||||
|
||||
* Tuning files (in CSV format)
|
||||
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
|
||||
|
||||
With this Docker image, you can quickly validate the expected inference
|
||||
performance numbers on the MI300X accelerator. This topic also provides tips on
|
||||
optimizing performance with popular AI models.
|
||||
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
|
||||
|
||||
.. hlist::
|
||||
:columns: 6
|
||||
With this Docker image, you can quickly validate the expected inference
|
||||
performance numbers for the MI300X accelerator. This topic also provides tips on
|
||||
optimizing performance with popular AI models.
|
||||
|
||||
* Llama 3.1 8B
|
||||
.. _vllm-benchmark-available-models:
|
||||
|
||||
* Llama 3.1 70B
|
||||
Available models
|
||||
================
|
||||
|
||||
* Llama 3.1 405B
|
||||
.. raw:: html
|
||||
|
||||
* Llama 2 7B
|
||||
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
||||
<div class="row">
|
||||
<div class="col-2 me-2 model-param-head">Model</div>
|
||||
<div class="row col-10">
|
||||
{% for model_group in model_groups %}
|
||||
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
* Llama 2 70B
|
||||
<div class="row mt-1">
|
||||
<div class="col-2 me-2 model-param-head">Model variant</div>
|
||||
<div class="row col-10">
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if models|length % 3 == 0 %}
|
||||
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% else %}
|
||||
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
* Mixtral 8x7B
|
||||
.. _vllm-benchmark-vllm:
|
||||
|
||||
* Mixtral 8x22B
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
* Mixtral 7B
|
||||
.. container:: model-doc {{model.mad_tag}}
|
||||
|
||||
* Qwen2 7B
|
||||
.. note::
|
||||
|
||||
* Qwen2 72B
|
||||
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
|
||||
Some models require access authorization prior to use via an external license agreement through a third party.
|
||||
|
||||
* JAIS 13B
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
* JAIS 30B
|
||||
|
||||
.. _vllm-benchmark-vllm:
|
||||
.. note::
|
||||
|
||||
.. note::
|
||||
vLLM is a toolkit and library for LLM inference and serving. AMD implements
|
||||
high-performance custom kernels and modules in vLLM to enhance performance.
|
||||
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
|
||||
more information.
|
||||
|
||||
vLLM is a toolkit and library for LLM inference and serving. AMD implements
|
||||
high-performance custom kernels and modules in vLLM to enhance performance.
|
||||
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
|
||||
more information.
|
||||
Getting started
|
||||
===============
|
||||
|
||||
Getting started
|
||||
===============
|
||||
Use the following procedures to reproduce the benchmark results on an
|
||||
MI300X accelerator with the prebuilt vLLM Docker image.
|
||||
|
||||
Use the following procedures to reproduce the benchmark results on an
|
||||
MI300X accelerator with the prebuilt vLLM Docker image.
|
||||
.. _vllm-benchmark-get-started:
|
||||
|
||||
.. _vllm-benchmark-get-started:
|
||||
1. Disable NUMA auto-balancing.
|
||||
|
||||
1. Disable NUMA auto-balancing.
|
||||
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
|
||||
might hang until the periodic balancing is finalized. For more information,
|
||||
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
|
||||
|
||||
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
|
||||
might hang until the periodic balancing is finalized. For more information,
|
||||
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
|
||||
.. code-block:: shell
|
||||
|
||||
.. code-block:: shell
|
||||
# disable automatic NUMA balancing
|
||||
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
# check if NUMA balancing is disabled (returns 0 if disabled)
|
||||
cat /proc/sys/kernel/numa_balancing
|
||||
0
|
||||
|
||||
# disable automatic NUMA balancing
|
||||
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
# check if NUMA balancing is disabled (returns 0 if disabled)
|
||||
cat /proc/sys/kernel/numa_balancing
|
||||
0
|
||||
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
|
||||
|
||||
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
.. code-block:: shell
|
||||
|
||||
.. code-block:: shell
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
Benchmarking
|
||||
============
|
||||
|
||||
Once setup is complete, you can choose between two options to reproduce the
|
||||
benchmark results:
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
|
||||
.. _vllm-benchmark-mad:
|
||||
|
||||
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. _vllm-benchmark-mad:
|
||||
.. container:: model-doc {{model.mad_tag}}
|
||||
|
||||
MAD-integrated benchmarking
|
||||
===========================
|
||||
.. tab-set::
|
||||
|
||||
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
||||
directory and install the required packages on the host machine.
|
||||
.. tab-item:: MAD-integrated benchmarking
|
||||
|
||||
.. code-block:: shell
|
||||
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
||||
directory and install the required packages on the host machine.
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
.. code-block:: shell
|
||||
|
||||
Use this command to run a performance benchmark test of the Llama 3.1 8B model
|
||||
on one GPU with ``float16`` data type in the host machine.
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
|
||||
.. code-block:: shell
|
||||
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
|
||||
using one GPU with the ``{{model.precision}}`` data type on the host machine.
|
||||
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
|
||||
.. code-block:: shell
|
||||
|
||||
ROCm MAD launches a Docker container with the name
|
||||
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
|
||||
model are collected in the following path: ``~/MAD/reports_float16/``.
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
|
||||
|
||||
Although the following models are preconfigured to collect latency and
|
||||
throughput performance data, you can also change the benchmarking parameters.
|
||||
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
|
||||
MAD launches a Docker container with the name
|
||||
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
|
||||
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
|
||||
|
||||
Available models
|
||||
----------------
|
||||
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
|
||||
to collect latency and throughput performance data, you can also change the benchmarking
|
||||
parameters. See the standalone benchmarking tab for more information.
|
||||
|
||||
.. hlist::
|
||||
:columns: 3
|
||||
.. tab-item:: Standalone benchmarking
|
||||
|
||||
* ``pyt_vllm_llama-3.1-8b``
|
||||
Run the vLLM benchmark tool independently by starting the
|
||||
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
|
||||
as shown in the following snippet.
|
||||
|
||||
* ``pyt_vllm_llama-3.1-70b``
|
||||
.. code-block::
|
||||
|
||||
* ``pyt_vllm_llama-3.1-405b``
|
||||
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
|
||||
* ``pyt_vllm_llama-2-7b``
|
||||
In the Docker container, clone the ROCm MAD repository and navigate to the
|
||||
benchmark scripts directory at ``~/MAD/scripts/vllm``.
|
||||
|
||||
* ``pyt_vllm_llama-2-70b``
|
||||
.. code-block::
|
||||
|
||||
* ``pyt_vllm_mixtral-8x7b``
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/vllm
|
||||
|
||||
* ``pyt_vllm_mixtral-8x22b``
|
||||
To start the benchmark, use the following command with the appropriate options.
|
||||
|
||||
* ``pyt_vllm_mistral-7b``
|
||||
.. code-block::
|
||||
|
||||
* ``pyt_vllm_qwen2-7b``
|
||||
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
|
||||
|
||||
* ``pyt_vllm_qwen2-72b``
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:align: center
|
||||
|
||||
* ``pyt_vllm_jais-13b``
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* ``pyt_vllm_jais-30b``
|
||||
* - ``$test_option``
|
||||
- latency
|
||||
- Measure decoding token latency
|
||||
|
||||
* ``pyt_vllm_llama-3.1-8b_fp8``
|
||||
* -
|
||||
- throughput
|
||||
- Measure token generation throughput
|
||||
|
||||
* ``pyt_vllm_llama-3.1-70b_fp8``
|
||||
* -
|
||||
- all
|
||||
- Measure both throughput and latency
|
||||
|
||||
* ``pyt_vllm_llama-3.1-405b_fp8``
|
||||
* - ``$num_gpu``
|
||||
- 1 or 8
|
||||
- Number of GPUs
|
||||
|
||||
* ``pyt_vllm_mixtral-8x7b_fp8``
|
||||
* - ``$datatype``
|
||||
- ``float16`` or ``float8``
|
||||
- Data type
|
||||
|
||||
* ``pyt_vllm_mixtral-8x22b_fp8``
|
||||
.. note::
|
||||
|
||||
.. _vllm-benchmark-standalone:
|
||||
The input sequence length, output sequence length, and tensor parallel (TP) are
|
||||
already configured. You don't need to specify them with this script.
|
||||
|
||||
Standalone benchmarking
|
||||
=======================
|
||||
.. note::
|
||||
|
||||
You can run the vLLM benchmark tool independently by starting the
|
||||
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
|
||||
snippet.
|
||||
If you encounter the following error, pass your access-authorized Hugging
|
||||
Face token to the gated models.
|
||||
|
||||
.. code-block::
|
||||
.. code-block::
|
||||
|
||||
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
OSError: You are trying to access a gated repo.
|
||||
|
||||
In the Docker container, clone the ROCm MAD repository and navigate to the
|
||||
benchmark scripts directory at ``~/MAD/scripts/vllm``.
|
||||
# pass your HF_TOKEN
|
||||
export HF_TOKEN=$your_personal_hf_token
|
||||
|
||||
.. code-block::
|
||||
Here are some examples of running the benchmark with various options.
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/vllm
|
||||
* Latency benchmark
|
||||
|
||||
Command
|
||||
-------
|
||||
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
|
||||
|
||||
To start the benchmark, use the following command with the appropriate options.
|
||||
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
|
||||
options and their descriptions.
|
||||
.. code-block::
|
||||
|
||||
.. code-block:: shell
|
||||
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
|
||||
|
||||
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
|
||||
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
|
||||
|
||||
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
|
||||
* Throughput benchmark
|
||||
|
||||
.. note::
|
||||
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
|
||||
|
||||
The input sequence length, output sequence length, and tensor parallel (TP) are
|
||||
already configured. You don't need to specify them with this script.
|
||||
.. code-block:: shell
|
||||
|
||||
.. note::
|
||||
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
|
||||
|
||||
If you encounter the following error, pass your access-authorized Hugging
|
||||
Face token to the gated models.
|
||||
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
|
||||
|
||||
.. code-block:: shell
|
||||
.. raw:: html
|
||||
|
||||
OSError: You are trying to access a gated repo.
|
||||
<style>
|
||||
mjx-container[jax="CHTML"][display="true"] {
|
||||
text-align: left;
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
|
||||
# pass your HF_TOKEN
|
||||
export HF_TOKEN=$your_personal_hf_token
|
||||
.. note::
|
||||
|
||||
.. _vllm-benchmark-standalone-options:
|
||||
Throughput is calculated as:
|
||||
|
||||
Options
|
||||
-------
|
||||
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:align: center
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* - ``$test_option``
|
||||
- latency
|
||||
- Measure decoding token latency
|
||||
|
||||
* -
|
||||
- throughput
|
||||
- Measure token generation throughput
|
||||
|
||||
* -
|
||||
- all
|
||||
- Measure both throughput and latency
|
||||
|
||||
* - ``$model_repo``
|
||||
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
|
||||
- Llama 3.1 8B
|
||||
|
||||
* - (``float16``)
|
||||
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
|
||||
- Llama 3.1 70B
|
||||
|
||||
* -
|
||||
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
|
||||
- Llama 3.1 405B
|
||||
|
||||
* -
|
||||
- ``meta-llama/Llama-2-7b-chat-hf``
|
||||
- Llama 2 7B
|
||||
|
||||
* -
|
||||
- ``meta-llama/Llama-2-70b-chat-hf``
|
||||
- Llama 2 70B
|
||||
|
||||
* -
|
||||
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
|
||||
- Mixtral 8x7B
|
||||
|
||||
* -
|
||||
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
|
||||
- Mixtral 8x22B
|
||||
|
||||
* -
|
||||
- ``mistralai/Mistral-7B-Instruct-v0.3``
|
||||
- Mixtral 7B
|
||||
|
||||
* -
|
||||
- ``Qwen/Qwen2-7B-Instruct``
|
||||
- Qwen2 7B
|
||||
|
||||
* -
|
||||
- ``Qwen/Qwen2-72B-Instruct``
|
||||
- Qwen2 72B
|
||||
|
||||
* -
|
||||
- ``core42/jais-13b-chat``
|
||||
- JAIS 13B
|
||||
|
||||
* -
|
||||
- ``core42/jais-30b-chat-v3``
|
||||
- JAIS 30B
|
||||
|
||||
* - ``$model_repo``
|
||||
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
|
||||
- Llama 3.1 8B
|
||||
|
||||
* - (``float8``)
|
||||
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
|
||||
- Llama 3.1 70B
|
||||
|
||||
* -
|
||||
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
|
||||
- Llama 3.1 405B
|
||||
|
||||
* -
|
||||
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
|
||||
- Mixtral 8x7B
|
||||
|
||||
* -
|
||||
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
|
||||
- Mixtral 8x22B
|
||||
|
||||
* - ``$num_gpu``
|
||||
- 1 or 8
|
||||
- Number of GPUs
|
||||
|
||||
* - ``$datatype``
|
||||
- ``float16`` or ``float8``
|
||||
- Data type
|
||||
|
||||
.. _vllm-benchmark-run-benchmark:
|
||||
|
||||
Running the benchmark on the MI300X accelerator
|
||||
-----------------------------------------------
|
||||
|
||||
Here are some examples of running the benchmark with various options.
|
||||
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
|
||||
options and their descriptions.
|
||||
|
||||
Example 1: latency benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
|
||||
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
|
||||
|
||||
Find the latency reports at:
|
||||
|
||||
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
|
||||
|
||||
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
|
||||
|
||||
Example 2: throughput benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
|
||||
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
|
||||
|
||||
Find the throughput reports at:
|
||||
|
||||
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
|
||||
|
||||
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<style>
|
||||
mjx-container[jax="CHTML"][display="true"] {
|
||||
text-align: left;
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
|
||||
.. note::
|
||||
|
||||
Throughput is calculated as:
|
||||
|
||||
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
|
||||
|
||||
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
|
||||
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
Further reading
|
||||
===============
|
||||
@@ -394,14 +283,10 @@ Further reading
|
||||
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
|
||||
|
||||
- To learn how to run LLM models from Hugging Face or your own model, see
|
||||
:doc:`Using ROCm for AI <../index>`.
|
||||
:doc:`Running models from Hugging Face <hugging-face-models>`.
|
||||
|
||||
- To learn how to optimize inference on LLMs, see
|
||||
:doc:`Inference optimization <../inference-optimization/index>`.
|
||||
|
||||
- To learn how to fine-tune LLMs, see
|
||||
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
|
||||
|
||||
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
|
||||
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
|
||||
|
||||
|
||||
@@ -0,0 +1,547 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using Megatron-LM for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
|
||||
|
||||
******************************************
|
||||
Training a model with Megatron-LM for ROCm
|
||||
******************************************
|
||||
|
||||
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
|
||||
designed to enable efficient training of large-scale language models on AMD
|
||||
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
|
||||
enhanced scalability, performance, and resource utilization for AI workloads.
|
||||
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
|
||||
DeepSeek, enabling developers to train next-generation AI models more
|
||||
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
|
||||
|
||||
AMD provides a ready-to-use Docker image for MI300X accelerators containing
|
||||
essential components, including PyTorch, ROCm libraries, and Megatron-LM
|
||||
utilities. It contains the following software components to accelerate training
|
||||
workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.3.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.7.0a0+git637433 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Python | 3.10 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.11 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | 3.0.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| hipBLASLt | git258a2162 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Triton | 3.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
Supported features and models
|
||||
=============================
|
||||
|
||||
Megatron-LM provides the following key features to train large language models efficiently:
|
||||
|
||||
- Transformer Engine (TE)
|
||||
|
||||
- APEX
|
||||
|
||||
- GEMM tuning
|
||||
|
||||
- Torch.compile
|
||||
|
||||
- 3D parallelism: TP + SP + CP
|
||||
|
||||
- Distributed optimizer
|
||||
|
||||
- Flash Attention (FA) 3
|
||||
|
||||
- Fused kernels
|
||||
|
||||
- Pre-training
|
||||
|
||||
.. _amd-megatron-lm-model-support:
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Llama 3 8B
|
||||
|
||||
* Llama 3 70B
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* DeepSeek-V2-Lite
|
||||
|
||||
.. note::
|
||||
|
||||
Some models, such as Llama 3, require an external license agreement through
|
||||
a third party (for example, Meta).
