Compare commits

..

2 Commits

Author SHA1 Message Date
Peter Park
54ba8bfed1 update group name 2025-05-29 10:41:53 -04:00
Peter Park
55e13a3c38 add Falcon to vllm-benchmark-models.yaml 2025-05-08 14:13:03 -04:00
68 changed files with 1844 additions and 2476 deletions

View File

@@ -77,8 +77,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
cmakeBuildDir: 'clr/build'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=amd
@@ -139,8 +138,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
cmakeBuildDir: 'clr/build'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=nvidia

View File

@@ -73,7 +73,6 @@ jobs:
parameters:
componentName: upstream-llvm
cmakeBuildDir: $(Pipeline.Workspace)/llvm-project/llvm/build
cmakeSourceDir: $(Pipeline.Workspace)/llvm-project/llvm
installDir: $(Pipeline.Workspace)/llvm
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release

View File

@@ -15,7 +15,6 @@ parameters:
type: object
default:
- bison
- cmake
- dejagnu
- flex
- libbabeltrace-dev
@@ -40,69 +39,17 @@ parameters:
- name: jobMatrix
type: object
default:
testJobs:
buildTestJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
jobs:
- job: ROCgdb
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: PKG_CONFIG_PATH
value: $(Agent.BuildDirectory)/rocm/share/pkgconfig
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-autotools.yml
parameters:
configureFlags: >-
--program-prefix=roc
--enable-64-bit-bfd
--enable-targets="x86_64-linux-gnu,amdgcn-amd-amdhsa"
--disable-ld
--disable-gas
--disable-gdbserver
--disable-sim
--enable-tui
--disable-gdbtk
--disable-shared
--disable-gprofng
--with-expat
--with-system-zlib
--without-guile
--with-babeltrace
--with-lzma
--with-python=python3
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ROCgdb_test_${{ job.target }}
dependsOn: ROCgdb
- ${{ each job in parameters.jobMatrix.buildTestJobs }}:
- job: ROCgdb_build_test_${{ job.target }}
condition:
and(succeeded(),
and(
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
@@ -152,6 +99,8 @@ jobs:
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- task: Bash@3
displayName: Setup test environment
inputs:
@@ -160,6 +109,7 @@ jobs:
# Assuming that /opt is no longer persistent across runs, test environments are fully ephemeral
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
echo "##vso[task.prependpath]/opt/rocm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: check-gdb

View File

@@ -27,7 +27,6 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -44,7 +43,6 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -110,7 +108,6 @@ jobs:
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/clang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/llvm/include
-DCPACK_PACKAGING_INSTALL_PREFIX=$(Build.BinariesDirectory)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -118,7 +118,6 @@ jobs:
parameters:
componentName: extras
cmakeBuildDir: '$(Build.SourcesDirectory)/aomp-extras/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/aomp-extras'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm
@@ -130,7 +129,6 @@ jobs:
parameters:
componentName: openmp
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/openmp/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/openmp'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"
@@ -157,7 +155,6 @@ jobs:
parameters:
componentName: offload
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/offload/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/offload'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"

View File

@@ -26,11 +26,9 @@ jobs:
parameters:
componentName: HIP
pipelineId: $(HIP_PIPELINE_ID)
- task: Bash@3
displayName: Copy HIP artifacts
inputs:
targetType: inline
script: cp -a $(Agent.BuildDirectory)/rocm/* $(Build.BinariesDirectory)/
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:
sourceDir: $(Agent.BuildDirectory)/rocm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -92,8 +92,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: external
cmakeBuildDir: '$(Build.SourcesDirectory)/deps/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/deps'
cmakeBuildDir: 'deps/build'
installDir: '$(Pipeline.Workspace)/deps-install'
extraBuildFlags: >-
-DBUILD_BOOST=OFF

View File

@@ -83,8 +83,7 @@ jobs:
-DROCM_LLVM_BACKWARD_COMPAT_LINK=$(Build.BinariesDirectory)/llvm
-DROCM_LLVM_BACKWARD_COMPAT_LINK_TARGET=./lib/llvm
-GNinja
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm'
cmakeBuildDir: 'llvm/build'
installDir: '$(Build.BinariesDirectory)/llvm'
# use llvm-lit to run unit tests for llvm, clang, and lld
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
@@ -122,8 +121,7 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build"
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/device-libs/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/device-libs'
cmakeBuildDir: 'amd/device-libs/build'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: comgr
@@ -131,8 +129,7 @@ jobs:
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build;$(Build.SourcesDirectory)/amd/device-libs/build"
-DCOMGR_DISABLE_SPIRV=1
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/comgr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/comgr'
cmakeBuildDir: 'amd/comgr/build'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: comgr
@@ -145,8 +142,7 @@ jobs:
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DHIPCC_BACKWARD_COMPATIBILITY=OFF
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/hipcc/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/hipcc'
cmakeBuildDir: 'amd/hipcc/build'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -105,7 +105,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
extraBuildFlags: >-
-DgRPC_INSTALL=ON

View File

@@ -125,7 +125,6 @@ jobs:
parameters:
componentName: PyBind11
cmakeBuildDir: '$(Build.SourcesDirectory)/pybind11/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/pybind11'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -142,7 +141,6 @@ jobs:
parameters:
componentName: RapidJSON
cmakeBuildDir: '$(Build.SourcesDirectory)/rapidjson/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/rapidjson'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -202,6 +200,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm/include/rocal
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -108,6 +108,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -114,6 +114,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -5,12 +5,6 @@ parameters:
- name: checkoutRef
type: string
default: ''
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -72,8 +66,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckout: ${{ parameters.sparseCheckout }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -168,6 +168,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -105,7 +105,6 @@ jobs:
-DLAPACKE=OFF
-GNinja
cmakeBuildDir: '$(Build.SourcesDirectory)/lapack/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/lapack'
installDir: '$(Pipeline.Workspace)/deps-install'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:

View File

@@ -183,7 +183,6 @@ jobs:
parameters:
componentName: rocm-examples
testDir: $(Build.SourcesDirectory)/build
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex "rocfft_callback"'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -167,6 +167,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -38,7 +38,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/grpc/build
cmakeSourceDir: $(Agent.BuildDirectory)/grpc
extraBuildFlags: >-
-DgRPC_INSTALL=ON
-DgRPC_BUILD_TESTS=OFF

View File

@@ -38,7 +38,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/googletest/build
cmakeSourceDir: $(Agent.BuildDirectory)/googletest
extraBuildFlags: >-
-DGTEST_FORCE_SHARED_CRT=ON
-DCMAKE_DEBUG_POSTFIX=d

View File

@@ -10,10 +10,10 @@ parameters:
default: ''
- name: cmakeBuildDir
type: string
default: $(Agent.BuildDirectory)/s/build
default: 'build'
- name: cmakeSourceDir
type: string
default: $(Agent.BuildDirectory)/s
default: '..'
- name: customBuildTarget
type: string
default: ''
@@ -46,7 +46,7 @@ steps:
${{ if eq(parameters.customInstallPath, true) }}:
cmakeArgs: -DCMAKE_INSTALL_PREFIX=${{ parameters.installDir }} ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
${{ else }}:
cmakeArgs: ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
cmakeArgs: ${{ parameters.extraBuildFlags }} ..
- ${{ if parameters.printDiskSpace }}:
- script: df -h
displayName: Disk space before build

View File

@@ -4,12 +4,6 @@ parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# submodule download behaviour
# change to 'recursive' for repos with submodules
- name: submoduleBehaviour
@@ -21,13 +15,3 @@ steps:
clean: true
submodules: ${{ parameters.submoduleBehaviour }}
retryCountOnTaskFailure: 3
fetchFilter: blob:none
${{ if eq(parameters.sparseCheckout, true) }}:
sparseCheckoutDirectories: ${{ parameters.sparseCheckoutDir }}
path: sparse
- ${{ if eq(parameters.sparseCheckout, true) }}:
- task: Bash@3
displayName: Symlink sparse checkout
inputs:
targetType: inline
script: ln -s $(Agent.BuildDirectory)/sparse/${{ parameters.sparseCheckoutDir }} $(Agent.BuildDirectory)/s

View File

@@ -463,7 +463,7 @@ steps:
displayName: 'List downloaded ROCm files'
inputs:
targetType: inline
script: ls -la1R $(Agent.BuildDirectory)/rocm
script: ls -1R $(Agent.BuildDirectory)/rocm
- ${{ if eq(parameters.skipLibraryLinking, false) }}:
- task: Bash@3
displayName: 'Link ROCm shared libraries'

View File

@@ -106,7 +106,6 @@ parameters:
type: object
default:
- gfx90a
- gfx942
steps:
# these steps should only be run if there was a failure or warning

View File

@@ -32,10 +32,8 @@ Andrej
Arb
Autocast
BARs
BatchNorm
BLAS
BMC
BabelStream
Blit
Blockwise
Bluefield
@@ -126,7 +124,6 @@ FX
Filesystem
FindDb
Flang
FlashAttention
FluxBenchmark
Fortran
Fuyu
@@ -141,7 +138,6 @@ GDR
GDS
GEMM
GEMMs
GFLOPS
GFortran
GFXIP
Gemma
@@ -230,8 +226,6 @@ LM
LSAN
LSan
LTS
LSTMs
LanguageCrossEntropy
LoRA
MEM
MERCHANTABILITY
@@ -249,7 +243,6 @@ MMIOH
MMU
MNIST
MPI
MPT
MSVC
MVAPICH
MVFFR
@@ -266,7 +259,6 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MosaicML
Multicore
Multithreaded
MyEnvironment
@@ -275,7 +267,6 @@ NBIO
NBIOs
NCCL
NCF
NFS
NIC
NICs
NLI
@@ -338,7 +329,6 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretrained
Pretraining
Profiler's
PyPi
@@ -386,7 +376,6 @@ Ryzen
SALU
SBIOS
SCA
ScaledGEMM
SDK
SDMA
SDPA
@@ -427,8 +416,6 @@ TCI
TCIU
TCP
TCR
TensorRT
TensorFloat
TF
TFLOPS
TP
@@ -507,7 +494,6 @@ ZenDNN
accuracies
activations
addr
ade
ai
alloc
allocatable
@@ -515,7 +501,6 @@ allocator
allocators
amdgpu
api
aten
atmi
atomics
autogenerated
@@ -524,7 +509,6 @@ avx
awk
backend
backends
bb
benchmarked
benchmarking
bfloat
@@ -548,7 +532,6 @@ cd
centos
centric
changelog
checkpointing
chiplet
cmake
cmd
@@ -589,7 +572,6 @@ de
deallocation
debuggability
debian
deepseek
denoise
denoised
denoises
@@ -613,7 +595,6 @@ embeddings
enablement
encodings
endfor
endif
endpgm
enqueue
env
@@ -656,7 +637,6 @@ hipSPARSELt
hipTensor
hipamd
hipblas
hipcc
hipcub
hipfft
hipfort
@@ -686,7 +666,6 @@ installable
interop
interprocedural
intra
intrinsics
invariants
invocating
ipo
@@ -716,7 +695,6 @@ migratable
miopen
miopengemm
mivisionx
mixtral
mjx
mkdir
mlirmiopen
@@ -833,7 +811,6 @@ roctracer
rst
runtime
runtimes
ResNet
sL
scalability
scalable
@@ -849,7 +826,6 @@ sm
smi
softmax
spack
spmm
src
stochastically
strided
@@ -858,10 +834,8 @@ subdirectory
subexpression
subfolder
subfolders
submatrix
submodule
submodules
subnet
supercomputing
symlink
symlinks
@@ -883,7 +857,6 @@ torchvision
tqdm
tracebacks
txt
TopK
uarch
uncached
uncacheable