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
If you have already validated your system settings, skip this step. Otherwise,
|
||||
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
|
||||
to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
.. _mi300x-amd-megatron-lm-training:
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
|
||||
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
|
||||
image.
|
||||
|
||||
.. _amd-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/megatron-lm:v25.3
|
||||
|
||||
2. Launch the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
|
||||
|
||||
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start megatron_training_env
|
||||
docker exec -it megatron_training_env bash
|
||||
|
||||
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
|
||||
|
||||
.. _amd-megatron-lm-environment-setup:
|
||||
|
||||
Configuration scripts
|
||||
---------------------
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
|
||||
script in the ``examples/llama`` directory of
|
||||
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
|
||||
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
|
||||
the configuration script accordingly.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
|
||||
directory of
|
||||
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
|
||||
and update the configuration script accordingly.
|
||||
|
||||
Network interface
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
|
||||
is set in your training scripts.
|
||||
|
||||
1. Run the following command (outside the container) to find the active network interface on your system.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
ip a
|
||||
|
||||
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your system’s network interface. For
|
||||
example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export NCCL_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
export GLOO_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
Dataset options
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
|
||||
value is ``1`` for enabled.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=1
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=0
|
||||
|
||||
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
If you don't already have the dataset, download the DeepSeek dataset using the following
|
||||
commands:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir deepseek-datasets
|
||||
cd deepseek-datasets
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
|
||||
value is ``1`` for enabled.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=1
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=0
|
||||
|
||||
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
Tokenizer
|
||||
^^^^^^^^^
|
||||
|
||||
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
|
||||
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
|
||||
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
|
||||
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
|
||||
handle a variety of input sequences, including unseen words or domain-specific terms.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
|
||||
|
||||
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
|
||||
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
|
||||
|
||||
For example, if you're using the Llama 3.1 8B model:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
|
||||
|
||||
Multi-node training
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
If you're running multi-node training, update the following environment variables. They can
|
||||
also be passed as command line arguments.
|
||||
|
||||
* Change ``localhost`` to the master node's hostname:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
MASTER_ADDR="${MASTER_ADDR:-localhost}"
|
||||
|
||||
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NNODES="${NNODES:-1}"
|
||||
|
||||
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NODE_RANK="${NODE_RANK:-0}"
|
||||
|
||||
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
|
||||
NFS directory) for multi-node runs:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
|
||||
|
||||
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
|
||||
inside a Docker, either install the drivers inside the Docker container or pass the network
|
||||
drivers from the host while creating the Docker container.
|
||||
|
||||
Start training on AMD Instinct accelerators
|
||||
===========================================
|
||||
|
||||
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
|
||||
system performance, conduct training benchmarks, and achieve superior
|
||||
performance for models like Llama 3.1 and Llama 2. This container should not be
|
||||
expected to provide generalized performance across all training workloads. You
|
||||
can expect the container to perform in the model configurations described in
|
||||
the following section, but other configurations are not validated by AMD.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script
|
||||
to train models, and reproduce the benchmark results on MI300X series
|
||||
accelerators with the AMD Megatron-LM Docker image.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single-node
|
||||
|
||||
To run training on a single node, navigate to the Megatron-LM folder and use the
|
||||
following command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
|
||||
|
||||
.. tab-item:: Multi-node training
|
||||
:sync: multi-node
|
||||
|
||||
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
|
||||
|
||||
* On the master node ``NODE0``:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
|
||||
|
||||
* On the worker node ``NODE1``:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
|
||||
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cd /workspace/Megatron-LM
|
||||
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
|
||||
|
||||
Key options
|
||||
-----------
|
||||
|
||||
.. _amd-megatron-lm-benchmark-test-vars:
|
||||
|
||||
The benchmark tests support the following sets of variables:
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
``TEE_OUTPUT``
|
||||
``1`` to enable training logs or ``0`` to disable.
|
||||
|
||||
``TE_FP8``
|
||||
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
|
||||
|
||||
``GEMM_TUNING``
|
||||
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
|
||||
|
||||
``USE_FLASH_ATTN``
|
||||
``1`` to enable Flash Attention.
|
||||
|
||||
``ENABLE_PROFILING``
|
||||
``1`` to enable PyTorch profiling for performance analysis.
|
||||
|
||||
``transformer-impl``
|
||||
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
|
||||
|
||||
``MODEL_SIZE``
|
||||
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
|
||||
|
||||
``TOTAL_ITERS``
|
||||
The total number of iterations -- ``10`` by default.
|
||||
|
||||
``MOCK_DATA``
|
||||
``1`` to use mock data or ``0`` to use real data provided by you.
|
||||
|
||||
``MBS``
|
||||
Micro batch size.
|
||||
|
||||
``BS``
|
||||
Global batch size.
|
||||
|
||||
``TP``
|
||||
Tensor parallel (``1``, ``2``, ``4``, ``8``).
|
||||
|
||||
``SEQ_LENGTH``
|
||||
Input sequence length.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
``PR``
|
||||
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
|
||||
|
||||
``GEMM_TUNING``
|
||||
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
|
||||
|
||||
``TOTAL_ITERS``
|
||||
The total number of iterations -- ``10`` by default.
|
||||
|
||||
``MOCK_DATA``
|
||||
``1`` to use mock data or ``0`` to use real data provided by you.
|
||||
|
||||
``MBS``
|
||||
Micro batch size.
|
||||
|
||||
``GBS``
|
||||
Global batch size.
|
||||
|
||||
Benchmarking examples
|
||||
---------------------
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single-node
|
||||
|
||||
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
|
||||
datatype, and so on.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
See the sample output:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
|
||||
:width: 800
|
||||
|
||||
.. tab-item:: Multi-node training
|
||||
:sync: multi-node
|
||||
|
||||
Launch the Docker container on each node.
|
||||
|
||||
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
|
||||
so on.
|
||||
|
||||
On the master node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
On the worker node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
Sample output for 2-node training:
|
||||
|
||||
Master node:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
|
||||
:width: 800
|
||||
|
||||
Worker node:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
|
||||
:width: 800
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
This table lists previous versions of the ROCm Megatron-LM Docker image for training
|
||||
performance validation. For detailed information about available models for
|
||||
benchmarking, see the version-specific documentation.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:stub-columns: 1
|
||||
|
||||
* - ROCm version
|
||||
- Megatron-LM version
|
||||
- PyTorch version
|
||||
- Resources
|
||||
|
||||
* - 6.1
|
||||
- 24.12-dev
|
||||
- 2.4.0
|
||||
-
|
||||
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_
|
||||
@@ -0,0 +1,341 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using PyTorch for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
**************************************
|
||||
Training a model with PyTorch for ROCm
|
||||
**************************************
|
||||
|
||||
PyTorch is an open-source machine learning framework that is widely used for
|
||||
model training with GPU-optimized components for transformer-based models.
|
||||
|
||||
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
|
||||
provides a prebuilt optimized environment for fine-tuning and pretraining a
|
||||
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
|
||||
software components to accelerate training workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.3.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.7.0a0+git637433 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Python | 3.10 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.11 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | 3.0.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| hipBLASLt | git258a2162 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Triton | 3.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
.. _amd-pytorch-training-model-support:
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* FLUX.1-dev
|
||||
|
||||
.. note::
|
||||
|
||||
Only these models are supported in the following steps.
|
||||
|
||||
Some models, such as Llama 3, require an external license agreement through
|
||||
a third party (for example, Meta).
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
If you have already validated your system settings, skip this step. Otherwise,
|
||||
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
|
||||
to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t validate configurations and run conditions outside those described.
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/pytorch-training:v25.3
|
||||
|
||||
2. Run the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
|
||||
|
||||
3. Use these commands if you exit the ``training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start training_env
|
||||
docker exec -it training_env bash
|
||||
|
||||
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/pytorch-train
|
||||
|
||||
Prepare training datasets and dependencies
|
||||
------------------------------------------
|
||||
|
||||
The following benchmarking examples may require downloading models and datasets
|
||||
from Hugging Face. To ensure successful access to gated repos, set your
|
||||
``HF_TOKEN``.
|
||||
|
||||
Run the setup script to install libraries and datasets needed for benchmarking.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_setup.sh
|
||||
|
||||
``pytorch_benchmark_setup.sh`` installs the following libraries:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Library
|
||||
- Benchmark model
|
||||
- Reference
|
||||
|
||||
* - ``accelerate``
|
||||
- Llama 3.1 8B, FLUX
|
||||
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
|
||||
|
||||
* - ``datasets``
|
||||
- Llama 3.1 8B, 70B, FLUX
|
||||
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
|
||||
|
||||
* - ``torchdata``
|
||||
- Llama 3.1 70B
|
||||
- `TorchData <https://pytorch.org/data/beta/index.html>`_
|
||||
|
||||
* - ``tomli``
|
||||
- Llama 3.1 70B
|
||||
- `Tomli <https://pypi.org/project/tomli/>`_
|
||||
|
||||
* - ``tiktoken``
|
||||
- Llama 3.1 70B
|
||||
- `tiktoken <https://github.com/openai/tiktoken>`_
|
||||
|
||||
* - ``blobfile``
|
||||
- Llama 3.1 70B
|
||||
- `blobfile <https://pypi.org/project/blobfile/>`_
|
||||
|
||||
* - ``tabulate``
|
||||
- Llama 3.1 70B
|
||||
- `tabulate <https://pypi.org/project/tabulate/>`_
|
||||
|
||||
* - ``wandb``
|
||||
- Llama 3.1 70B
|
||||
- `Weights & Biases <https://github.com/wandb/wandb>`_
|
||||
|
||||
* - ``sentencepiece``
|
||||
- Llama 3.1 70B, FLUX
|
||||
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
|
||||
|
||||
* - ``tensorboard``
|
||||
- Llama 3.1 70 B, FLUX
|
||||
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
|
||||
|
||||
* - ``csvkit``
|
||||
- FLUX
|
||||
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
|
||||
|
||||
* - ``deepspeed``
|
||||
- FLUX
|
||||
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
|
||||
|
||||
* - ``diffusers``
|
||||
- FLUX
|
||||
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
|
||||
|
||||
* - ``GitPython``
|
||||
- FLUX
|
||||
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
|
||||
|
||||
* - ``opencv-python-headless``
|
||||
- FLUX
|
||||
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
|
||||
|
||||
* - ``peft``
|
||||
- FLUX
|
||||
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
|
||||
|
||||
* - ``protobuf``
|
||||
- FLUX
|
||||
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
|
||||
|
||||
* - ``pytest``
|
||||
- FLUX
|
||||
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
|
||||
|
||||
* - ``python-dotenv``
|
||||
- FLUX
|
||||
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
|
||||
|
||||
* - ``seaborn``
|
||||
- FLUX
|
||||
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
|
||||
|
||||
* - ``transformers``
|
||||
- FLUX
|
||||
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
|
||||
|
||||
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
|
||||
|
||||
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
|
||||
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
|
||||
|
||||
Along with the following datasets:
|
||||
|
||||
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
|
||||
|
||||
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
|
||||
|
||||
Start training on AMD Instinct accelerators
|
||||
===========================================
|
||||
|
||||
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
|
||||
system performance, conduct training benchmarks, and achieve superior
|
||||
performance for models like Llama 3.1 and Llama 2. This container should not be
|
||||
expected to provide generalized performance across all training workloads. You
|
||||
can expect the container to perform in the model configurations described in
|
||||
the following section, but other configurations are not validated by AMD.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script
|
||||
to train models, and reproduce the benchmark results on MI300X series
|
||||
accelerators with the AMD PyTorch training Docker image.
|
||||
|
||||
Once your environment is set up, use the following commands and examples to start benchmarking.
|
||||
|
||||
Pretraining
|
||||
-----------
|
||||
|
||||
To start the pretraining benchmark, use the following command with the
|
||||
appropriate options. See the following list of options and their descriptions.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
|
||||
|
||||
Options and available models
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* - ``$training_mode``
|
||||
- ``pretrain``
|
||||
- Benchmark pretraining
|
||||
|
||||
* -
|
||||
- ``finetune_fw``
|
||||
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
|
||||
|
||||
* -
|
||||
- ``finetune_lora``
|
||||
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
|
||||
|
||||
* - ``$datatype``
|
||||
- FP8 or BF16
|
||||
- Only Llama 3.1 8B supports FP8 precision.
|
||||
|
||||
* - ``$model_repo``
|
||||
- Llama-3.1-8B
|
||||
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
|
||||
|
||||
* -
|
||||
- Llama-3.1-70B
|
||||
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
|
||||
* -
|
||||
- Flux
|
||||
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
|
||||
|
||||
Fine-tuning
|
||||
-----------
|
||||
|
||||
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
|
||||
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
|
||||
|
||||
Benchmarking examples
|
||||
---------------------
|
||||
|
||||
Here are some examples of how to use the command.
|
||||
|
||||
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
|
||||
|
||||
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
|
||||
|
||||
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
|
||||
|
||||
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
|
||||
|
||||
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
|
||||
@@ -19,6 +19,10 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
|
||||
|
||||
In this guide, you'll learn about:
|
||||
|
||||
- :doc:`Training a model <train-a-model>`
|
||||
- Training a model
|
||||
|
||||
- :doc:`Scale model training <scale-model-training>`
|
||||
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
|
||||
|
||||
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
|
||||
|
||||
- :doc:`Scaling model training <scale-model-training>`
|
||||
|
||||
@@ -0,0 +1,130 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: Prerequisite system validation before using ROCm for AI.
|
||||
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
|
||||
|
||||
.. _train-a-model-system-validation:
|
||||
|
||||
**********************************************
|
||||
Prerequisite system validation before training
|
||||
**********************************************
|
||||
|
||||
Complete the following system validation and optimization steps to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Hardware verification with ROCm
|
||||
-------------------------------
|
||||
|
||||
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
|
||||
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
|
||||
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
|
||||
You can restore this setting to its default value with the ``rocm-smi -r`` command.
|
||||
|
||||
Run the command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
rocm-smi --setperfdeterminism 1900
|
||||
|
||||
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
|
||||
|
||||
RCCL Bandwidth Test for multi-node setups
|
||||
-----------------------------------------
|
||||
|
||||
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
|
||||
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
|
||||
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
|
||||
for efficient distributed training.
|
||||
|
||||
Running the RCCL bandwidth test helps verify that:
|
||||
|
||||
- The GPUs can communicate across nodes or within a single node.
|
||||
|
||||
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
|
||||
provides adequate bandwidth for communication.
|
||||
|
||||
- No hardware setup or cabling issues could affect the communication between GPUs
|
||||
|
||||
Tuning and optimizing hyperparameters
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
|
||||
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# force all RCCL streams to be high priority
|
||||
export TORCH_NCCL_HIGH_PRIORITY=1
|
||||
|
||||
# specify which RDMA interfaces to use for communication
|
||||
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
|
||||
|
||||
# define the Global ID index used in RoCE mode
|
||||
export NCCL_IB_GID_INDEX=3
|
||||
|
||||
# avoid data corruption/mismatch issue that existed in past releases
|
||||
export RCCL_MSCCL_ENABLE=0
|
||||
|
||||
Running the RCCL Bandwidth Test
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
|
||||
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
|
||||
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
|
||||
See :ref:`mi300x-rccl` for more information.
|
||||
|
||||
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
|
||||
:width: 800
|
||||
|
||||
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
|
||||
recommended. So, a run on 8 GPUs looks something like:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
|
||||
:width: 800
|
||||
|
||||
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
|
||||
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
|
||||
PyTorch and TensorFlow.
|
||||
|
||||
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
|
||||
|
||||
.. code-block::
|
||||
|
||||
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
|
||||
--mca pml ucx \
|
||||
--mca btl ^openib \
|
||||
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
|
||||
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
|
||||
-x NCCL_IB_GID_INDEX=3 \
|
||||
-x NCCL_MIN_NCHANNELS=40 \
|
||||
-x NCCL_DEBUG=version \
|
||||
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
|
||||
:width: 800
|
||||
@@ -1,503 +0,0 @@
|
||||
.. meta::
|
||||
:description: How to train a model using ROCm Megatron-LM
|
||||
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
|
||||
|
||||
**************************************
|
||||
Training a model with ROCm Megatron-LM
|
||||
**************************************
|
||||
|
||||
.. _amd-megatron-lm:
|
||||
|
||||
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
|
||||
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
|
||||
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
|
||||
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
|
||||
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
|
||||
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
|
||||
|
||||
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
|
||||
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
|
||||
following software to accelerate training workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.4.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch Lightning | 2.4.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Megatron Core | 0.9.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.5.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | v2.6 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformers | 4.44.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
Supported features and models
|
||||
=============================
|
||||
|
||||
Megatron-LM provides the following key features to train large language models efficiently:
|
||||
|
||||
- Transformer Engine (TE)
|
||||
|
||||
- APEX
|
||||
|
||||
- GEMM tuning
|
||||
|
||||
- Torch.compile
|
||||
|
||||
- 3D parallelism: TP + SP + CP
|
||||
|
||||
- Distributed optimizer
|
||||
|
||||
- Flash Attention (FA) 2
|
||||
|
||||
- Fused kernels
|
||||
|
||||
- Pre-training
|
||||
|
||||
.. _amd-megatron-lm-model-support:
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Llama 3 8B
|
||||
|
||||
* Llama 3 70B
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
Prerequisite system validation steps
|
||||
====================================
|
||||
|
||||
Complete the following system validation and optimization steps to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Hardware verification with ROCm
|
||||
-------------------------------
|
||||
|
||||
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
|
||||
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
|
||||
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
|
||||
You can restore this setting to its default value with the ``rocm-smi -r`` command.