View File

@@ -6,7 +6,7 @@ different versions of the ROCm software stack and its components.
## ROCm 6.4.1
See the [ROCm 6.4.1 release notes](https://rocm.docs.amd.com/en/docs-6.4.1/about/release-notes.html)
See the [ROCm 6.4.1 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.4.2)
@@ -16,24 +16,11 @@ for a complete overview of this release.
* Dumping CPER entries from RAS tool `amdsmi_get_gpu_cper_entries()` to Python and C APIs.
- Dumping CPER entries consist of `amdsmi_cper_hdr_t`.
- Dumping CPER entries is also enabled in the CLI interface through `sudo amd-smi ras --cper`.
* `amdsmi_get_gpu_busy_percent` to the C API.
#### Changed
* Modified VRAM display for `amd-smi monitor -v`.
#### Optimized
* Improved load times for CLI commands when the GPU has multiple parititons.
#### Resolved issues
#### Resolved
* Fixed partition enumeration in `amd-smi list -e`, `amdsmi_get_gpu_enumeration_info()`, `amdsmi_enumeration_info_t`, `drm_card`, and `drm_render` fields.
#### Known issues
* When using the `--follow` flag with `amd-smi ras --cper`, CPER entries are not streamed continuously as intended. This will be fixed in an upcoming ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
@@ -42,22 +29,20 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
#### Added
* New log mask enumeration `LOG_COMGR` enables logging precise code object information.
* New debug mask, to print precise code object information for logging.
#### Changed
* HIP runtime uses device bitcode before SPIRV.
* The implementation of preventing `hipLaunchKernel` latency degradation with number of idle streams is reverted or disabled by default.
* Calling the code object has changed. HIP runtime now uses device bitcode before SPIR-V.
#### Optimized
* Improved kernel logging includes de-mangling shader names.
* Refined implementation in HIP APIs `hipEventRecords` and `hipStreamWaitEvent` for performance improvement.
* Improved kernel logging using the demangling shader names.
#### Resolved issues
* Stale state during the graph capture. The return error was fixed, HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Segmentation fault during kernel execution. HIP runtime now allows maximum stack size as per ISA on the GPU device.
* Stale state during the graph capture. The return error was fixed, and HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Issue of `hipEventRecords` failing to call the `hip::getStream` runtime function.
### **hipBLASLt** (0.12.1)
@@ -76,16 +61,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* Fixed an issue where early termination, in rare circumstances, could cause the application to stop responding by adding synchronization before destroying a proxy thread.
* Fixed the accuracy issue for the MSCCLPP `allreduce7` kernel in graph mode.
#### Known issues
* When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault. The recommended workaround is to disable MSCCL with `export RCCL_MSCCL_ENABLE=0`.
This issue will be fixed in a future ROCm release.
* Within the RCCL-UnitTests test suite, failures occur in tests ending with the
`.ManagedMem` and `.ManagedMemGraph` suffixes. These failures only affect the
test results and do not affect the RCCL component itself. This issue will be
resolved in a future ROCm release.
### **rocALUTION** (3.2.3)
#### Added
@@ -125,7 +100,7 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
#### Added
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/amd-staging/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
#### Resolved issues
@@ -876,10 +851,6 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
#### Added
- Support for VA-API and rocDecode tracing.
- Aggregation of MPI data collected across distributed nodes and ranks. The data is concatenated into a single proto file.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
#### Resolved issues
@@ -890,21 +861,9 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
- Fixed interruption in config file generation.
- Fixed segmentation fault while running rocprof-sys-instrument.
- Fixed an issue where running `rocprof-sys-causal` or using the `-I all` option with `rocprof-sys-sample` caused the system to become non-responsive.
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **ROCm Validation Suite** (1.1.0)
#### Added
* Configuration files for MI210.
* Support for OCP fp8 data type.
* GPU index-based CLI execution.
#### Changed
* JSON logging with updated schema.
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
### **rocPRIM** (3.4.0)