|
||||
|
||||
Run the command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
rocm-smi --setperfdeterminism 1900
|
||||
|
||||
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
|
||||
|
||||
RCCL Bandwidth Test
|
||||
-------------------
|
||||
|
||||
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
|
||||
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
|
||||
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
|
||||
for efficient distributed training.
|
||||
|
||||
Running the RCCL bandwidth test helps verify that:
|
||||
|
||||
- The GPUs can communicate across nodes or within a single node.
|
||||
|
||||
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
|
||||
provides adequate bandwidth for communication.
|
||||
|
||||
- No hardware setup or cabling issues could affect the communication between GPUs
|
||||
|
||||
Tuning and optimizing hyperparameters
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
|
||||
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# force all RCCL streams to be high priority
|
||||
export TORCH_NCCL_HIGH_PRIORITY=1
|
||||
|
||||
# specify which RDMA interfaces to use for communication
|
||||
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
|
||||
|
||||
# define the Global ID index used in RoCE mode
|
||||
export NCCL_IB_GID_INDEX=3
|
||||
|
||||
# avoid data corruption/mismatch issue that existed in past releases
|
||||
export RCCL_MSCCL_ENABLE=0
|
||||
|
||||
Running the RCCL Bandwidth Test
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
|
||||
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
|
||||
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
|
||||
See :ref:`mi300x-rccl` for more information.
|
||||
|
||||
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
|
||||
:width: 800
|
||||
|
||||
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
|
||||
recommended. So, a run on 8 GPUs looks something like:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
|
||||
:width: 800
|
||||
|
||||
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
|
||||
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
|
||||
PyTorch and TensorFlow.
|
||||
|
||||
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
|
||||
|
||||
.. code-block::
|
||||
|
||||
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
|
||||
--mca pml ucx \
|
||||
--mca btl ^openib \
|
||||
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
|
||||
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
|
||||
-x NCCL_IB_GID_INDEX=3 \
|
||||
-x NCCL_MIN_NCHANNELS=40 \
|
||||
-x NCCL_DEBUG=version \
|
||||
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
|
||||
:width: 800
|
||||
|
||||
.. _mi300x-amd-megatron-lm-training:
|
||||
|
||||
Start training on MI300X accelerators
|
||||
=====================================
|
||||
|
||||
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
|
||||
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
|
||||
image.
|
||||
|
||||
.. _amd-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image and required packages
|
||||
-----------------------------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/megatron-lm:24.12-dev
|
||||
|
||||
2. Launch the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
|
||||
|
||||
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/Megatron-LM
|
||||
cd Megatron-LM
|
||||
|
||||
.. note::
|
||||
|
||||
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
|
||||
Checking out this specific commit is recommended for a stable and reproducible environment.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
|
||||
|
||||
Prepare training datasets
|
||||
-------------------------
|
||||
|
||||
If you already have the preprocessed data, you can skip this section.
|
||||
|
||||
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
|
||||
end-of-document token, remove sentence splitting, and use the tokenizer type.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
python tools/preprocess_data.py \
|
||||
--input my-corpus.json \
|
||||
--output-prefix my-gpt2 \
|
||||
--vocab-file gpt2-vocab.json \
|
||||
--tokenizer-type GPT2BPETokenizer \
|
||||
--merge-file gpt2-merges.txt \
|
||||
--append-eod
|
||||
|
||||
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
|
||||
``my-gpt2_text_document.idx``.
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
|
||||
:width: 800
|
||||
|
||||
.. _amd-megatron-lm-environment-setup:
|
||||
|
||||
Environment setup
|
||||
-----------------
|
||||
|
||||
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
|
||||
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
|
||||
``train_llama3.sh`` and update the configuration script accordingly.
|
||||
|
||||
Network interface
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
|
||||
|
||||
1. Run the following command to find the active network interface on your system.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
ip a
|
||||
|
||||
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your system’s network interface. For
|
||||
example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export NCCL_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
export GLOO_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
Dataset options
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
|
||||
|
||||
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
--data-path $DATA_PATH
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
--mock-data
|
||||
|
||||
Tokenizer
|
||||
^^^^^^^^^
|
||||
|
||||
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
|
||||
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
|
||||
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
|
||||
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
|
||||
handle a variety of input sequences, including unseen words or domain-specific terms.
|
||||
|
||||
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
|
||||
|
||||
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
|
||||
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
|
||||
|
||||
For example, if you're using the Llama 3.1 8B model:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
|
||||
|
||||
Run benchmark tests
|
||||
-------------------
|
||||
|
||||
.. note::
|
||||
|
||||
If you're running **multi node training**, update the following environment variables. They can
|
||||
also be passed as command line arguments.
|
||||
|
||||
* Change ``localhost`` to the master node's hostname:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
MASTER_ADDR="${MASTER_ADDR:-localhost}"
|
||||
|
||||
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NNODES="${NNODES:-1}"
|
||||
|
||||
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NODE_RANK="${NODE_RANK:-0}"
|
||||
|
||||
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
{variables} bash examples/llama/train_llama2.sh
|
||||
|
||||
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
{variables} bash examples/llama/train_llama3.sh
|
||||
|
||||
.. _amd-megatron-lm-benchmark-test-vars:
|
||||
|
||||
The benchmark tests support the same set of variables:
|
||||
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| Name | Options | Description |
|
||||
+==========================+=======================+=======================+
|
||||
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
|
||||
| | | log |
|
||||
| | | |
|
||||
| | | 1: enable training |
|
||||
| | | log |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``MBS`` | | Micro batch size |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``BS`` | | Batch size |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TE_FP8`` | 0 or 1 | Datatype. |
|
||||
| | | If it is set to 1, |
|
||||
| | | FP8. |
|
||||
| | | |
|
||||
| | | If it is set to 0. |
|
||||
| | | BP16 |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
|
||||
| | | enable torch.compile. |
|
||||
| | | |
|
||||
| | | If it is set to 0. |
|
||||
| | | Disable torch.compile |
|
||||
| | | (default) |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``SEQ_LENGTH`` | | Input sequence length |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
|
||||
| | | enable gemm tuning. |
|
||||
| | | |
|
||||
| | | If it is set to 0, |
|
||||
| | | disable gemm tuning |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
|
||||
| | | attention |
|
||||
| | | |
|
||||
| | | 1: enable flash |
|
||||
| | | attention |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
|
||||
| | | profiling |
|
||||
| | | |
|
||||
| | | 1: enable torch |
|
||||
| | | profiling |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``MODEL_SIZE`` | | The size of the mode: |
|
||||
| | | 7B/70B, etc. |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TOTAL_ITERS`` | | Total number of |
|
||||
| | | iterations |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``transformer-impl`` | transformer_engine or | Enable transformer |
|
||||
| | local | engine by default |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
|
||||
Benchmarking examples
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single
|
||||
|
||||
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
|
||||
datatype, and so on.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
See the sample output:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
|
||||
:width: 800
|
||||
|
||||
.. tab-item:: Multi node training
|
||||
:sync: multi
|
||||
|
||||
Launch the Docker container on each node.
|
||||
|
||||
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
|
||||
so on.
|
||||
|
||||
On the master node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
On the worker node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
Sample output for 2-node training:
|
||||
|
||||
Master node:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
|
||||
:width: 800
|
||||
|
||||
Worker node:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
|
||||
:width: 800
|
||||
|
||||
@@ -308,6 +308,24 @@ Otherwise, if the system has Intel host CPUs add this instead to
|
||||
|
||||
intel_iommu=on iommu=pt
|
||||
|
||||
``modprobe.blacklist=amdgpu``
|
||||
For some system configurations, the ``amdgpu`` driver needs to be blocked during kernel initialization to avoid an issue where after boot, the GPUs are not listed when running the command ``rocm-smi`` or ``amd-smi``.
|
||||
|
||||
Alternatively, configuring the AMD recommended system optimized BIOS settings might remove the need for using this setting. Some manufacturers and users might not implement the recommended system optimized BIOS settings.
|
||||
|
||||
If you experience the mentioned issue, then add this to ``GRUB_CMDLINE_LINUX``:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
modprobe.blacklist=amdgpu
|
||||
|
||||
After the change, the ``amdgpu`` module must be loaded to support the ROCm framework
|
||||
software tools and utilities. Run the following command to load the ``amdgpu`` module:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
sudo modprobe amdgpu
|
||||
|
||||
Update GRUB
|
||||
-----------
|
||||
|
||||
|
||||
@@ -32,6 +32,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- L1 Instruction Cache (KiB)
|
||||
- VGPR File (KiB)
|
||||
- SGPR File (KiB)
|
||||
- GFXIP Major version
|
||||
- GFXIP Minor version
|
||||
*
|
||||
- MI325X
|
||||
- CDNA3
|
||||
@@ -47,6 +49,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 64 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 4
|
||||
*
|
||||
- MI300X
|
||||
- CDNA3
|
||||
@@ -62,6 +66,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 64 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 4
|
||||
*
|
||||
- MI300A
|
||||
- CDNA3
|
||||
@@ -77,6 +83,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 64 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 4
|
||||
*
|
||||
- MI250X
|
||||
- CDNA2
|
||||
@@ -92,6 +100,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI250
|
||||
- CDNA2
|
||||
@@ -107,6 +117,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI210
|
||||
- CDNA2
|
||||
@@ -122,6 +134,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 2 CUs
|
||||
- 512
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI100
|
||||
- CDNA
|
||||
@@ -137,6 +151,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256 VGPR and 256 AccVGPR
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI60
|
||||
- GCN5.1
|
||||
@@ -152,6 +168,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI50 (32GB)
|
||||
- GCN5.1
|
||||
@@ -167,6 +185,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI50 (16GB)
|
||||
- GCN5.1
|
||||
@@ -182,6 +202,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI25
|
||||
- GCN5.0
|
||||
@@ -197,6 +219,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
*
|
||||
- MI8
|
||||
- GCN3.0
|
||||
@@ -212,6 +236,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 4 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 8
|
||||
- 0
|
||||
*
|
||||
- MI6
|
||||
- GCN4.0
|
||||
@@ -227,6 +253,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 4 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 8
|
||||
- 0
|
||||
|
||||
.. tab-item:: AMD Radeon PRO GPUs
|
||||
|
||||
@@ -238,6 +266,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- Model
|
||||
- Architecture
|
||||
- LLVM target name
|
||||
|
||||
- VRAM (GiB)
|
||||
- Compute Units
|
||||
- Wavefront Size
|
||||
@@ -250,6 +279,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- L0 Instruction Cache (KiB)
|
||||
- VGPR File (KiB)
|
||||
- SGPR File (KiB)
|
||||
- GFXIP Major version
|
||||
- GFXIP Minor version
|
||||
*
|
||||
- Radeon PRO V710
|
||||
- RDNA3
|
||||
@@ -266,6 +297,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon PRO W7900 Dual Slot
|
||||
- RDNA3
|
||||
@@ -282,6 +315,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon PRO W7900
|
||||
- RDNA3
|
||||
@@ -298,6 +333,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon PRO W7800
|
||||
- RDNA3
|
||||
@@ -314,6 +351,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon PRO W7700
|
||||
- RDNA3
|
||||
@@ -330,6 +369,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon PRO W6800
|
||||
- RDNA2
|
||||
@@ -346,6 +387,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon PRO W6600
|
||||
- RDNA2
|
||||
@@ -362,6 +405,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon PRO V620
|
||||
- RDNA2
|
||||
@@ -378,6 +423,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon Pro W5500
|
||||
- RDNA
|
||||
@@ -394,6 +441,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 20
|
||||
- 10
|
||||
- 1
|
||||
*
|
||||
- Radeon Pro VII
|
||||
- GCN5.1
|
||||
@@ -410,6 +459,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
|
||||
.. tab-item:: AMD Radeon GPUs
|
||||
|
||||
@@ -433,6 +484,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- L0 Instruction Cache (KiB)
|
||||
- VGPR File (KiB)
|
||||
- SGPR File (KiB)
|
||||
- GFXIP Major version
|
||||
- GFXIP Minor version
|
||||
*
|
||||
- Radeon RX 7900 XTX
|
||||
- RDNA3
|
||||
@@ -449,6 +502,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 7900 XT
|
||||
- RDNA3
|
||||
@@ -465,6 +520,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 7900 GRE
|
||||
- RDNA3
|
||||
@@ -481,6 +538,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 7800 XT
|
||||
- RDNA3
|
||||
@@ -497,6 +556,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 7700 XT
|
||||
- RDNA3
|
||||
@@ -513,6 +574,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 768
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 7600
|
||||
- RDNA3
|
||||
@@ -529,6 +592,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 11
|
||||
- 0
|
||||
*
|
||||
- Radeon RX 6950 XT
|
||||
- RDNA2
|
||||
@@ -545,6 +610,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6900 XT
|
||||
- RDNA2
|
||||
@@ -561,6 +628,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6800 XT
|
||||
- RDNA2
|
||||
@@ -577,6 +646,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6800
|
||||
- RDNA2
|
||||
@@ -593,6 +664,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6750 XT
|
||||
- RDNA2
|
||||
@@ -609,6 +682,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6700 XT
|
||||
- RDNA2
|
||||
@@ -625,6 +700,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6700
|
||||
- RDNA2
|
||||
@@ -641,6 +718,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6650 XT
|
||||
- RDNA2
|
||||
@@ -657,6 +736,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6600 XT
|
||||
- RDNA2
|
||||
@@ -673,6 +754,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon RX 6600
|
||||
- RDNA2
|
||||
@@ -689,6 +772,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32
|
||||
- 512
|
||||
- 16
|
||||
- 10
|
||||
- 3
|
||||
*
|
||||
- Radeon VII
|
||||
- GCN5.1
|
||||
@@ -705,12 +790,14 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
|
||||
- 32 per 3 CUs
|
||||
- 256
|
||||
- 12.5
|
||||
- 9
|
||||
- 0
|
||||
|
||||
Glossary
|
||||
========
|
||||
|
||||
For more information about the terms used, see the
|
||||
:ref:`specific documents and guides <gpu-arch-documentation>`, or
|
||||
:ref:`specific documents and guides <gpu-arch-documentation>`, or
|
||||
:doc:`Understanding the HIP programming model<hip:understand/programming_model>`.
|
||||
|
||||
**LLVM target name**
|
||||
@@ -800,6 +887,26 @@ Purpose Vector Registers, used specifically in matrix instructions.
|
||||
Size of the Scalar General Purpose Register (SGPR) file. Holds data used in
|
||||
scalar instructions.
|
||||
|
||||
**GFXIP**
|
||||
|
||||
GFXIP (Graphics IP) is a versioning system used by AMD to identify the GPU
|
||||
architecture and its instruction set. It helps categorize different generations
|
||||
of GPUs and their feature sets.
|
||||
|
||||
**GFXIP major version**
|
||||
|
||||
Defines the GPU's core instruction set and architecture, which determines
|
||||
compatibility with software stacks such as HIP and OpenCL. For example, a GFXIP
|
||||
11 major version corresponds to the RDNA 3 (Navi 3x) architecture, influencing
|
||||
driver support and available compute features.
|
||||
|
||||
**GFXIP minor version**
|
||||
|
||||
Represents specific variations within a GFXIP major version and affects feature sets,
|
||||
optimizations, and driver behavior in software stacks such as HIP and OpenCL. Different
|
||||
GPU models within the same major version can have unique capabilities, impacting
|
||||
performance and supported instructions.
|
||||
|
||||
**GCD**
|
||||
|
||||
Graphics Compute Die.