81
Manifest6.4.0 Normal file
View File

@@ -0,0 +1,81 @@
This XML file does not appear to have any style information associated with it. The document tree is shown below.
<manifest>
<remote name="gerritgit" fetch="ssh://gerritgit/" review="gerrit-git.amd.com"/>
<remote name="lightning-ghemu" fetch="ssh://github-emu/AMD-Lightning-Internal"/>
<remote name="rocm" fetch="https://github.com/ROCm"/>
<remote name="rocm-ghemu" fetch="ssh://github-emu/AMD-ROCm-Internal"/>
<default remote="gerritgit" revision="release/rocm-rel-6.4" sync-j="4" sync-c="true"/>
<project name="AMDMIGraphX" remote="rocm" revision="908b94a3f0822a4fee89d99c3cfc51cd9c93f2f6" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="MIOpen" remote="rocm" revision="f10c6ed8085cfabf8877294ab44301d8180999e8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="MIVisionX" remote="rocm" revision="a2b69e5b30f2dbdf66055ec99a2b5559b572f7af" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="OpenCL-CLHPP" remote="rocm-ghemu" revision="6f7e82dee83aea7f277a4b874da309902ea51f6e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="OpenCL-Headers" remote="rocm-ghemu" revision="848d67b6fd471318816a81601d469b086487d18e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCR-Runtime" remote="rocm-ghemu" revision="1d9f08cabd33bd6302add72d0be2bfe0e64eea3a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCdbgapi" remote="rocm-ghemu" revision="59be7ff0aaafe82feb78f30990c8fdf62838cc98" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCgdb" remote="rocm-ghemu" revision="401bb21f2f3c72bbb90ccce12dc3ef481f9a1d8a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCmValidationSuite" remote="rocm" revision="5f1a9665f6241b0346c88cfd21a6073628da3593" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="Tensile" remote="rocm" revision="be49885fce2a61b600ae4593f1c2d00c8b4fa11e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="TransferBench" remote="rocm" revision="3ea2f226ec818158ba97e4ee0ec0b589f13f4641" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="amdsmi" remote="rocm-ghemu" revision="e6a209ef809f1b09a424572afd685ec754a9042b" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="aomp" path="openmp-extras/aomp" remote="lightning-ghemu" revision="24932c59c0759a57ee52d327d9a10a2e466e35a7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="aomp-extras" path="openmp-extras/aomp-extras" remote="lightning-ghemu" revision="6f8038ada9dec082ea091d30c98c0834669d12a1" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="aqlprofile" remote="rocm-ghemu" revision="7fae75ec6bf7b1a631707ae859542d733f8a1f43" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="build-infra" path="ROCm" remote="rocm-ghemu" revision="811ec9cc6d1588bf66619365b9b4db96ac6acf68" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra"/>
<project name="clr" remote="rocm-ghemu" revision="a1adcfdd44f4560c0268e36c8afeb94f760dc963" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="composable_kernel" remote="rocm" revision="a8c5bd9b9ad950c3e742877e01cb784da91664e3" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="compute/ec/hip-examples" path="HIP-Examples" revision="41b0cff8077a25390c2bbda827eb9f6f37ec1ef3" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="compute/ec/hip-examples-private" path="hip-examples-private" revision="dc69edb405804987753735a369478503d82ce9c2" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="compute/ec/jenkins-utils" path="jenkins-utils" revision="bb517b014ff055b62d3860addc23ddd06b0c3e6e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/ml-framework-ci" path="ml-framework-ci" revision="83440e22ebf1e9443b6df737224c1e5e2b91e0c4" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,framework"/>
<project name="compute/ec/packaging/meta" path="meta" revision="c7cffa2e4199da1fd68b8b3568282dd59d49a4df" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/prototype" path="build" revision="d71a2766e11e057e5c698caea8fc4ebc0f72cb3e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/rocm_bandwidth_test" path="rocm_bandwidth_test" revision="84b8ddd2686be9bd3e438126b44e6bb10d94d522" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="flang" path="openmp-extras/flang" remote="lightning-ghemu" revision="390169508a03cecf85d43f5cee41e223355f598f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="half" remote="rocm" revision="1ddada225144cac0de8f6b5c0dd9acffd99a2e68" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hip" remote="rocm-ghemu" revision="22b0b2eb9a09e30dca11b213872127f9caa2e1e7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="hip-tests" remote="rocm-ghemu" revision="dc28111737706aad93e38c2f746ccbc13dbf1b80" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="hipBLAS" remote="rocm" revision="0a335435e9c8a833d7106e4ae5057eb58cea2fef" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipBLAS-common" remote="rocm" revision="7c1566ba4628e777b91511242899b6df48555d04" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipBLASLt" remote="rocm" revision="4d62e135cfb4008cf7b508995cad347a1bc750c8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipCUB" remote="rocm" revision="a6005943c5804535990429925318e7900eb6e801" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipFFT" remote="rocm" revision="396169c84a2bb3c7ed7245caefe66002138e7c6c" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipRAND" remote="rocm" revision="d2516cc199690fd91abfdc5908ecfd88e3553067" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSOLVER" remote="rocm" revision="ca0de3c9c95df4345b76cd8a56e72c84b7d5fc79" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSPARSE" remote="rocm" revision="a6c62e48eb8a2326475f7bbb4705c5b926a5edc8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSPARSELt" remote="rocm" revision="f3f4f590a49ae9f9c9ce1451c42db4c2bfd00eed" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipTensor" remote="rocm" revision="e5529b92914be79e4887a92b48b30f88b616c9a5" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipfort" remote="rocm" revision="f3d6aa3e8657d665a43fa2815ca2e49ce39a464a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipify" path="HIPIFY" remote="lightning-ghemu" revision="ed0de49132211c6ddbd40f5cd89b5841e832ac3d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="hipother" remote="rocm-ghemu" revision="49b1588f834dbe1a4db1bddb3647a91b15f618b8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="llvm-project" remote="lightning-ghemu" revision="aa0c041cb49bb50af268504907b7899fec59ae4e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="rccl" remote="rocm" revision="12f8f61f3a5db87bf158c60fdd5e38a32c903b08" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rdc" remote="rocm-ghemu" revision="0224310c872df0fae56ffc883c50c7f47dc82870" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocAL" remote="rocm" revision="373ef865aca43528559e7a9134f09e49a9e9b7c6" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocALUTION" remote="rocm" revision="cb256de3574a4fcbc6a52ed5986b787173cd6dc2" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocBLAS" remote="rocm" revision="80e5394d6a68901ce48b03da47b33b1e69d58be7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocDecode" remote="rocm" revision="a2a7b63cad8f90a94e21232b44460a8fb2d52304" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocFFT" remote="rocm" revision="058ba87fdcfdae334dbc8dbe048955b248e9328a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocJPEG" remote="rocm" revision="73d36d35d90137ffbfcec276bdf973823ef0c0b9" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocPRIM" remote="rocm" revision="d8771ec18ad45c4d697800c22fb21241f22a915f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocPyDecode" remote="rocm" revision="848e49d29d4d6173fb4b57a9223ce68c049baa28" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocRAND" remote="rocm" revision="4d5d3a88d1898705dadf5c06e7b0400d51a13c36" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSHMEM" remote="rocm" revision="7702b3c0f3f41baf6a80aa6b22fa90dec1a6801e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSOLVER" remote="rocm" revision="db754e3f55daab54abb86f17cd6b4066c504e163" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSPARSE" remote="rocm" revision="4953add0aee37ad26700e8bcd6defbfa6b3a4d08" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocThrust" remote="rocm" revision="6bf2777019827e1a2898547ced9a03bf5024ed7d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocWMMA" remote="rocm" revision="1a5b6231663fcf3e00abf790aeae843278f16a65" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocm-cmake" remote="rocm" revision="ecc716b97c2239cff00422ed7a43cd52a0839a0e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocm-core" remote="rocm-ghemu" revision="73dae9c82ace4fb8e1e4028f86ff0365f21c9f51" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="rocm-examples" remote="rocm" revision="3bbd2987a3b46cfd2c8348c2317042f3ad604e38" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocm_smi_lib" remote="rocm-ghemu" revision="1f242d314916336d6ce5c731f486edfaa8f0b987" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocminfo" remote="rocm-ghemu" revision="6ea2ba38c8e1ab2899acf66878148b1192fd0bee" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler" remote="rocm-ghemu" revision="40da7312a06f8052f5c148a4709cab64686f881d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-compute" remote="rocm" revision="7b25d958b4e030ea64a24ed0a62dcac1e48193ab" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-register-internal" path="rocprofiler-register" remote="rocm-ghemu" revision="7c6cd44f637d400b50b803b0b351be302ad6827d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-sdk-internal" path="rocprofiler-sdk" remote="rocm-ghemu" revision="e8e49fe76971000a42a5a177d9a727d16dd0ebcf" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-systems" remote="rocm" revision="2e945e4a08781e13a822f568814e2c434fd8858f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocr_debug_agent" remote="rocm-ghemu" revision="9eec1a52a36b5203bbac54a1b442fe9a45b6a43e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="roctracer" remote="rocm-ghemu" revision="f55a6943816641c081aa167c8a45904ddae2ba5e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rpp" remote="rocm" revision="5fb204ca7018b87889e061b720c5b06f6b9bce9b" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="spirv-llvm-translator" path="llvm-project/llvm/projects/SPIRV-LLVM-Translator" remote="lightning-ghemu" revision="ae12ddbec86765df369b18ac764e170082079819" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
</manifest>

View File

@@ -50,7 +50,7 @@ The following example shows how to use the repo tool to download the ROCm source
```bash
mkdir -p ~/ROCm/
cd ~/ROCm/
export ROCM_VERSION=6.4.1
export ROCM_VERSION=6.4.0
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
```
@@ -77,7 +77,7 @@ The Build time will reduce significantly if we limit the GPU Architecture/s agai
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
cd ~/WORKSPACE/
export ROCM_VERSION=6.4.1
export ROCM_VERSION=6.4.0
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.4.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
@@ -127,7 +127,6 @@ bash install-prerequisites.sh
export GPU_ARCHS="gfx942" # Example
export GPU_ARCHS="gfx940;gfx941;gfx942" # Example
cd ~/WORKSPACE/
# Pick and run build commands in the docker container:
# Build rocm-dev packages
make -f ROCm/tools/rocm-build/ROCm.mk -j ${NPROC:-$(nproc)} rocm-dev

View File

@@ -24,6 +24,8 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm known issues](#rocm-known-issues)
- [ROCm resolved issues](#rocm-resolved-issues)
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
@@ -41,7 +43,6 @@ The following are notable new features and improvements in ROCm 6.4.1. For chang
AMD Instinct MI300X now supports DPX partition mode under NPS2 memory mode. For more partitioning information, see the [Deep dive into the MI300 compute and memory partition modes](https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html) blog and [AMD Instinct MI300X system optimization](https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#change-gpu-partition-modes).
### Introducing the ROCm Data Science toolkit
The ROCm Data Science toolkit (or ROCm-DS) is an open-source software collection for high-performance data science applications built on the core ROCm platform. You can leverage ROCm-DS to accelerate both new and existing data science workloads, allowing you to execute intensive applications with larger datasets at lightning speed. ROCm-DS is in an early access state. Running production workloads is not recommended. For more information, see [AMD ROCm-DS Documentation](https://rocm.docs.amd.com/projects/rocm-ds/en/latest/index.html).
### ROCm Offline Installer Creator updates
@@ -55,7 +56,7 @@ The ROCm Runfile Installer 6.4.1 adds the following improvements:
- Performance improvements for detecting a previous ROCm install.
- Removal of the extra `opt` directory created for the target during the ROCm installation. For example, installing to `target=/home/amd` now installs ROCm to `/home/amd/rocm-6.4.1` and not `/home/amd/opt/rocm-6.4.1`. For installs using `target=/`, the installation will continue to use `/opt/`.
- The Runfile Installer can be used to uninstall any Runfile-based installation of the driver.
- In the CLI interface, the `postrocm` argument can now be run separately from the `rocm` argument. In cases where `postrocm` was missed from the initial ROCm install, `postrocm` can now be run on the same target folder. For example, if you installed ROCm 6.4.1 using `install.run target=/myrocm rocm`, you can run the post-installation separately using the command `install.run target=/myrocm/rocm-6.4.1 postrocm`.
- In the CLI interface, The `postrocm` argument can now be run separately from the `rocm` argument. In cases where `postrocm` was missed from the initial ROCm install, `postrocm` can now be run on the same target folder. For example, if you install ROCm 6.4.1 using: `install.run target=/myrocm rocm` you can run the post-installation separately using the command `install.run target=/myrocm/rocm-6.4.1 postrocm`.
For more information, see [ROCm Runfile Installer](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-runfile-installer.html).
@@ -63,24 +64,19 @@ For more information, see [ROCm Runfile Installer](https://rocm.docs.amd.com/pro
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been expanded with five new tutorials. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training. For more information about the changes, see [Changelog for the AI Developer Hub](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/changelog.html).
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been expanded with five
new tutorials. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
* The [Training a model with LLM Foundry](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.html) performance testing guide has been added. This guide describes how to use the preconfigured [ROCm/pytorch-training](https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5) training environment and [https://github.com/ROCm/MAD](https://github.com/ROCm/MAD) to test the training performance of the LLM Foundry framework on AMD Instinct MI325X and MI300X accelerators using the [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) model.
* The [Training a model with PyTorch](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html) performance testing guide has been updated to feature the latest [ROCm/pytorch-training](https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5) Docker image (a preconfigured training environment with ROCm and PyTorch). Support for [Llama 3.3 70B](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) has been added.
* The [Training a model with JAX MaxText](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html) performance testing guide has been updated to feature the latest [ROCm/jax-training](https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.5/images/sha256-4e0516358a227cae8f552fb866ec07e2edcf244756f02e7b40212abfbab5217b) Docker image (a preconfigured training environment with ROCm, JAX, and [MaxText](https://github.com/AI-Hypercomputer/maxtext)). Support for [Llama 3.3 70B](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) has been added.
* The [vLLM inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html?model=pyt_vllm_qwq-32b) guide has been updated to feature the latest [ROCm/vLLM](https://hub.docker.com/layers/rocm/vllm/latest/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4) Docker image (a preconfigured environment for inference with ROCm and [vLLM](https://docs.vllm.ai/en/latest/)). Support for the [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) model has been added.
* The [vLLM inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html?model=pyt_vllm_qwq-32b) guide has been updated to feature the latest [ROCm/vLLM](https://hub.docker.com/layers/rocm/vllm/instinct_main/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845) Docker image (a preconfigured environment for inference with ROCm and [vLLM](https://docs.vllm.ai/en/latest/)). Support for the [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) model has been added.
* The [PyTorch inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.html?model=pyt_clip_inference) guide has been added, featuring the [ROCm/PyTorch](https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d) Docker image (a preconfigured inference environment with ROCm and PyTorch) with initial support for the [CLIP](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) and [Chai-1](https://huggingface.co/chaidiscovery/chai-1) models.