|
||||
|
||||
@@ -1,20 +1,22 @@
|
||||
.. meta::
|
||||
:description: Supported data types in ROCm
|
||||
:keywords: int8, float8, float8 (E4M3), float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32, float,
|
||||
float32, float64, double, AMD, ROCm, AMDGPU
|
||||
:description: Supported data types of AMD GPUs and libraries in ROCm.
|
||||
:keywords: precision, data types, HIP types, int8, float8, float8 (E4M3),
|
||||
float8 (E5M2), bfloat8, float16, half, bfloat16, tensorfloat32,
|
||||
float, float32, float64, double, AMD data types, HIP data types,
|
||||
ROCm precision, ROCm data types
|
||||
|
||||
*************************************************************
|
||||
Precision support
|
||||
Data types and precision support
|
||||
*************************************************************
|
||||
|
||||
Use the following sections to identify data types and HIP types ROCm™ supports.
|
||||
This topic lists the data types support on AMD GPUs, ROCm libraries along
|
||||
with corresponding :doc:`HIP <hip:index>` data types.
|
||||
|
||||
Integral types
|
||||
==========================================
|
||||
|
||||
The signed and unsigned integral types that are supported by ROCm are listed in the following table,
|
||||
together with their corresponding HIP type and a short description.
|
||||
==============
|
||||
|
||||
The signed and unsigned integral types supported by ROCm are listed in
|
||||
the following table.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
@@ -44,10 +46,9 @@ together with their corresponding HIP type and a short description.
|
||||
.. _precision_support_floating_point_types:
|
||||
|
||||
Floating-point types
|
||||
==========================================
|
||||
====================
|
||||
|
||||
The floating-point types that are supported by ROCm are listed in the following table, together with
|
||||
their corresponding HIP type and a short description.
|
||||
The floating-point types supported by ROCm are listed in the following table.
|
||||
|
||||
.. image:: ../data/about/compatibility/floating-point-data-types.png
|
||||
:alt: Supported floating-point types
|
||||
@@ -62,44 +63,66 @@ their corresponding HIP type and a short description.
|
||||
- Description
|
||||
*
|
||||
- float8 (E4M3)
|
||||
- ``-``
|
||||
- An 8-bit floating-point number that mostly follows IEEE-754 conventions and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
|
||||
- ``__hip_fp8_e4m3_fnuz``
|
||||
- An 8-bit floating-point number that mostly follows IEEE-754 conventions
|
||||
and **S1E4M3** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_,
|
||||
with expanded range and no infinity or signed zero. NaN is represented
|
||||
as negative zero.
|
||||
*
|
||||
- float8 (E5M2)
|
||||
- ``-``
|
||||
- An 8-bit floating-point number mostly following IEEE-754 conventions and **S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_ , with expanded range and with no infinity or signed zero. NaN is represented as negative zero.
|
||||
- ``__hip_fp8_e5m2_fnuz``
|
||||
- An 8-bit floating-point number mostly following IEEE-754 conventions and
|
||||
**S1E5M2** bit layout, as described in `8-bit Numerical Formats for Deep Neural Networks <https://arxiv.org/abs/2206.02915>`_,
|
||||
with expanded range and no infinity or signed zero. NaN is represented
|
||||
as negative zero.
|
||||
*
|
||||
- float16
|
||||
- ``half``
|
||||
- A 16-bit floating-point number that conforms to the IEEE 754-2008 half-precision storage format.
|
||||
- A 16-bit floating-point number that conforms to the IEEE 754-2008
|
||||
half-precision storage format.
|
||||
*
|
||||
- bfloat16
|
||||
- ``bfloat16``
|
||||
- A shortened 16-bit version of the IEEE 754 single-precision storage format.
|
||||
- A shortened 16-bit version of the IEEE 754 single-precision storage
|
||||
format.
|
||||
*
|
||||
- tensorfloat32
|
||||
- ``-``
|
||||
- A floating-point number that occupies 32 bits or less of storage, providing improved range compared to half (16-bit) format, at (potentially) greater throughput than single-precision (32-bit) formats.
|
||||
- Not available
|
||||
- A floating-point number that occupies 32 bits or less of storage,
|
||||
providing improved range compared to half (16-bit) format, at
|
||||
(potentially) greater throughput than single-precision (32-bit) formats.
|
||||
*
|
||||
- float32
|
||||
- ``float``
|
||||
- A 32-bit floating-point number that conforms to the IEEE 754 single-precision storage format.
|
||||
- A 32-bit floating-point number that conforms to the IEEE 754
|
||||
single-precision storage format.
|
||||
*
|
||||
- float64
|
||||
- ``double``
|
||||
- A 64-bit floating-point number that conforms to the IEEE 754 double-precision storage format.
|
||||
- A 64-bit floating-point number that conforms to the IEEE 754
|
||||
double-precision storage format.
|
||||
|
||||
.. note::
|
||||
|
||||
* The float8 and tensorfloat32 types are internal types used in calculations in Matrix Cores and can be stored in any type of the same size.
|
||||
* The encodings for FP8 (E5M2) and FP8 (E4M3) that are natively supported by MI300 differ from the FP8 (E5M2) and FP8 (E4M3) encodings used in H100 (`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
|
||||
* The float8 and tensorfloat32 types are internal types used in calculations
|
||||
in Matrix Cores and can be stored in any type of the same size.
|
||||
|
||||
* The encodings for FP8 (E5M2) and FP8 (E4M3) that the
|
||||
MI300 series natively supports differ from the FP8 (E5M2) and FP8 (E4M3)
|
||||
encodings used in NVIDIA H100
|
||||
(`FP8 Formats for Deep Learning <https://arxiv.org/abs/2209.05433>`_).
|
||||
|
||||
* In some AMD documents and articles, float8 (E5M2) is referred to as bfloat8.
|
||||
|
||||
ROCm support icons
|
||||
==========================================
|
||||
* The :doc:`low precision floating point types page <hip:reference/low_fp_types>`
|
||||
describes how to use these types in HIP with examples.
|
||||
|
||||
In the following sections, we use icons to represent the level of support. These icons, described in the
|
||||
following table, are also used on the library data type support pages.
|
||||
Level of support definitions
|
||||
============================
|
||||
|
||||
In the following sections, icons represent the level of support. These icons,
|
||||
described in the following table, are also used in the library data type support
|
||||
pages.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
@@ -107,6 +130,11 @@ following table, are also used on the library data type support pages.
|
||||
*
|
||||
- Icon
|
||||
- Definition
|
||||
|
||||
*
|
||||
- NA
|
||||
- Not applicable
|
||||
|
||||
*
|
||||
- ❌
|
||||
- Not supported
|
||||
@@ -121,17 +149,29 @@ following table, are also used on the library data type support pages.
|
||||
|
||||
.. note::
|
||||
|
||||
* Full support means that the type is supported natively or with hardware emulation.
|
||||
* Native support means that the operations for that type are implemented in hardware. Types that are not natively supported are emulated with the available hardware. The performance of non-natively supported types can differ from the full instruction throughput rate. For example, 16-bit integer operations can be performed on the 32-bit integer ALUs at full rate; however, 64-bit integer operations might need several instructions on the 32-bit integer ALUs.
|
||||
* Any type can be emulated by software, but this page does not cover such cases.
|
||||
* Full support means that the type is supported natively or with hardware
|
||||
emulation.
|
||||
|
||||
Hardware type support
|
||||
* Native support means that the operations for that type are implemented in
|
||||
hardware. Types that are not natively supported are emulated with the
|
||||
available hardware. The performance of non-natively supported types can
|
||||
differ from the full instruction throughput rate. For example, 16-bit
|
||||
integer operations can be performed on the 32-bit integer ALUs at full rate;
|
||||
however, 64-bit integer operations might need several instructions on the
|
||||
32-bit integer ALUs.
|
||||
|
||||
* Any type can be emulated by software, but this page does not cover such
|
||||
cases.
|
||||
|
||||
Data type support by Hardware Architecture
|
||||
==========================================
|
||||
|
||||
AMD GPU hardware support for data types is listed in the following tables.
|
||||
The MI200 series GPUs, which include MI210, MI250, and MI250X, are based on the
|
||||
CDNA2 architecture. The MI300 series GPUs, consisting of MI300A, MI300X, and
|
||||
MI325X, are based on the CDNA3 architecture.
|
||||
|
||||
Compute units support
|
||||
-------------------------------------------------------------------------------
|
||||
---------------------
|
||||
|
||||
The following table lists data type support for compute units.
|
||||
|
||||
@@ -212,7 +252,7 @@ The following table lists data type support for compute units.
|
||||
- ✅
|
||||
|
||||
Matrix core support
|
||||
-------------------------------------------------------------------------------
|
||||
-------------------
|
||||
|
||||
The following table lists data type support for AMD GPU matrix cores.
|
||||
|
||||
@@ -293,7 +333,7 @@ The following table lists data type support for AMD GPU matrix cores.
|
||||
- ✅
|
||||
|
||||
Atomic operations support
|
||||
-------------------------------------------------------------------------------
|
||||
-------------------------
|
||||
|
||||
The following table lists data type support for atomic operations.
|
||||
|
||||
@@ -375,21 +415,23 @@ The following table lists data type support for atomic operations.
|
||||
|
||||
.. note::
|
||||
|
||||
For cases that are not natively supported, you can emulate atomic operations using software.
|
||||
Software-emulated atomic operations have high negative performance impact when they frequently
|
||||
access the same memory address.
|
||||
You can emulate atomic operations using software for cases that are not
|
||||
natively supported. Software-emulated atomic operations have a high negative
|
||||
performance impact when they frequently access the same memory address.
|
||||
|
||||
Data Type support in ROCm Libraries
|
||||
==========================================
|
||||
Data type support in ROCm libraries
|
||||
===================================
|
||||
|
||||
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16, bfloat16, int32,
|
||||
tensorfloat32, float32, int64, and float64 is listed in the following tables.
|
||||
ROCm library support for int8, float8 (E4M3), float8 (E5M2), int16, float16,
|
||||
bfloat16, int32, tensorfloat32, float32, int64, and float64 is listed in the
|
||||
following tables.
|
||||
|
||||
Libraries input/output type support
|
||||
-------------------------------------------------------------------------------
|
||||
-----------------------------------
|
||||
|
||||
The following tables list ROCm library support for specific input and output data types. For a detailed
|
||||
description, refer to the corresponding library data type support page.
|
||||
The following tables list ROCm library support for specific input and output
|
||||
data types. Refer to the corresponding library data type support page for a
|
||||
detailed description.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
@@ -406,37 +448,37 @@ description, refer to the corresponding library data type support page.
|
||||
- int32
|
||||
- int64
|
||||
*
|
||||
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
|
||||
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
|
||||
- ✅/✅
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
*
|
||||
- rocRAND (:doc:`details <rocrand:api-reference/data-type-support>`)
|
||||
- -/✅
|
||||
- -/✅
|
||||
- -/✅
|
||||
- -/✅
|
||||
- :doc:`rocRAND <rocrand:api-reference/data-type-support>`
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
*
|
||||
- hipRAND (:doc:`details <hiprand:api-reference/data-type-support>`)
|
||||
- -/✅
|
||||
- -/✅
|
||||
- -/✅
|
||||
- -/✅
|
||||
- :doc:`hipRAND <hiprand:api-reference/data-type-support>`
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
*
|
||||
- rocPRIM (:doc:`details <rocprim:reference/data-type-support>`)
|
||||
- :doc:`rocPRIM <rocprim:reference/data-type-support>`
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
*
|
||||
- hipCUB (:doc:`details <hipcub:api-reference/data-type-support>`)
|
||||
- :doc:`hipCUB <hipcub:api-reference/data-type-support>`
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
*
|
||||
- rocThrust (:doc:`details <rocthrust:data-type-support>`)
|
||||
- :doc:`rocThrust <rocthrust:data-type-support>`
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
@@ -458,7 +500,7 @@ description, refer to the corresponding library data type support page.
|
||||
- float32
|
||||
- float64
|
||||
*
|
||||
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
|
||||
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
- ✅/✅
|
||||
@@ -467,25 +509,25 @@ description, refer to the corresponding library data type support page.
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
*
|
||||
- rocRAND (:doc:`details <rocrand:api-reference/data-type-support>`)
|
||||
- -/❌
|
||||
- -/❌
|
||||
- -/✅
|
||||
- -/❌
|
||||
- -/❌
|
||||
- -/✅
|
||||
- -/✅
|
||||
- :doc:`rocRAND <rocrand:api-reference/data-type-support>`
|
||||
- NA/❌
|
||||
- NA/❌
|
||||
- NA/✅
|
||||
- NA/❌
|
||||
- NA/❌
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
*
|
||||
- hipRAND (:doc:`details <hiprand:api-reference/data-type-support>`)
|
||||
- -/❌
|
||||
- -/❌
|
||||
- -/✅
|
||||
- -/❌
|
||||
- -/❌
|
||||
- -/✅
|
||||
- -/✅
|
||||
- :doc:`hipRAND <hiprand:api-reference/data-type-support>`
|
||||
- NA/❌
|
||||
- NA/❌
|
||||
- NA/✅
|
||||
- NA/❌
|
||||
- NA/❌
|
||||
- NA/✅
|
||||
- NA/✅
|
||||
*
|
||||
- rocPRIM (:doc:`details <rocprim:reference/data-type-support>`)
|
||||
- :doc:`rocPRIM <rocprim:reference/data-type-support>`
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
- ✅/✅
|
||||
@@ -494,7 +536,7 @@ description, refer to the corresponding library data type support page.
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
*
|
||||
- hipCUB (:doc:`details <hipcub:api-reference/data-type-support>`)
|
||||
- :doc:`hipCUB <hipcub:api-reference/data-type-support>`
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
- ✅/✅
|
||||
@@ -503,7 +545,7 @@ description, refer to the corresponding library data type support page.
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
*
|
||||
- rocThrust (:doc:`details <rocthrust:data-type-support>`)
|
||||
- :doc:`rocThrust <rocthrust:data-type-support>`
|
||||
- ❌/❌
|
||||
- ❌/❌
|
||||
- ⚠️/⚠️
|
||||
@@ -512,12 +554,18 @@ description, refer to the corresponding library data type support page.
|
||||
- ✅/✅
|
||||
- ✅/✅
|
||||
|
||||
.. note::
|
||||
|
||||
As random number generation libraries, rocRAND and hipRAND only specify output
|
||||
data types for the random values they generate, with no need for input data
|
||||
types.
|
||||
|
||||
Libraries internal calculations type support
|
||||
-------------------------------------------------------------------------------
|
||||
--------------------------------------------
|
||||
|
||||
The following tables list ROCm library support for specific internal data types. For a detailed
|
||||
description, refer to the corresponding library data type support page.
|
||||
The following tables list ROCm library support for specific internal data types.
|
||||
Refer to the corresponding library data type support page for a detailed
|
||||
description.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
@@ -534,7 +582,7 @@ description, refer to the corresponding library data type support page.
|
||||
- int32
|
||||
- int64
|
||||
*
|
||||
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
|
||||
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
|
||||
- ❌
|
||||
- ❌
|
||||
- ✅
|
||||
@@ -557,7 +605,7 @@ description, refer to the corresponding library data type support page.