* The [Data types and precision support](https://rocm.docs.amd.com/en/latest/reference/precision-support.html) topic has been updated with new information in the library's precision support list.
* The deep learning frameworks compatibility pages have been updated with new information and are reorganized, making them easier to review. For more information, see [PyTorch compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/pytorch-compatibility.html), [TensorFlow compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/tensorflow-compatibility.html), and [JAX compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/jax-compatibility.html).
## Operating system and hardware support changes
ROCm 6.4.1 introduces support for the RDNA4 architecture-based [Radeon AI PRO
R9700](https://www.amd.com/en/products/graphics/workstations/radeon-ai-pro/ai-9000-series/amd-radeon-ai-pro-r9700.html),
[Radeon RX 9070](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070.html),
[Radeon RX 9070 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070xt.html),
Radeon RX 9070 GRE, and
[Radeon RX 9060 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9060xt.html) GPUs
for compute workloads. It also adds support for RDNA3 architecture-based [Radeon PRO W7700](https://www.amd.com/en/products/graphics/workstations/radeon-pro/w7700.html) and [Radeon RX 7800 XT](https://www.amd.com/en/products/graphics/desktops/radeon/7000-series/amd-radeon-rx-7800-xt.html) GPUs. These GPUs are supported on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
For details, see the full list of [Supported GPUs
(Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html#supported-gpus).
Operating system and hardware support remain unchanged in this release.
See the [Compatibility
matrix](../../docs/compatibility/compatibility-matrix.rst)
@@ -111,47 +107,47 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="9">Libraries</th>
<th rowspan="9">Machine learning and computer vision</th>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.4.1/index.html">Composable Kernel</a></td>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.4.0/index.html">Composable Kernel</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/composable_kernel"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.4.1/index.html">MIGraphX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.4.0/index.html">MIGraphX</a></td>
<td>2.12.0</td>
<td><a href="https://github.com/ROCm/AMDMIGraphX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.4.1/index.html">MIOpen</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.4.0/index.html">MIOpen</a></td>
<td>3.4.0</td>
<td><a href="https://github.com/ROCm/MIOpen"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.4.1/index.html">MIVisionX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.4.0/index.html">MIVisionX</a></td>
<td>3.2.0</td>
<td><a href="https://github.com/ROCm/MIVisionX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.4.1/index.html">rocAL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.4.0/index.html">rocAL</a></td>
<td>2.2.0</td>
<td><a href="https://github.com/ROCm/rocAL"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.4.1/index.html">rocDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.4.0/index.html">rocDecode</a></td>
<td>0.10.0</td>
<td><a href="https://github.com/ROCm/rocDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.4.1/index.html">rocJPEG</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.4.0/index.html">rocJPEG</a></td>
<td>0.8.0</td>
<td><a href="https://github.com/ROCm/rocJPEG"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.4.1/index.html">rocPyDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.4.0/index.html">rocPyDecode</a></td>
<td>0.3.1</td>
<td><a href="https://github.com/ROCm/rocPyDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.4.1/index.html">RPP</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.4.0/index.html">RPP</a></td>
<td>1.9.10</td>
<td><a href="https://github.com/ROCm/rpp"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -160,12 +156,12 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="2"></th>
<th rowspan="2">Communication</th>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.4.1/index.html">RCCL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.4.0/index.html">RCCL</a></td>
<td>2.22.3&nbsp;&Rightarrow;&nbsp;<a href="#rccl-2-22-3">2.22.3</td>
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSHMEM/en/docs-6.4.1/index.html">rocSHMEM</a></td>
<td><a href="https://github.com/ROCm/rocSHMEM">rocSHMEM</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/rocSHMEM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -174,82 +170,82 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="16"></th>
<th rowspan="16">Math</th>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.4.1/index.html">hipBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.4.0/index.html">hipBLAS</a></td>
<td>2.4.0</td>
<td><a href="https://github.com/ROCm/hipBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.4.1/index.html">hipBLASLt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.4.0/index.html">hipBLASLt</a></td>
<td>0.12.0&nbsp;&Rightarrow;&nbsp;<a href="#hipblaslt-0-12-1">0.12.1</td>
<td><a href="https://github.com/ROCm/hipBLASLt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.4.1/index.html">hipFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.4.0/index.html">hipFFT</a></td>
<td>1.0.18</td>
<td><a href="https://github.com/ROCm/hipFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.4.1/index.html">hipfort</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.4.0/index.html">hipfort</a></td>
<td>0.6.0</td>
<td><a href="https://github.com/ROCm/hipfort"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.4.1/index.html">hipRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.4.0/index.html">hipRAND</a></td>
<td>2.12.0</td>
<td><a href="https://github.com/ROCm/hipRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.4.1/index.html">hipSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.4.0/index.html">hipSOLVER</a></td>
<td>2.4.0</td>
<td><a href="https://github.com/ROCm/hipSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.4.1/index.html">hipSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.4.0/index.html">hipSPARSE</a></td>
<td>3.2.0</td>
<td><a href="https://github.com/ROCm/hipSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.4.1/index.html">hipSPARSELt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.4.0/index.html">hipSPARSELt</a></td>
<td>0.2.3</td>
<td><a href="https://github.com/ROCm/hipSPARSELt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.4.1/index.html">rocALUTION</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.4.0/index.html">rocALUTION</a></td>
<td>3.2.2&nbsp;&Rightarrow;&nbsp;<a href="#rocalution-3-2-3">3.2.3</td></td>
<td><a href="https://github.com/ROCm/rocALUTION"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.4.1/index.html">rocBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.4.0/index.html">rocBLAS</a></td>
<td>4.4.0</td>