|
||||
- float32
|
||||
- float64
|
||||
*
|
||||
- hipSPARSELt (:doc:`details <hipsparselt:reference/data-type-support>`)
|
||||
- :doc:`hipSPARSELt <hipsparselt:reference/data-type-support>`
|
||||
- ❌
|
||||
- ❌
|
||||
- ❌
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
|
||||
| Version | Release date |
|
||||
| ------- | ------------ |
|
||||
| [6.3.3](https://rocm.docs.amd.com/en/docs-6.3.3/) | February 19, 2025 |
|
||||
| [6.3.2](https://rocm.docs.amd.com/en/docs-6.3.2/) | January 28, 2025 |
|
||||
| [6.3.1](https://rocm.docs.amd.com/en/docs-6.3.1/) | December 20, 2024 |
|
||||
| [6.3.0](https://rocm.docs.amd.com/en/docs-6.3.0/) | December 3, 2024 |
|
||||
|
||||
@@ -40,11 +40,13 @@ subtrees:
|
||||
title: Training
|
||||
subtrees:
|
||||
- entries:
|
||||
- file: how-to/rocm-for-ai/training/train-a-model.rst
|
||||
title: Train a model
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
|
||||
title: Train a model with Megatron-LM
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
|
||||
title: Train a model with PyTorch
|
||||
- file: how-to/rocm-for-ai/training/scale-model-training.rst
|
||||
title: Scale model training
|
||||
|
||||
|
||||
- file: how-to/rocm-for-ai/fine-tuning/index.rst
|
||||
title: Fine-tuning LLMs
|
||||
subtrees:
|
||||
@@ -152,7 +154,7 @@ subtrees:
|
||||
- entries:
|
||||
- url: https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
|
||||
title: AMD Instinct MI200/CDNA2 ISA
|
||||
- url: https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
|
||||
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
|
||||
title: White paper
|
||||
- file: conceptual/gpu-arch/mi100.md
|
||||
title: MI100 microarchitecture
|
||||
@@ -160,7 +162,7 @@ subtrees:
|
||||
- entries:
|
||||
- url: https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
|
||||
title: AMD Instinct MI100/CDNA1 ISA
|
||||
- url: https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
|
||||
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
|
||||
title: White paper
|
||||
- file: conceptual/iommu.rst
|
||||
title: Input-Output Memory Management Unit (IOMMU)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
rocm-docs-core==1.15.0
|
||||
rocm-docs-core==1.17.0
|
||||
sphinx-reredirects
|
||||
sphinx-sitemap
|
||||
sphinxcontrib.datatemplates==0.11.0
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
#
|
||||
# This file is autogenerated by pip-compile with Python 3.10
|
||||
# This file is autogenerated by pip-compile with Python 3.11
|
||||
# by the following command:
|
||||
#
|
||||
# pip-compile requirements.in
|
||||
# pip-compile docs/sphinx/requirements.in
|
||||
#
|
||||
accessible-pygments==0.0.5
|
||||
# via pydata-sphinx-theme
|
||||
alabaster==1.0.0
|
||||
# via sphinx
|
||||
appnope==0.1.4
|
||||
# via ipykernel
|
||||
asttokens==3.0.0
|
||||
# via stack-data
|
||||
attrs==25.1.0
|
||||
@@ -23,7 +25,7 @@ beautifulsoup4==4.12.3
|
||||
# via pydata-sphinx-theme
|
||||
breathe==4.35.0
|
||||
# via rocm-docs-core
|
||||
certifi==2024.8.30
|
||||
certifi==2024.12.14
|
||||
# via requests
|
||||
cffi==1.17.1
|
||||
# via
|
||||
@@ -37,12 +39,14 @@ click==8.1.7
|
||||
# sphinx-external-toc
|
||||
comm==0.2.2
|
||||
# via ipykernel
|
||||
cryptography==43.0.3
|
||||
cryptography==44.0.0
|
||||
# via pyjwt
|
||||
debugpy==1.8.12
|
||||
# via ipykernel
|
||||
decorator==5.1.1
|
||||
# via ipython
|
||||
defusedxml==0.7.1
|
||||
# via sphinxcontrib-datatemplates
|
||||
deprecated==1.2.15
|
||||
# via pygithub
|
||||
docutils==0.21.2
|
||||
@@ -51,11 +55,9 @@ docutils==0.21.2
|
||||
# myst-parser
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
exceptiongroup==1.2.2
|
||||
# via ipython
|
||||
executing==2.2.0
|
||||
# via stack-data
|
||||
fastjsonschema==2.20.0
|
||||
fastjsonschema==2.21.1
|
||||
# via
|
||||
# nbformat
|
||||
# rocm-docs-core
|
||||
@@ -63,8 +65,6 @@ gitdb==4.0.11
|
||||
# via gitpython
|
||||
gitpython==3.1.43
|
||||
# via rocm-docs-core
|
||||
greenlet==3.1.1
|
||||
# via sqlalchemy
|
||||
idna==3.10
|
||||
# via requests
|
||||
imagesize==1.4.1
|
||||
@@ -75,13 +75,13 @@ importlib-metadata==8.6.1
|
||||
# myst-nb
|
||||
ipykernel==6.29.5
|
||||
# via myst-nb
|
||||
ipython==8.31.0
|
||||
ipython==8.32.0
|
||||
# via
|
||||
# ipykernel
|
||||
# myst-nb
|
||||
jedi==0.19.2
|
||||
# via ipython
|
||||
jinja2==3.1.5
|
||||
jinja2==3.1.4
|
||||
# via
|
||||
# myst-parser
|
||||
# sphinx
|
||||
@@ -115,7 +115,7 @@ mdit-py-plugins==0.4.2
|
||||
# via myst-parser
|
||||
mdurl==0.1.2
|
||||
# via markdown-it-py
|
||||
myst-nb==1.1.2
|
||||
myst-nb==1.2.0
|
||||
# via rocm-docs-core
|
||||
myst-parser==4.0.0
|
||||
# via myst-nb
|
||||
@@ -142,7 +142,7 @@ platformdirs==4.3.6
|
||||
# via jupyter-core
|
||||
prompt-toolkit==3.0.50
|
||||
# via ipython
|
||||
psutil==6.1.1
|
||||
psutil==7.0.0
|
||||
# via ipykernel
|
||||
ptyprocess==0.7.0
|
||||
# via pexpect
|
||||
@@ -150,7 +150,7 @@ pure-eval==0.2.3
|
||||
# via stack-data
|
||||
pycparser==2.22
|
||||
# via cffi
|
||||
pydata-sphinx-theme==0.16.0
|
||||
pydata-sphinx-theme==0.16.1
|
||||
# via
|
||||
# rocm-docs-core
|
||||
# sphinx-book-theme
|
||||
@@ -162,7 +162,7 @@ pygments==2.18.0
|
||||
# ipython
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
pyjwt[crypto]==2.10.0
|
||||
pyjwt[crypto]==2.10.1
|
||||
# via pygithub
|
||||
pynacl==1.5.0
|
||||
# via pygithub
|
||||
@@ -175,7 +175,7 @@ pyyaml==6.0.2
|
||||
# myst-parser
|
||||
# rocm-docs-core
|
||||
# sphinx-external-toc
|
||||
pyzmq==26.2.0
|
||||
pyzmq==26.2.1
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
@@ -187,7 +187,7 @@ requests==2.32.3
|
||||
# via
|
||||
# pygithub
|
||||
# sphinx
|
||||
rocm-docs-core==1.15.0
|
||||
rocm-docs-core==1.17.0
|
||||
# via -r requirements.in
|
||||
rpds-py==0.22.3
|
||||
# via
|
||||
@@ -215,6 +215,8 @@ sphinx==8.1.3
|
||||
# sphinx-notfound-page
|
||||
# sphinx-reredirects
|
||||
# sphinx-sitemap
|
||||
# sphinxcontrib-datatemplates
|
||||
# sphinxcontrib-runcmd
|
||||
sphinx-book-theme==1.1.3
|
||||
# via rocm-docs-core
|
||||
sphinx-copybutton==0.5.2
|
||||
@@ -226,11 +228,13 @@ sphinx-external-toc==1.0.1
|
||||
sphinx-notfound-page==1.0.4
|
||||
# via rocm-docs-core
|
||||
sphinx-reredirects==0.1.5
|
||||
# via -r requirements.in
|
||||
# via -r docs/sphinx/requirements.in
|
||||
sphinx-sitemap==2.6.0
|
||||
# via -r requirements.in
|
||||
# via -r docs/sphinx/requirements.in
|
||||
sphinxcontrib-applehelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-datatemplates==0.11.0
|
||||
# via -r docs/sphinx/requirements.in
|
||||
sphinxcontrib-devhelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-htmlhelp==2.1.0
|
||||
@@ -239,16 +243,16 @@ sphinxcontrib-jsmath==1.0.1
|
||||
# via sphinx
|
||||
sphinxcontrib-qthelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-runcmd==0.2.0
|
||||
# via sphinxcontrib-datatemplates
|
||||
sphinxcontrib-serializinghtml==2.0.0
|
||||
# via sphinx
|
||||
sqlalchemy==2.0.37
|
||||
sqlalchemy==2.0.38
|
||||
# via jupyter-cache
|
||||
stack-data==0.6.3
|
||||
# via ipython
|
||||
tabulate==0.9.0
|
||||
# via jupyter-cache
|
||||
tomli==2.1.0
|
||||
# via sphinx
|
||||
tornado==6.4.2
|
||||
# via
|
||||
# ipykernel
|
||||
|
||||
102
docs/sphinx/static/css/vllm-benchmark.css
Normal file
102
docs/sphinx/static/css/vllm-benchmark.css
Normal file
@@ -0,0 +1,102 @@
|
||||
/* ------------------ Compatibility options grid ------------------ */
|
||||
html {
|
||||
--compat-border-radius: 2px;
|
||||
--compat-accent-color: var(--pst-color-primary);
|
||||
--compat-bg-color: var(--pst-color-on-background);
|
||||
--compat-fg-color: var(--pst-color-primary-text);
|
||||
--compat-head-color: var(--pst-color-surface);
|
||||
--compat-param-hover-color: var(--pst-color-link-hover);
|
||||
--compat-param-selected-color: var(--pst-color-primary);
|
||||
}
|
||||
|
||||
html[data-theme="light"] {
|
||||
--compat-border-color: var(--pst-gray-500);
|
||||
--compat-param-disabled-color: var(--pst-gray-300);
|
||||
}
|
||||
|
||||
html[data-theme="dark"] {
|
||||
--compat-border-color: var(--pst-gray-600);
|
||||
--compat-param-disabled-color: var(--pst-gray-600);
|
||||
}
|
||||
|
||||
div#vllm-benchmark-ud-params-picker.container-fluid {
|
||||
padding: 0 0 1rem 0;
|
||||
}
|
||||
|
||||
div[data-param-k="model"] {
|
||||
background-color: var(--compat-bg-color);
|
||||
padding: 2px;
|
||||
border: solid 1px var(--compat-border-color);
|
||||
font-weight: 500;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
div[data-param-k="model"][data-param-state="selected"] {
|
||||
background-color: var(--compat-param-selected-color);
|
||||
color: var(--compat-fg-color);
|
||||
}
|
||||
|
||||
div[data-param-k="model"][data-param-state="latest-version"] {
|
||||
background-color: var(--compat-param-selected-color);
|
||||
color: var(--compat-fg-color);
|
||||
}
|
||||
|
||||
div[data-param-k="model"][data-param-state="disabled"] {
|
||||
background-color: var(--compat-param-disabled-color);
|
||||
text-decoration: line-through;
|
||||
/* text-decoration-color: var(--pst-color-danger); */
|
||||
cursor: auto;
|
||||
}
|
||||
|
||||
div[data-param-k="model"]:not([data-param-state]):hover {
|
||||
background-color: var(--compat-param-hover-color);
|
||||
}
|
||||
|
||||
div[data-param-k="model-group"] {
|
||||
background-color: var(--compat-bg-color);
|
||||
padding: 2px;
|
||||
border: solid 1px var(--compat-border-color);
|
||||
font-weight: 500;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
div[data-param-k="model-group"][data-param-state="selected"] {
|
||||
background-color: var(--compat-param-selected-color);
|
||||
color: var(--compat-fg-color);
|
||||
}
|
||||
|
||||
div[data-param-k="model-group"][data-param-state="latest-version"] {
|
||||
background-color: var(--compat-param-selected-color);
|
||||
color: var(--compat-fg-color);
|
||||
}
|
||||
|
||||
div[data-param-k="model-group"][data-param-state="disabled"] {
|
||||
background-color: var(--compat-param-disabled-color);
|
||||
text-decoration: line-through;
|
||||
/* text-decoration-color: var(--pst-color-danger); */
|
||||
cursor: auto;
|
||||
}
|
||||
|
||||
div[data-param-k="model-group"]:not([data-param-state]):hover {
|
||||
background-color: var(--compat-param-hover-color);
|
||||
}
|
||||
|
||||
.model-param-head {
|
||||
background-color: var(--compat-head-color);
|
||||
padding: 0.15rem 0.15rem 0.15rem 0.67rem;
|
||||
/* margin: 2px; */
|
||||
border-right: solid 2px var(--compat-accent-color);
|
||||
font-weight: 600;
|
||||
}
|
||||
|
||||
.model-param {
|
||||
/* padding: 2px; */
|
||||
/* margin: 0 2px 0 2px; */
|
||||
/* margin: 2px; */
|
||||
border: solid 1px var(--compat-border-color);
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.hidden {
|
||||
display: none !important;
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<manifest>
|
||||
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
|
||||
<default revision="refs/tags/rocm-6.3.2"
|
||||
<default revision="refs/tags/rocm-6.3.3"
|
||||
remote="rocm-org"
|
||||
sync-c="true"
|
||||
sync-j="4" />
|
||||
|
||||
47
tools/autotag/templates/highlights/6.3.3.md
Normal file
47
tools/autotag/templates/highlights/6.3.3.md
Normal file
@@ -0,0 +1,47 @@
|
||||
# ROCm 6.3.3 release notes
|
||||
|
||||
The release notes provide a summary of notable changes since the previous ROCm release.
|
||||
|
||||
- [Release highlights](#release-highlights)
|
||||
|
||||
- [Operating system and hardware support changes](#operating-system-and-hardware-support-changes)
|
||||
|
||||
- [ROCm components versioning](#rocm-components)
|
||||
|
||||
- [Detailed component changes](#detailed-component-changes)
|
||||
|
||||
- [ROCm known issues](#rocm-known-issues)
|
||||
|
||||
- [ROCm upcoming changes](#rocm-upcoming-changes)
|
||||
|
||||
```{note}
|
||||
If you’re using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
|
||||
documentation to verify compatibility and system requirements.
|
||||
```
|
||||
## Release highlights
|
||||
|
||||
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
|
||||
[Detailed component changes](#detailed-component-changes).
|
||||
|
||||
### ROCm Offline Installer Creator updates
|
||||
|
||||
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
|
||||
|
||||
### ROCm documentation updates
|
||||
|
||||
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
|
||||
|
||||
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
|
||||
|
||||
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
|
||||
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
|
||||
|
||||
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
|
||||
|
||||
* The following HIP documentation topics have been updated:
|
||||
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
|
||||
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
|
||||
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
|
||||
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
|
||||
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)
|
||||
|
||||
8
tools/autotag/templates/known_issues/6.3.3.md
Normal file
8
tools/autotag/templates/known_issues/6.3.3.md
Normal file
@@ -0,0 +1,8 @@
|
||||
## ROCm known issues
|
||||
|
||||
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
|
||||
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
|
||||
|
||||
### Zero value is displayed in ROCTx aggregated statistics
|
||||
|
||||
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior.
|
||||
0
tools/autotag/templates/resolved_issues/6.3.3.md
Normal file
0
tools/autotag/templates/resolved_issues/6.3.3.md
Normal file
7
tools/autotag/templates/support/6.3.3.md
Normal file
7
tools/autotag/templates/support/6.3.3.md
Normal file
@@ -0,0 +1,7 @@
|
||||
## Operating system and hardware support changes
|
||||
|
||||
Operating system and hardware support remain unchanged in this release.
|
||||
|
||||
See the [Compatibility
|
||||
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
|
||||
for more information about operating system and hardware compatibility.
|
||||
17
tools/autotag/templates/upcoming_changes/6.3.3.md
Normal file
17
tools/autotag/templates/upcoming_changes/6.3.3.md
Normal file
@@ -0,0 +1,17 @@
|
||||
## ROCm upcoming changes
|
||||
|
||||
The following changes to the ROCm software stack are anticipated for future releases.
|
||||
|
||||
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
|
||||
|
||||
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
|
||||
|
||||
### AMDGPU wavefront size compiler macro deprecation
|
||||
|
||||
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
|
||||
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
|
||||
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
|
||||
|
||||
### HIPCC Perl scripts deprecation
|
||||
|
||||
The HIPCC Perl scripts (`hipcc.pl` and `hipconfig.pl`) will be removed in an upcoming release.