<td><a href="https://github.com/ROCm/rocBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.4.1/index.html">rocFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.4.0/index.html">rocFFT</a></td>
<td>1.0.32</td>
<td><a href="https://github.com/ROCm/rocFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.4.1/index.html">rocRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.4.0/index.html">rocRAND</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.4.1/index.html">rocSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.4.0/index.html">rocSOLVER</a></td>
<td>3.28.0</td>
<td><a href="https://github.com/ROCm/rocSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.4.1/index.html">rocSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.4.0/index.html">rocSPARSE</a></td>
<td>3.4.0</td>
<td><a href="https://github.com/ROCm/rocSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.4.1/index.html">rocWMMA</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.4.0/index.html">rocWMMA</a></td>
<td>1.7.0</td>
<td><a href="https://github.com/ROCm/rocWMMA"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.4.1/src/index.html">Tensile</a></td>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.4.0/src/index.html">Tensile</a></td>
<td>4.43.0</td>
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -258,22 +254,22 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="4"></th>
<th rowspan="4">Primitives</th>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.4.1/index.html">hipCUB</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.4.0/index.html">hipCUB</a></td>
<td>3.4.0</td>
<td><a href="https://github.com/ROCm/hipCUB"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.4.1/index.html">hipTensor</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.4.0/index.html">hipTensor</a></td>
<td>1.5.0</td>
<td><a href="https://github.com/ROCm/hipTensor"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.4.1/index.html">rocPRIM</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.4.0/index.html">rocPRIM</a></td>
<td>3.4.0</td>
<td><a href="https://github.com/ROCm/rocPRIM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.4.1/index.html">rocThrust</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.4.0/index.html">rocThrust</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -282,27 +278,27 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="7">Tools</th>
<th rowspan="7">System management</th>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.4.1/index.html">AMD SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.4.0/index.html">AMD SMI</a></td>
<td>25.3.0&nbsp;&Rightarrow;&nbsp;<a href="#amd-smi-25-4-2">25.4.2</a></td>
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.4.1/index.html">ROCm Data Center Tool</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.4.0/index.html">ROCm Data Center Tool</a></td>
<td>0.3.0&nbsp;&Rightarrow;&nbsp;<a href="#rocm-data-center-tool-0-3-0">0.3.0</td>
<td><a href="https://github.com/ROCm/rdc"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.4.1/index.html">rocminfo</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.4.0/index.html">rocminfo</a></td>
<td>1.0.0</td>
<td><a href="https://github.com/ROCm/rocminfo"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.4.1/index.html">ROCm SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.4.0/index.html">ROCm SMI</a></td>
<td>7.5.0&nbsp;&Rightarrow;&nbsp;<a href="#rocm-smi-7-5-0">7.5.0</a></td>
<td><a href="https://github.com/ROCm/rocm_smi_lib"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.4.1/index.html">ROCmValidationSuite</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.4.0/index.html">ROCmValidationSuite</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -311,38 +307,38 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="6"></th>
<th rowspan="6">Performance</th>
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.4.1/index.html">ROCm Bandwidth
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.4.0/index.html">ROCm Bandwidth
Test</a></td>
<td>1.4.0</td>
<td><a href="https://github.com/ROCm/rocm_bandwidth_test/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.4.1/index.html">ROCm Compute Profiler</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.4.0/index.html">ROCm Compute Profiler</a></td>
<td>3.1.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-compute"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.4.1/index.html">ROCm Systems Profiler</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.4.0/index.html">ROCm Systems Profiler</a></td>
<td>1.0.0&nbsp;&Rightarrow;&nbsp;<a href="#rocm-systems-profiler-1-0-1">1.0.1</td>
<td><a href="https://github.com/ROCm/rocprofiler-systems"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.4.1/index.html">ROCProfiler</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.4.0/index.html">ROCProfiler</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/ROCProfiler/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.4.1/index.html">ROCprofiler-SDK</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.4.0/index.html">ROCprofiler-SDK</a></td>
<td>0.6.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-sdk/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr >
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.4.1/index.html">ROCTracer</a></td>
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.4.0/index.html">ROCTracer</a></td>
<td>4.1.0</td>
<td><a href="https://github.com/ROCm/ROCTracer/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -352,32 +348,32 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="5"></th>
<th rowspan="5">Development</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.4.1/index.html">HIPIFY</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.4.0/index.html">HIPIFY</a></td>
<td>19.0.0</td>
<td><a href="https://github.com/ROCm/HIPIFY/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.4.1/index.html">ROCdbgapi</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.4.0/index.html">ROCdbgapi</a></td>
<td>0.77.2</td>
<td><a href="https://github.com/ROCm/ROCdbgapi/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.4.1/index.html">ROCm CMake</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.4.0/index.html">ROCm CMake</a></td>
<td>0.14.0</td>
<td><a href="https://github.com/ROCm/rocm-cmake/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.4.1/index.html">ROCm Debugger (ROCgdb)</a>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.4.0/index.html">ROCm Debugger (ROCgdb)</a>
</td>
<td>15.2</td>
<td><a href="https://github.com/ROCm/ROCgdb/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.4.1/index.html">ROCr Debug Agent</a>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.4.0/index.html">ROCr Debug Agent</a>
</td>
<td>2.0.4</td>
<td><a href="https://github.com/ROCm/rocr_debug_agent/"><i
@@ -387,13 +383,13 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-compilers tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Compilers</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.4.1/index.html">HIPCC</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.4.0/index.html">HIPCC</a></td>