|
||||
@@ -68,85 +68,6 @@ set_address_sanitizer_off() {
|
||||
export LDFLAGS=""
|
||||
}
|
||||
|
||||
build_miopen_ckProf() {
|
||||
ENABLE_ADDRESS_SANITIZER=false
|
||||
echo "Start Building Composable Kernel Profiler"
|
||||
if [ "${ENABLE_ADDRESS_SANITIZER}" == "true" ]; then
|
||||
set_asan_env_vars
|
||||
set_address_sanitizer_on
|
||||
else
|
||||
unset_asan_env_vars
|
||||
set_address_sanitizer_off
|
||||
fi
|
||||
|
||||
cd $COMPONENT_SRC
|
||||
cd "$BUILD_DIR"
|
||||
rm -rf *
|
||||
|
||||
architectures='gfx10 gfx11 gfx90 gfx94'
|
||||
if [ -n "$GPU_ARCHS" ]; then
|
||||
architectures=$(echo ${GPU_ARCHS} | awk -F';' '{for(i=1;i<=NF;i++) a[substr($i,1,5)]} END{for(i in a) printf i" "}')
|
||||
fi
|
||||
|
||||
for arch in ${architectures}
|
||||
do
|
||||
if [ "${ASAN_CMAKE_PARAMS}" == "true" ] ; then
|
||||
cmake -DBUILD_DEV=OFF \
|
||||
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}/lib/cmake;${ROCM_PATH%-*}/$ASAN_LIBDIR;${ROCM_PATH%-*}/llvm;${ROCM_PATH%-*}" \
|
||||
-DCMAKE_BUILD_TYPE=${BUILD_TYPE:-'RelWithDebInfo'} \
|
||||
-DCMAKE_SHARED_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_LIB_RPATH" \
|
||||
-DCMAKE_EXE_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_EXE_RPATH" \
|
||||
-DCMAKE_VERBOSE_MAKEFILE=1 \
|
||||
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
|
||||
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
|
||||
-DROCM_SYMLINK_LIBS=OFF \
|
||||
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DROCM_DISABLE_LDCONFIG=ON \
|
||||
-DROCM_PATH="${ROCM_PATH}" \
|
||||
-DCPACK_GENERATOR="${PKGTYPE^^}" \
|
||||
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
|
||||
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
|
||||
${LAUNCHER_FLAGS} \
|
||||
-DPROFILER_ONLY=ON \
|
||||
-DENABLE_ASAN_PACKAGING=true \
|
||||
-DGPU_ARCH="${arch}" \
|
||||
"$COMPONENT_SRC"
|
||||
else
|
||||
cmake -DBUILD_DEV=OFF \
|
||||
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}" \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_SHARED_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN' \
|
||||
-DCMAKE_EXE_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN/../lib' \
|
||||
-DCMAKE_VERBOSE_MAKEFILE=1 \
|
||||
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
|
||||
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
|
||||
-DROCM_SYMLINK_LIBS=OFF \
|
||||
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
|
||||
-DROCM_DISABLE_LDCONFIG=ON \
|
||||
-DROCM_PATH="${ROCM_PATH}" \
|
||||
-DCPACK_GENERATOR="${PKGTYPE^^}" \
|
||||
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
|
||||
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
|
||||
${LAUNCHER_FLAGS} \
|
||||
-DPROFILER_ONLY=ON \
|
||||
-DGPU_ARCH="${arch}" \
|
||||
"$COMPONENT_SRC"
|
||||
fi
|
||||
|
||||
cmake --build . -- -j${PROC} package
|
||||
cp ./*ckprofiler*.${PKGTYPE} $PACKAGE_DIR
|
||||
rm -rf *
|
||||
done
|
||||
rm -rf _CPack_Packages/ && find -name '*.o' -delete
|
||||
|
||||
echo "Finished building Composable Kernel"
|
||||
show_build_cache_stats
|
||||
}
|
||||
|
||||
clean_miopen_ck() {
|
||||
echo "Cleaning MIOpen-CK build directory: ${BUILD_DIR} ${PACKAGE_DIR}"
|
||||
rm -rf "$BUILD_DIR" "$PACKAGE_DIR"
|
||||
|
||||
@@ -42,7 +42,6 @@ DEB_PATH="$(getDebPath $PROJ_NAME)"
|
||||
RPM_PATH="$(getRpmPath $PROJ_NAME)"
|
||||
INSTALL_PATH="${ROCM_INSTALL_PATH}/lib/llvm"
|
||||
LLVM_ROOT_LCL="${LLVM_ROOT}"
|
||||
ROCM_WHEEL_DIR="${BUILD_PATH}/_wheel"
|
||||
|
||||
TARGET="all"
|
||||
MAKEOPTS="$DASH_JAY"
|
||||
@@ -150,7 +149,6 @@ ENABLE_RUNTIMES="$ENABLE_RUNTIMES;libcxx;libcxxabi"
|
||||
BOOTSTRAPPING_BUILD_LIBCXX=1
|
||||
|
||||
clean_lightning() {
|
||||
rm -rf "$ROCM_WHEEL_DIR"
|
||||
rm -rf "$BUILD_PATH"
|
||||
rm -rf "$DEB_PATH"
|
||||
rm -rf "$RPM_PATH"
|
||||
@@ -332,15 +330,6 @@ build_lightning() {
|
||||
echo "End Workaround for race condition"
|
||||
cmake --build . -- $MAKEOPTS
|
||||
|
||||
case "$DISTRO_ID" in
|
||||
(rhel*|centos*)
|
||||
RHEL_BUILD=1
|
||||
;;
|
||||
(*)
|
||||
RHEL_BUILD=0
|
||||
;;
|
||||
esac
|
||||
|
||||
if [ $SKIP_LIT_TESTS -eq 0 ]; then
|
||||
if [ $RHEL_BUILD -eq 1 ]; then
|
||||
cmake --build . -- $MAKEOPTS check-lld check-mlir
|
||||
@@ -1158,9 +1147,4 @@ case $TARGET in
|
||||
(*) die "Invalid target $TARGET" ;;
|
||||
esac
|
||||
|
||||
if [[ $WHEEL_PACKAGE == true ]]; then
|
||||
echo "Wheel Package build started !!!!"
|
||||
create_wheel_package
|
||||
fi
|
||||
|
||||
echo "Operation complete"
|
||||
|
||||
@@ -1,171 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
|
||||
|
||||
printUsage() {
|
||||
echo
|
||||
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
|
||||
echo
|
||||
echo "Options:"
|
||||
echo " -c, --clean Clean output and delete all intermediate work"
|
||||
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
|
||||
echo " -p, --package <type> Specify packaging format"
|
||||
echo " -r, --release Make a release build instead of a debug build"
|
||||
echo " -a, --address_sanitizer Enable address sanitizer"
|
||||
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
|
||||
type referred to by pkg_type"
|
||||
echo " -w, --wheel Creates python wheel package of omniperf.
|
||||
It needs to be used along with -r option"
|
||||
echo " -h, --help Prints this help"
|
||||
echo
|
||||
echo "Possible values for <type>:"
|
||||
echo " deb -> Debian format (default)"
|
||||
echo " rpm -> RPM format"
|
||||
echo
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
API_NAME="omniperf"
|
||||
PROJ_NAME="$API_NAME"
|
||||
LIB_NAME="lib${API_NAME}"
|
||||
TARGET="build"
|
||||
MAKETARGET="deb"
|
||||
PACKAGE_ROOT="$(getPackageRoot)"
|
||||
PACKAGE_LIB="$(getLibPath)"
|
||||
BUILD_DIR="$(getBuildPath $API_NAME)"
|
||||
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
|
||||
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
|
||||
ROCM_WHEEL_DIR="${BUILD_DIR}/_wheel"
|
||||
BUILD_TYPE="Debug"
|
||||
MAKE_OPTS="$DASH_JAY -C $BUILD_DIR"
|
||||
SHARED_LIBS="ON"
|
||||
CLEAN_OR_OUT=0;
|
||||
MAKETARGET="deb"
|
||||
PKGTYPE="deb"
|
||||
WHEEL_PACKAGE=false
|
||||
|
||||
|
||||
#parse the arguments
|
||||
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,static,address_sanitizer,outdir:,package:,wheel -- "$@")
|
||||
eval set -- "$VALID_STR"
|
||||
|
||||
while true ;
|
||||
do
|
||||
case "$1" in
|
||||
-h | --help)
|
||||
printUsage ; exit 0;;
|
||||
-c | --clean)
|
||||
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
|
||||
-r | --release)
|
||||
BUILD_TYPE="Release" ; shift ;;
|
||||
-a | --address_sanitizer)
|
||||
set_asan_env_vars
|
||||
set_address_sanitizer_on ; shift ;;
|
||||
-s | --static)
|
||||
SHARED_LIBS="OFF" ; shift ;;
|
||||
-o | --outdir)
|
||||
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
|
||||
-p | --package)
|
||||
MAKETARGET="$2" ; shift 2 ;;
|
||||
-w | --wheel)
|
||||
WHEEL_PACKAGE=true ; shift ;;
|
||||
--) shift; break;; # end delimiter
|
||||
*)
|
||||
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
|
||||
esac
|
||||
|
||||
done
|
||||
|
||||
RET_CONFLICT=1
|
||||
check_conflicting_options "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
|
||||
if [ $RET_CONFLICT -ge 30 ]; then
|
||||
print_vars "$API_NAME" "$TARGET" "$BUILD_TYPE" "$SHARED_LIBS" "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
|
||||
exit $RET_CONFLICT
|
||||
fi
|
||||
|
||||
clean() {
|
||||
echo "Cleaning $PROJ_NAME"
|
||||
rm -rf "$ROCM_WHEEL_DIR"
|
||||
rm -rf "$BUILD_DIR"
|
||||
rm -rf "$PACKAGE_DEB"
|
||||
rm -rf "$PACKAGE_RPM"
|
||||
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
|
||||
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
|
||||
}
|
||||
|
||||
build() {
|
||||
echo "Building $PROJ_NAME"
|
||||
if [ "$DISTRO_ID" = centos-7 ]; then
|
||||
echo "Skip make and uploading packages for Omniperf on Centos7 distro, due to python dependency"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ ! -d "$BUILD_DIR" ]; then
|
||||
mkdir -p "$BUILD_DIR"
|
||||
pushd "$BUILD_DIR" || exit
|
||||
|
||||
echo "ROCm CMake Params: $(rocm_cmake_params)"
|
||||
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
|
||||
|
||||
print_lib_type $SHARED_LIBS
|
||||
cmake \
|
||||
$(rocm_cmake_params) \
|
||||
$(rocm_common_cmake_params) \
|
||||
-DCHECK_PYTHON_DEPS=NO \
|
||||
-DPYTHON_DEPS=${BUILD_DIR}/python-libs \
|
||||
-DMOD_INSTALL_PATH=${BUILD_DIR}/modulefiles \
|
||||
"$OMNIPERF_ROOT"
|
||||
fi
|
||||
|
||||
make $MAKE_OPTS
|
||||
make $MAKE_OPTS install
|
||||
make $MAKE_OPTS package
|
||||
|
||||
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
|
||||
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
|
||||
}
|
||||
|
||||
create_wheel_package() {
|
||||
echo "Creating Omniperf wheel package"
|
||||
|
||||
# Copy the setup.py generator to build folder
|
||||
mkdir -p "$ROCM_WHEEL_DIR"
|
||||
cp -f "$SCRIPT_ROOT"/generate_setup_py.py "$ROCM_WHEEL_DIR"
|
||||
cp -f "$SCRIPT_ROOT"/repackage_wheel.sh "$ROCM_WHEEL_DIR"
|
||||
cd "$ROCM_WHEEL_DIR" || exit
|
||||
|
||||
# Currently only supports python3.6
|
||||
./repackage_wheel.sh "$BUILD_DIR"/*.rpm python3.6
|
||||
|
||||
# Copy the wheel created to RPM folder which will be uploaded to artifactory
|
||||
copy_if WHL "WHL" "$PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
|
||||
}
|
||||
|
||||
print_output_directory() {
|
||||
case ${PKGTYPE} in
|
||||
("deb")
|
||||
echo "${PACKAGE_DEB}";;
|
||||
("rpm")
|
||||
echo "${PACKAGE_RPM}";;
|
||||
(*)
|
||||
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
|
||||
esac
|
||||
exit
|
||||
}
|
||||
|
||||
verifyEnvSetup
|
||||
|
||||
case "$TARGET" in
|
||||
(clean) clean ;;
|
||||
(build) build ;;
|
||||
(outdir) print_output_directory ;;
|
||||
(*) die "Invalid target $TARGET" ;;
|
||||
esac
|
||||
|
||||
if [[ $WHEEL_PACKAGE == true ]]; then
|
||||
echo "Wheel Package build started !!!!"
|
||||
create_wheel_package
|
||||
fi
|
||||
|
||||
echo "Operation complete"
|
||||
@@ -1,191 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
|
||||
|
||||
printUsage() {
|
||||
echo
|
||||
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
|
||||
echo
|
||||
echo "Options:"
|
||||
echo " -c, --clean Clean output and delete all intermediate work"
|
||||
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
|
||||
echo " -p, --package <type> Specify packaging format"
|
||||
echo " -r, --release Make a release build instead of a debug build"
|
||||
echo " -a, --address_sanitizer Enable address sanitizer"
|
||||
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
|
||||
type referred to by pkg_type"
|
||||
echo " -w, --wheel Creates python wheel package of omnitrace.
|
||||
It needs to be used along with -r option"
|
||||
echo " -h, --help Prints this help"
|
||||
echo
|
||||
echo "Possible values for <type>:"
|
||||
echo " deb -> Debian format (default)"
|
||||
echo " rpm -> RPM format"
|
||||
echo
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
API_NAME="omnitrace"
|
||||
PROJ_NAME="$API_NAME"
|
||||
LIB_NAME="lib${API_NAME}"
|
||||
TARGET="build"
|
||||
MAKETARGET="deb"
|
||||
PACKAGE_ROOT="$(getPackageRoot)"
|
||||
PACKAGE_LIB="$(getLibPath)"
|
||||
BUILD_DIR="$(getBuildPath $API_NAME)"
|
||||
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
|
||||
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
|
||||
BUILD_TYPE="Debug"
|
||||
MAKE_OPTS="-j 8"
|
||||
SHARED_LIBS="ON"
|
||||
CLEAN_OR_OUT=0
|
||||
MAKETARGET="deb"
|
||||
PKGTYPE="deb"
|
||||
ASAN=0
|
||||
|
||||
#parse the arguments
|
||||
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,address_sanitizer,static,outdir:,package:,wheel -- "$@")
|
||||
eval set -- "$VALID_STR"
|
||||
|
||||
while true; do
|
||||
case "$1" in
|
||||
-h | --help)
|
||||
printUsage
|
||||
exit 0
|
||||
;;
|
||||
-c | --clean)
|
||||
TARGET="clean"
|
||||
((CLEAN_OR_OUT |= 1))
|
||||
shift
|
||||
;;
|
||||
-r | --release)
|
||||
BUILD_TYPE="RelWithDebInfo"
|
||||
shift
|
||||
;;
|
||||
-a | --address_sanitizer)
|
||||
ack_and_ignore_asan
|
||||
|
||||
ASAN=1
|
||||
shift
|
||||
;;
|
||||
-s | --static)
|
||||
SHARED_LIBS="OFF"
|
||||
shift
|
||||
;;
|
||||
-o | --outdir)
|
||||
TARGET="outdir"
|
||||
PKGTYPE=$2
|
||||
((CLEAN_OR_OUT |= 2))
|
||||
shift 2
|
||||
;;
|
||||
-p | --package)
|
||||
MAKETARGET="$2"
|
||||
shift 2
|
||||
;;
|
||||
-w | --wheel)
|
||||
echo "omnitrace: wheel build option accepted and ignored"
|
||||
shift
|
||||
;;
|
||||
--)
|
||||
shift
|
||||
break
|
||||
;;
|
||||
*)
|
||||
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] " >&2
|
||||
exit 20
|
||||
;;
|
||||
esac
|
||||
|
||||
done
|
||||
|
||||
RET_CONFLICT=1
|
||||
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
|
||||
if [ $RET_CONFLICT -ge 30 ]; then
|
||||
print_vars $API_NAME $TARGET $BUILD_TYPE $SHARED_LIBS $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
|
||||
exit $RET_CONFLICT
|
||||
fi
|
||||
|
||||
clean() {
|
||||
echo "Cleaning $PROJ_NAME"
|
||||
rm -rf "$BUILD_DIR"
|
||||
rm -rf "$PACKAGE_DEB"
|
||||
rm -rf "$PACKAGE_RPM"
|
||||
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
|
||||
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
|
||||
}
|
||||
|
||||
build_omnitrace() {
|
||||
echo "Building $PROJ_NAME"
|
||||
if [ "$DISTRO_ID" = "mariner-2.0" ] || [ "$DISTRO_ID" = "ubuntu-24.04" ] || [ "$DISTRO_ID" = "azurelinux-3.0" ]; then
|
||||
echo "Skip make and uploading packages for Omnitrace on \"${DISTRO_ID}\" distro"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ $ASAN == 1 ]; then
|
||||
echo "Skip make and uploading packages for Omnitrace on ASAN build"
|
||||
exit 0
|
||||
fi
|
||||
if [ ! -d "$BUILD_DIR" ]; then
|
||||
mkdir -p "$BUILD_DIR"
|
||||
echo "Created build directory: $BUILD_DIR"
|
||||
fi
|
||||
|
||||
echo "Build directory: $BUILD_DIR"
|
||||
pushd "$BUILD_DIR" || exit
|
||||
print_lib_type $SHARED_LIBS
|
||||
|
||||
echo "ROCm CMake Params: $(rocm_cmake_params)"
|
||||
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
|
||||
|
||||
|
||||
if [ $ASAN == 1 ]; then
|
||||
echo "Address Sanitizer path"
|
||||
|
||||
else
|
||||
cmake \
|
||||
$(rocm_cmake_params) \
|
||||
$(rocm_common_cmake_params) \
|
||||
-DOMNITRACE_BUILD_{LIBUNWIND,DYNINST}=ON \
|
||||
-DDYNINST_BUILD_{TBB,BOOST,ELFUTILS,LIBIBERTY}=ON \
|
||||
"$OMNITRACE_ROOT"
|
||||
fi
|
||||
|
||||
|
||||
popd || exit
|
||||
|
||||
echo "Make Options: $MAKE_OPTS"
|
||||
cmake --build "$BUILD_DIR" --target all -- $MAKE_OPTS
|
||||
cmake --build "$BUILD_DIR" --target install -- $MAKE_OPTS
|
||||
cmake --build "$BUILD_DIR" --target package -- $MAKE_OPTS
|
||||
|
||||
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
|
||||
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
|
||||
}
|
||||
|
||||
print_output_directory() {
|
||||
case ${PKGTYPE} in
|
||||
"deb")
|
||||
echo "${PACKAGE_DEB}"
|
||||
;;
|
||||
"rpm")
|
||||
echo "${PACKAGE_RPM}"
|
||||
;;
|
||||
*)
|
||||
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
exit
|
||||
}
|
||||
|
||||
verifyEnvSetup
|
||||
|
||||
case "$TARGET" in
|
||||
clean) clean ;;
|
||||
build) build_omnitrace ;;
|
||||
outdir) print_output_directory ;;
|
||||
*) die "Invalid target $TARGET" ;;
|
||||
esac
|
||||
|
||||
echo "Operation complete"
|
||||
@@ -1,141 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
|
||||
PROJ_NAME=OpenCL-ICD-Loader
|
||||
TARGET="build"
|
||||
MAKEOPTS="$DASH_JAY"
|
||||
BUILD_TYPE="Debug"
|
||||
PACKAGE_ROOT="$(getPackageRoot)"
|
||||
PACKAGE_DEB="$PACKAGE_ROOT/deb/${PROJ_NAME,,}"
|
||||
PACKAGE_RPM="$PACKAGE_ROOT/rpm/${PROJ_NAME,,}"
|
||||
CLEAN_OR_OUT=0;
|
||||
PKGTYPE="deb"
|
||||
MAKETARGET="deb"
|
||||
API_NAME="rocm-opencl-icd-loader"
|
||||
|
||||
printUsage() {
|
||||
echo
|
||||
echo "Usage: $(basename "${BASH_SOURCE}") [options ...]"
|
||||
echo
|
||||
echo "Options:"
|
||||
echo " -c, --clean Clean output and delete all intermediate work"
|
||||
echo " -p, --package <type> Specify packaging format"
|
||||
echo " -r, --release Make a release build instead of a debug build"
|
||||
echo " -h, --help Prints this help"
|
||||
echo " -o, --outdir Print path of output directory containing packages"
|
||||
echo " -s, --static Component/Build does not support static builds just accepting this param & ignore. No effect of the param on this build"
|
||||
echo
|
||||
echo "Possible values for <type>:"
|
||||
echo " deb -> Debian format (default)"
|
||||
echo " rpm -> RPM format"
|
||||
echo
|
||||
return 0
|
||||
}
|
||||
|
||||
RET_CONFLICT=1
|
||||
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
|
||||
if [ $RET_CONFLICT -ge 30 ]; then
|
||||
print_vars $TARGET $BUILD_TYPE $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
|
||||
exit $RET_CONFLICT
|
||||
fi
|
||||
|
||||
clean_opencl_icd_loader() {
|
||||
echo "Cleaning $PROJ_NAME"
|
||||
rm -rf "$PACKAGE_DEB"
|
||||
rm -rf "$PACKAGE_RPM"
|
||||
rm -rf "$PACKAGE_ROOT/${PROJ_NAME,,}"
|
||||
}
|
||||
|
||||
copy_pkg_files_to_rocm() {
|
||||
local comp_folder=$1
|
||||
local comp_pkg_name=$2
|
||||
|
||||
cd "${OUT_DIR}/${PKGTYPE}/${comp_folder}"|| exit 2
|
||||
if [ "${PKGTYPE}" = 'deb' ]; then
|
||||
dpkg-deb -x ${comp_pkg_name}_*.deb pkg/
|
||||
else
|
||||
mkdir pkg && pushd pkg/ || exit 2
|
||||
if [[ "${comp_pkg_name}" != *-dev* ]]; then
|
||||
rpm2cpio ../${comp_pkg_name}-*.rpm | cpio -idmv
|
||||
else
|
||||
rpm2cpio ../${comp_pkg_name}el-*.rpm | cpio -idmv
|
||||
fi
|
||||
popd || exit 2
|
||||
fi
|
||||
ls ./pkg -alt
|
||||
cp -r ./pkg/*/rocm*/* "${ROCM_PATH}" || exit 2
|
||||
rm -rf pkg/
|
||||
}
|
||||
|
||||
build_opencl_icd_loader() {
|
||||
echo "Downloading $PROJ_NAME" package
|
||||
if [ "$DISTRO_NAME" = ubuntu ]; then
|
||||
mkdir -p "$PACKAGE_DEB"
|
||||
local rocm_ver=${ROCM_VERSION}
|
||||
if [ ${ROCM_VERSION##*.} = 0 ]; then
|
||||
rocm_ver=${ROCM_VERSION%.*}
|
||||
fi
|
||||
local url="https://repo.radeon.com/rocm/apt/${rocm_ver}/pool/main/r/${API_NAME}/"
|
||||
local package
|
||||
package=$(curl -s "$url" | grep -Po 'href="\K[^"]*' | grep "${DISTRO_RELEASE}" | head -n 1)
|
||||
|
||||
if [ -z "$package" ]; then
|
||||
echo "No package found for Ubuntu version $DISTRO_RELEASE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
wget -t3 -P "$PACKAGE_DEB" "${url}${package}"
|
||||
copy_pkg_files_to_rocm ${PROJ_NAME,,} ${API_NAME}
|
||||
else
|
||||
echo "$DISTRO_ID is not supported..."
|
||||
exit 2
|
||||
fi
|
||||
|
||||
echo "Installing $PROJ_NAME" package
|
||||
}
|
||||
|
||||
print_output_directory() {
|
||||
case ${PKGTYPE} in
|
||||
("deb")
|
||||
echo ${PACKAGE_DEB};;
|
||||
("rpm")
|
||||
echo ${PACKAGE_RPM};;
|
||||
(*)
|
||||
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
|
||||
esac
|
||||
exit
|
||||
}
|
||||
|
||||
VALID_STR=`getopt -o hcraswlo:p: --long help,clean,release,outdir:,package: -- "$@"`
|
||||
eval set -- "$VALID_STR"
|
||||
while true ;
|
||||
do
|
||||
case "$1" in
|
||||
(-c | --clean )
|
||||
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
|
||||
(-r | --release )
|
||||
BUILD_TYPE="RelWithDebInfo" ; shift ;;
|
||||
(-h | --help )
|
||||
printUsage ; exit 0 ;;
|
||||
(-a | --address_sanitizer)
|
||||
ack_and_ignore_asan ; shift ;;
|
||||
(-o | --outdir)
|
||||
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
|
||||
(-p | --package)
|
||||
MAKETARGET="$2" ; shift 2;;
|
||||
(-s | --static)
|
||||
echo "-s parameter accepted but ignored" ; shift ;;
|
||||
--) shift; break;;
|
||||
(*)
|
||||
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
|
||||
esac
|
||||
done
|
||||
|
||||
case $TARGET in
|
||||
(clean) clean_opencl_icd_loader ;;
|
||||
(build) build_opencl_icd_loader ;;
|
||||
(outdir) print_output_directory ;;
|
||||
(*) die "Invalid target $TARGET" ;;
|
||||
esac
|
||||
|
||||
echo "Operation complete"
|
||||
@@ -32,7 +32,6 @@ ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
|
||||
ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
|
||||
ROCM_CMAKE_PACKAGE_DEB="$(getPackageRoot)/deb/rocm-cmake"
|
||||
ROCM_CMAKE_PACKAGE_RPM="$(getPackageRoot)/rpm/rocm-cmake"
|
||||
ROCM_WHEEL_DIR="${ROCM_CMAKE_BUILD_DIR}/_wheel"
|
||||
ROCM_CMAKE_BUILD_TYPE="debug"
|
||||
BUILD_TYPE="Debug"
|
||||
SHARED_LIBS="ON"
|
||||
@@ -56,8 +55,6 @@ do
|
||||
ack_and_ignore_asan ; shift ;;
|
||||
(-s | --static)
|
||||
SHARED_LIBS="OFF" ; shift ;;
|
||||
(-w | --wheel)
|
||||
WHEEL_PACKAGE=true ; shift ;;
|
||||
(-o | --outdir)
|
||||
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
|
||||
(-p | --package)
|
||||
@@ -78,7 +75,6 @@ fi
|
||||
|
||||
|
||||
clean_rocm_cmake() {
|
||||
rm -rf "$ROCM_WHEEL_DIR"
|
||||
rm -rf $ROCM_CMAKE_BUILD_DIR
|
||||
rm -rf $ROCM_CMAKE_PACKAGE_DEB
|
||||
rm -rf $ROCM_CMAKE_PACKAGE_RPM
|
||||
@@ -106,19 +102,6 @@ build_rocm_cmake() {
|
||||
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$ROCM_CMAKE_PACKAGE_RPM" $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm
|
||||
}
|
||||
|
||||
create_wheel_package() {
|
||||
echo "Creating rocm-cmake wheel package"
|
||||
# Copy the setup.py generator to build folder
|
||||
mkdir -p $ROCM_WHEEL_DIR
|
||||
cp -f $SCRIPT_ROOT/generate_setup_py.py $ROCM_WHEEL_DIR
|
||||
cp -f $SCRIPT_ROOT/repackage_wheel.sh $ROCM_WHEEL_DIR
|
||||
cd $ROCM_WHEEL_DIR
|
||||
# Currently only supports python3.6
|
||||
./repackage_wheel.sh $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm python3.6
|
||||
# Copy the wheel created to RPM folder which will be uploaded to artifactory
|
||||
copy_if WHL "WHL" "$ROCM_CMAKE_PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
|
||||
}
|
||||
|
||||
print_output_directory() {
|
||||
case ${PKGTYPE} in
|
||||
("deb")
|
||||
@@ -138,9 +121,4 @@ case $TARGET in
|
||||
(*) die "Invalid target $TARGET" ;;
|
||||
esac
|
||||
|
||||
if [[ $WHEEL_PACKAGE == true ]]; then
|
||||
echo "Wheel Package build started !!!!"
|
||||
create_wheel_package
|
||||
fi
|
||||
|
||||
echo "Operation complete"
|
||||
|
||||
@@ -7,7 +7,6 @@ bison
|
||||
bridge-utils
|
||||
build-essential
|
||||
bzip2
|
||||
ccache
|
||||
check
|
||||
chrpath
|
||||
cifs-utils
|
||||
@@ -121,11 +120,9 @@ python3-yaml
|
||||
python3.8-dev
|
||||
re2c
|
||||
redis-tools
|
||||
# Eventually we should be able to remove rpm for debian builds.
|
||||
rpm
|
||||
rsync
|
||||
ssh
|
||||
# This makes life more pleasent inside the container
|
||||
strace
|
||||
sudo
|
||||
systemtap-sdt-dev
|
||||
|
||||
@@ -1,285 +0,0 @@
|
||||
#! /usr/bin/bash
|
||||
|
||||
set -x
|
||||
|
||||
apt-get -y update
|
||||
DEBIAN_FRONTEND=noninteractive DEBCONF_NONINTERACTIVE_SEEN=true apt-get install --no-install-recommends -y $(sed 's/#.*//' /tmp/packages)
|
||||
apt-get clean
|
||||
rm -rf /var/cache/apt/ /var/lib/apt/lists/* /etc/apt/apt.conf.d/01proxy
|
||||
|
||||
#Install 2.17.1 version of git as we are seeing issues with 2.25 , where it was not allowing to add git submodules if the user is different for parent git directory
|
||||
curl -o git.tar.gz https://cdn.kernel.org/pub/software/scm/git/git-2.17.1.tar.gz
|
||||
tar -zxf git.tar.gz
|
||||
cd git-*
|
||||
make prefix=/usr/local all
|
||||
make prefix=/usr/local install
|
||||
git --version
|
||||
|
||||
#install argparse and CppHeaderParser python modules for roctracer and rocprofiler
|
||||
#install rocm-docs-core for the docs-as-code project. Only needed on one OS
|
||||
# CppHeader needs setuptools. setuptools needs wheel.
|
||||
# Looks like I need them as seperate commands
|
||||
# Sigh, install both python2 and python 3 version
|
||||
pip3 install --no-cache-dir setuptools wheel tox
|
||||
pip3 install --no-cache-dir CppHeaderParser argparse requests lxml barectf recommonmark jinja2==3.0.0 websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas myst-parser
|
||||
|
||||
# Allow sudo for everyone user
|
||||
echo 'ALL ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/everyone
|
||||
|
||||
# Install OCaml packages to build LLVM's OCaml bindings to be used in lightning compiler test pipeline
|
||||
wget -nv https://sourceforge.net/projects/opam.mirror/files/2.1.4/opam-2.1.4-x86_64-linux -O /usr/local/bin/opam
|
||||
chmod +x /usr/local/bin/opam
|
||||
opam init --yes --disable-sandboxing
|
||||
opam install ctypes --yes
|
||||
|
||||
# Install and modify git-repo (#!/usr/bin/env python -> #!/usr/bin/env python3)
|
||||
curl https://storage.googleapis.com/git-repo-downloads/repo > /usr/bin/repo
|
||||
chmod a+x /usr/bin/repo
|
||||
|
||||
# Build ccache from the source
|
||||
cd /tmp
|
||||
git clone https://github.com/ccache/ccache -b v4.7.5
|
||||
cd ccache
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DCMAKE_BUILD_TYPE=Release ..
|
||||
make
|
||||
make install
|
||||
cd /tmp
|
||||
rm -rf ccache
|
||||
|
||||
# Install sharp from MLNX_OFED_LINUX as dependency for rccl-rdma-sharp-plugins
|
||||
cd /var/tmp
|
||||
mkdir mlnx
|
||||
wget -O mlnx/tar.tgz https://content.mellanox.com/ofed/MLNX_OFED-24.01-0.3.3.1/MLNX_OFED_LINUX-24.01-0.3.3.1-ubuntu22.04-x86_64.tgz
|
||||
tar -xz -C mlnx -f mlnx/tar.tgz
|
||||
apt-key add mlnx/*/RPM-GPG-KEY-Mellanox
|
||||
echo "deb [arch=amd64] file:$(echo $PWD/mlnx/*/DEBS) ./" > /etc/apt/sources.list.d/sharp.list
|
||||
apt update
|
||||
apt install -y sharp
|
||||
apt clean
|
||||
rm -rf /var/cache/apt/ /var/lib/apt/lists/* mlnx /etc/apt/sources.list.d/sharp.list
|
||||
|
||||
apt update
|
||||
apt -y install libunwind-dev
|
||||
apt -y install libgoogle-glog-dev
|
||||
|
||||
# Install python3.8 from source
|
||||
curl -LO https://www.python.org/ftp/python/3.8.13/Python-3.8.13.tar.xz
|
||||
tar -xvf Python-3.8.13.tar.xz
|
||||
pwd
|
||||
ls /var/tmp/
|
||||
ls Python-3.8.13
|
||||
mv Python-3.8.13 /opt/
|
||||
apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev pkg-config make -y
|
||||
cd /opt/Python-3.8.13/
|
||||
./configure --enable-optimizations --enable-shared
|
||||
make
|
||||
make -j 6
|
||||
make altinstall
|
||||
ldconfig /opt/Python3.8.13
|
||||
python3.8 --version
|
||||
|
||||
# roctracer and rocprofiler needs this python3.8
|
||||
python3.8 -m pip install setuptools wheel
|
||||
python3.8 -m pip install CppHeaderParser argparse requests lxml PyYAML joblib
|
||||
|
||||
#Install older version of hwloc-devel package for rocrtst
|
||||
curl -lO https://download.open-mpi.org/release/hwloc/v1.11/hwloc-1.11.13.tar.bz2
|
||||
tar -xvf hwloc-1.11.13.tar.bz2
|
||||
cd hwloc-1.11.13
|
||||
./configure
|
||||
make
|
||||
make install
|
||||
cp /usr/local/lib/libhwloc.so.5 /usr/lib
|
||||
hwloc-info --version
|
||||
|
||||
# Install gtest
|
||||
mkdir -p /tmp/gtest
|
||||
cd /tmp/gtest
|
||||
wget https://github.com/google/googletest/archive/refs/tags/v1.14.0.zip -O googletest.zip
|
||||
unzip googletest.zip
|
||||
cd googletest-1.14.0/
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
make -j$(nproc)
|
||||
make install
|
||||
rm -rf /tmp/gtest
|
||||
|
||||
## Install gRPC from source
|
||||
## RDC Pre-requisites
|
||||
GRPC_ARCHIVE=grpc-1.61.0.tar.gz
|
||||
mkdir /tmp/grpc
|
||||
mkdir /usr/grpc
|
||||
cd /tmp
|
||||
git clone --recurse-submodules -b v1.61.0 https://github.com/grpc/grpc
|
||||
cd grpc
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake -DgRPC_INSTALL=ON -DBUILD_SHARED_LIBS=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/usr/grpc -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=14 -DCMAKE_SHARED_LINKER_FLAGS_INIT=-Wl,--enable-new-dtags,--build-id=sha1,--rpath,'$ORIGIN' ..
|
||||
make -j $(nproc) install
|
||||
rm -rf /tmp/grpc
|
||||
|
||||
## rocBLAS Pre-requisites
|
||||
## Download prebuilt AMD multithreaded blis (2.0)
|
||||
## Reference : https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/install.sh#L403
|
||||
mkdir -p /tmp/blis
|
||||
cd /tmp/blis
|
||||
wget -O - https://github.com/amd/blis/releases/download/2.0/aocl-blis-mt-ubuntu-2.0.tar.gz | tar xfz -
|
||||
mv amd-blis-mt /usr/blis
|
||||
cd /
|
||||
rm -rf /tmp/blis
|
||||
|
||||
## rocBLAS Pre-requisites(SWDEV-404612)
|
||||
## Download aocl-linux-gcc-4.2.0_1_amd64.deb
|
||||
mkdir -p /tmp/aocl
|
||||
cd /tmp/aocl
|
||||
wget -nv https://download.amd.com/developer/eula/aocl/aocl-4-2/aocl-linux-gcc-4.2.0_1_amd64.deb
|
||||
apt install ./aocl-linux-gcc-4.2.0_1_amd64.deb
|
||||
rm -rf /tmp/aocl
|
||||
|
||||
## hipBLAS Pre-requisites
|
||||
## lapack(3.9.1v)
|
||||
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L174
|
||||
lapack_version=3.9.1
|
||||
lapack_srcdir=lapack-$lapack_version
|
||||
lapack_blddir=lapack-$lapack_version-bld
|
||||
mkdir -p /tmp/lapack
|
||||
cd /tmp/lapack
|
||||
rm -rf "$lapack_srcdir" "$lapack_blddir"
|
||||
wget -O - https://github.com/Reference-LAPACK/lapack/archive/refs/tags/v3.9.1.tar.gz | tar xzf -
|
||||
cmake -H$lapack_srcdir -B$lapack_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_Fortran_FLAGS=-fno-optimize-sibling-calls -DBUILD_TESTING=OFF -DCBLAS=ON -DLAPACKE=OFF
|
||||
make -j$(nproc) -C "$lapack_blddir"
|
||||
make -C "$lapack_blddir" install
|
||||
cd $lapack_blddir
|
||||
cp -r ./include/* /usr/local/include/
|
||||
cp -r ./lib/* /usr/local/lib
|
||||
cd /
|
||||
rm -rf /tmp/lapack
|
||||
|
||||
## rocSOLVER Pre-requisites
|
||||
## FMT(7.1.3v)
|
||||
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L152
|
||||
fmt_version=7.1.3
|
||||
fmt_srcdir=fmt-$fmt_version
|
||||
fmt_blddir=fmt-$fmt_version-bld
|
||||
mkdir -p /tmp/fmt
|
||||
cd /tmp/fmt
|
||||
rm -rf "$fmt_srcdir" "$fmt_blddir"
|
||||
wget -O - https://github.com/fmtlib/fmt/archive/refs/tags/7.1.3.tar.gz | tar xzf -
|
||||
cmake -H$fmt_srcdir -B$fmt_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=OFF -DCMAKE_CXX_STANDARD_REQUIRED=ON -DFMT_DOC=OFF -DFMT_TEST=OFF
|
||||
make -j$(nproc) -C "$fmt_blddir"
|
||||
make -C "$fmt_blddir" install
|
||||
|
||||
# Build and install libjpeg-turbo
|
||||
mkdir -p /tmp/libjpeg-turbo
|
||||
cd /tmp/libjpeg-turbo
|
||||
wget -nv https://github.com/rrawther/libjpeg-turbo/archive/refs/heads/2.0.6.2.zip -O libjpeg-turbo-2.0.6.2.zip
|
||||
unzip libjpeg-turbo-2.0.6.2.zip
|
||||
cd libjpeg-turbo-2.0.6.2
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=RELEASE -DENABLE_STATIC=FALSE -DCMAKE_INSTALL_DEFAULT_LIBDIR=lib ..
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/libjpeg-turbo
|
||||
|
||||
# Get released ninja from source
|
||||
mkdir -p /tmp/ninja
|
||||
cd /tmp/ninja
|
||||
wget -nv https://codeload.github.com/Kitware/ninja/zip/refs/tags/v1.11.1.g95dee.kitware.jobserver-1 -O ninja.zip
|
||||
unzip ninja.zip
|
||||
cd ninja-1.11.1.g95dee.kitware.jobserver-1
|
||||
./configure.py --bootstrap
|
||||
cp ninja /usr/local/bin/
|
||||
rm -rf /tmp/ninja
|
||||
|
||||
# Install FFmpeg and dependencies
|
||||
# Build NASM
|
||||
mkdir -p /tmp/nasm-2.15.05
|
||||
cd /tmp
|
||||
wget -qO- "https://distfiles.macports.org/nasm/nasm-2.15.05.tar.bz2" | tar -xvj
|
||||
cd nasm-2.15.05
|
||||
./autogen.sh
|
||||
./configure --prefix="/usr/local"
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/nasm-2.15.05
|
||||
|
||||
# Build YASM
|
||||
mkdir -p /tmp/yasm-1.3.0
|
||||
cd /tmp
|
||||
wget -qO- "http://www.tortall.net/projects/yasm/releases/yasm-1.3.0.tar.gz" | tar -xvz
|
||||
cd yasm-1.3.0
|
||||
./configure --prefix="/usr/local"
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/yasm-1.3.0
|
||||
|
||||
# Build x264
|
||||
mkdir -p /tmp/x264-snapshot-20191217-2245-stable
|
||||
cd /tmp
|
||||
wget -qO- "https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-20191217-2245-stable.tar.bz2" | tar -xvj
|
||||
cd /tmp/x264-snapshot-20191217-2245-stable
|
||||
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig" ./configure --prefix="/usr/local" --enable-shared
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/x264-snapshot-20191217-2245-stable
|
||||
|
||||
# Build x265
|
||||
mkdir -p /tmp/x265_2.7
|
||||
cd /tmp
|
||||
wget -qO- "https://get.videolan.org/x265/x265_2.7.tar.gz" | tar -xvz
|
||||
cd /tmp/x265_2.7/build/linux
|
||||
cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX="/usr/local" -DENABLE_SHARED:bool=on ../../source
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/x265_2.7
|
||||
|
||||
# Build fdk-aac
|
||||
mkdir -p /tmp/fdk-aac-2.0.2
|
||||
cd /tmp
|
||||
wget -qO- "https://sourceforge.net/projects/opencore-amr/files/fdk-aac/fdk-aac-2.0.2.tar.gz" | tar -xvz
|
||||
cd /tmp/fdk-aac-2.0.2
|
||||
autoreconf -fiv
|
||||
./configure --prefix="/usr/local" --enable-shared --disable-static
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/fdk-aac-2.0.2
|
||||
|
||||
# Build FFmpeg
|
||||
cd /tmp
|
||||
git clone -b release/4.4 https://git.ffmpeg.org/ffmpeg.git ffmpeg
|
||||
cd ffmpeg
|
||||
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig"
|
||||
./configure --prefix="/usr/local" --extra-cflags="-I/usr/local/include" --extra-ldflags="-L/usr/local/lib" --extra-libs=-lpthread --extra-libs=-lm --enable-shared --disable-static --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-gpl --enable-nonfree
|
||||
make -j$(nproc) install
|
||||
rm -rf /tmp/ffmpeg
|
||||
|
||||
cp /tmp/local-pin-600 /etc/apt/preferences.d
|
||||
|
||||
command -v lbzip2
|
||||
ln -sf $(command -v lbzip2) /usr/local/bin/compressor || ln -sf $(command -v bzip2) /usr/local/bin/compressor
|
||||
|
||||
# Install Google Benchmark
|
||||
mkdir -p /tmp/Gbenchmark
|
||||
cd /tmp/Gbenchmark
|
||||
wget -qO- https://github.com/google/benchmark/archive/refs/tags/v1.6.1.tar.gz | tar xz
|
||||
cmake -Sbenchmark-1.6.1 -Bbuild -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DBENCHMARK_ENABLE_TESTING=OFF -DCMAKE_CXX_STANDARD=14
|
||||
make -j -C build
|
||||
cd /tmp/Gbenchmark/build
|
||||
make install
|
||||
|
||||
# Build boost-1.85.0 from source for RPP
|
||||
# Installing in a non-standard location since the test packages of hipFFT and rocFFT pick up the version of
|
||||
# the installed Boost library and declare a package dependency on that specific version of Boost.
|
||||
# For example, if this was installed in the standard location it would declare a dependency on libboost-dev(el)1.85.0
|
||||
# which is not available as a package in any distro.
|
||||
# Once this is fixed, we can remove the Boost package from the requirements list and install this
|
||||
# in the standard location
|
||||
mkdir -p /tmp/boost-1.85.0
|
||||
cd /tmp/boost-1.85.0
|
||||
wget -nv https://sourceforge.net/projects/boost/files/boost/1.85.0/boost_1_85_0.tar.bz2 -O ./boost_1_85_0.tar.bz2
|
||||
tar -xf boost_1_85_0.tar.bz2 --use-compress-program="/usr/local/bin/compressor"
|
||||
cd boost_1_85_0
|
||||
./bootstrap.sh --prefix=${RPP_DEPS_LOCATION} --with-python=python3
|
||||
./b2 stage -j$(nproc) threading=multi link=shared cxxflags="-std=c++11"
|
||||
./b2 install threading=multi link=shared --with-system --with-filesystem
|
||||
./b2 stage -j$(nproc) threading=multi link=static cxxflags="-std=c++11 -fpic" cflags="-fpic"
|
||||
./b2 install threading=multi link=static --with-system --with-filesystem
|
||||
rm -rf /tmp/boost-1.85.0
|
||||
@@ -7,7 +7,6 @@ bison
|
||||
bridge-utils
|
||||
build-essential
|
||||
bzip2
|
||||
ccache
|
||||
check
|
||||
chrpath
|
||||
cifs-utils
|
||||
|
||||
77
tools/rocm-build/rocm-6.3.3.xml
Normal file
77
tools/rocm-build/rocm-6.3.3.xml
Normal file
@@ -0,0 +1,77 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<manifest>
|
||||
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
|
||||
<default revision="refs/tags/rocm-6.3.3"
|
||||
remote="rocm-org"
|
||||
sync-c="true"
|
||||
sync-j="4" />
|
||||
<!--list of projects for ROCm-->
|
||||
<project name="ROCm" revision="roc-6.3.x" />
|
||||
<project name="ROCK-Kernel-Driver" />
|
||||
<project name="ROCR-Runtime" />
|
||||
<project name="amdsmi" />
|
||||
<project name="rdc" />
|
||||
<project name="rocm_bandwidth_test" />
|
||||
<project name="rocm_smi_lib" />
|
||||
<project name="rocm-core" />
|
||||
<project name="rocm-examples" />
|
||||
<project name="rocminfo" />
|
||||
<project name="rocprofiler" />
|
||||
<project name="rocprofiler-register" />
|
||||
<project name="rocprofiler-sdk" />
|
||||
<project name="rocprofiler-compute" />
|
||||
<project name="rocprofiler-systems" />
|
||||
<project name="roctracer" />
|
||||
<!--HIP Projects-->
|
||||
<project name="HIP" />
|
||||
<project name="hip-tests" />
|
||||
<project name="HIPIFY" />
|
||||
<project name="clr" />
|
||||
<project name="hipother" />
|
||||
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
|
||||
<project name="half" />
|
||||
<project name="llvm-project" />
|
||||
<!-- gdb projects -->
|
||||
<project name="ROCdbgapi" />
|
||||
<project name="ROCgdb" />
|
||||
<project name="rocr_debug_agent" />
|
||||
<!-- ROCm Libraries -->
|
||||
<project groups="mathlibs" name="AMDMIGraphX" />
|
||||
<project groups="mathlibs" name="MIOpen" />
|
||||
<project groups="mathlibs" name="MIVisionX" />
|
||||
<project groups="mathlibs" name="ROCmValidationSuite" />
|
||||
<project groups="mathlibs" name="Tensile" />
|
||||
<project groups="mathlibs" name="composable_kernel" />
|
||||
<project groups="mathlibs" name="hipBLAS-common" />
|
||||
<project groups="mathlibs" name="hipBLAS" />
|
||||
<project groups="mathlibs" name="hipBLASLt" />
|
||||
<project groups="mathlibs" name="hipCUB" />
|
||||
<project groups="mathlibs" name="hipFFT" />
|
||||
<project groups="mathlibs" name="hipRAND" />
|
||||
<project groups="mathlibs" name="hipSOLVER" />
|
||||
<project groups="mathlibs" name="hipSPARSE" />
|
||||
<project groups="mathlibs" name="hipSPARSELt" />
|
||||
<project groups="mathlibs" name="hipTensor" />
|
||||
<project groups="mathlibs" name="hipfort" />
|
||||
<project groups="mathlibs" name="rccl" />
|
||||
<project groups="mathlibs" name="rocAL" />
|
||||
<project groups="mathlibs" name="rocALUTION" />
|
||||
<project groups="mathlibs" name="rocBLAS" />
|
||||
<project groups="mathlibs" name="rocDecode" />
|
||||
<project groups="mathlibs" name="rocJPEG" />
|
||||
<project groups="mathlibs" name="rocPyDecode" />
|
||||
<project groups="mathlibs" name="rocFFT" />
|
||||
<project groups="mathlibs" name="rocPRIM" />
|
||||
<project groups="mathlibs" name="rocRAND" />
|
||||
<project groups="mathlibs" name="rocSOLVER" />
|
||||
<project groups="mathlibs" name="rocSPARSE" />
|
||||
<project groups="mathlibs" name="rocThrust" />
|
||||
<project groups="mathlibs" name="rocWMMA" />
|
||||
<project groups="mathlibs" name="rocm-cmake" />
|
||||
<project groups="mathlibs" name="rpp" />
|
||||
<project groups="mathlibs" name="TransferBench" />
|
||||
<!-- Projects for OpenMP-Extras -->
|
||||
<project name="aomp" path="openmp-extras/aomp" />
|
||||
<project name="aomp-extras" path="openmp-extras/aomp-extras" />
|
||||
<project name="flang" path="openmp-extras/flang" />
|
||||
</manifest>
|
||||
Reference in New Issue
Block a user