<td>1.1.1</td>
<td><a href="https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc"><i
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.4.1/index.html">llvm-project</a></td>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.4.0/index.html">llvm-project</a></td>
<td>19.0.0</td>
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -402,12 +398,12 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-runtimes tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Runtimes</th>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.4.1/index.html">HIP</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.4.0/index.html">HIP</a></td>
<td>6.4.0&nbsp;&Rightarrow;&nbsp;<a href="#hip-6-4-1">6.4.1</td>
<td><a href="https://github.com/ROCm/HIP/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.4.1/index.html">ROCr Runtime</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.4.0/index.html">ROCr Runtime</a></td>
<td>1.15.0&nbsp;&Rightarrow;&nbsp;<a href="#rocr-runtime-1-15-0">1.15.0</td>
<td><a href="https://github.com/ROCm/ROCR-Runtime/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -430,24 +426,11 @@ For a historical overview of ROCm component updates, see the {doc}`ROCm consolid
* Dumping CPER entries from RAS tool `amdsmi_get_gpu_cper_entries()` to Python and C APIs.
- Dumping CPER entries consist of `amdsmi_cper_hdr_t`.
- Dumping CPER entries is also enabled in the CLI interface through `sudo amd-smi ras --cper`.
* `amdsmi_get_gpu_busy_percent` to the C API.
#### Changed
* Modified VRAM display for amd-smi monitor -v.
#### Optimized
* Improved load times for CLI commands when the GPU has multiple parititons.
#### Resolved issues
#### Resolved
* Fixed partition enumeration in `amd-smi list -e`, `amdsmi_get_gpu_enumeration_info()`, `amdsmi_enumeration_info_t`, `drm_card`, and `drm_render` fields.
#### Known issues
* When using the `--follow` flag with `amd-smi ras --cper`, CPER entries are not streamed continuously as intended. This will be fixed in an upcoming ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
@@ -456,22 +439,20 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
#### Added
* New log mask enumeration `LOG_COMGR` enables logging precise code object information.
* New debug mask, to print precise code object information for logging.
#### Changed
* HIP runtime uses device bitcode before SPIRV.
* The implementation of preventing `hipLaunchKernel` latency degradation with number of idle streams is reverted/disabled by default.
* Calling the code object has changed. HIP runtime now uses device bitcode before SPIR-V.
#### Optimized
* Improved kernel logging includes de-mangling shader names.
* Refined implementation in HIP APIs `hipEventRecords` and `hipStreamWaitEvent` for performance improvement.
* Improved kernel logging using the demangling shader names.
#### Resolved issues
* Stale state during the graph capture. The return error was fixed, HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Segmentation fault during kernel execution. HIP runtime now allows maximum stack size as per ISA on the GPU device.
* Stale state during the graph capture. The return error was fixed, and HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Issue of `hipEventRecords` failing to call the `hip::getStream` runtime function.
### **hipBLASLt** (0.12.1)
@@ -490,16 +471,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/roc
* Fixed an issue where early termination, in rare circumstances, could cause the application to stop responding by adding synchronization before destroying a proxy thread.
* Fixed the accuracy issue for the MSCCLPP `allreduce7` kernel in graph mode.
#### Known issues
* When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault. The recommended workaround is to disable MSCCL with `export RCCL_MSCCL_ENABLE=0`.
This issue will be fixed in a future ROCm release.
* Within the RCCL-UnitTests test suite, failures occur in tests ending with the
`.ManagedMem` and `.ManagedMemGraph` suffixes. These failures only affect the
test results and do not affect the RCCL component itself. This issue will be
resolved in a future ROCm release.
### **rocALUTION** (3.2.3)
#### Added
@@ -539,7 +510,7 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
#### Added
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/amd-staging/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
#### Resolved issues
@@ -556,35 +527,6 @@ See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rele
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
### Radeon AI PRO R9700 hangs when running Stable Diffusion 2.1 at batch sizes above four
Radeon AI PRO R9700 GPUs might hang when running [Stable Diffusion
2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) with batch sizes
greater than four. As a workaround, limit batch sizes to four or fewer. This issue
will be addressed in a future ROCm release. See [issue #4770](https://github.com/ROCm/ROCm/issues/4770) on GitHub.
### RCCL MSCCL initialization failure
When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault. The recommended workaround is to disable MSCCL with `export RCCL_MSCCL_ENABLE=0`.
This issue will be fixed in a future ROCm release. See [issue #4769](https://github.com/ROCm/ROCm/issues/4769) on GitHub.
### AMD SMI CLI: CPER entries not dumped continuously when using follow flag
* When using the `--follow` flag with `amd-smi ras --cper`, CPER entries are not streamed continuously as intended. This will be fixed in an upcoming ROCm release.
See [issue #4768](https://github.com/ROCm/ROCm/issues/4768) on GitHub.
### ROCm SMI uninstallation issue on RHEL and SLES
`rocm-smi-lib` does not get uninstalled and remains orphaned on RHEL and SLES systems when:
* [Uninstalling ROCm using the AMDGPU installer](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/amdgpu-install.html#uninstalling-rocm) with `amdgpu-install --uninstall`
* [Uninstalling via package manager](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/install-methods/package-manager/package-manager-rhel.html#uninstall-rocm-packages)
with `dnf remove rocm-core` on RHEL or `zypper remove rocm-core` on SLES.
As a workaround, manually remove the `rocm-smi-lib` package using `sudo dnf remove rocm-smi-lib` or `sudo zypper remove rocm-smi-lib`.
See [issue #4767](https://github.com/ROCm/ROCm/issues/4767) on GitHub.
## ROCm upcoming changes
The following changes to the ROCm software stack are anticipated for future releases.
@@ -654,4 +596,4 @@ There are a number of upcoming changes planned for HIP runtime API in an upcomin
that are not backward compatible with prior releases. Most of these changes increase
alignment between HIP and CUDA APIs or behavior. Some of the upcoming changes are to
clean up header files, remove namespace collision, and have a clear separation between
`hipRTC` and HIP runtime. For more information, see [HIP 7.0 Is Coming: What You Need to Know to Stay Ahead](https://rocm.blogs.amd.com/ecosystems-and-partners/transition-to-hip-7.0:-guidance-on-upcoming-compatibility-changes/README.html).
`hipRTC` and HIP runtime. For more information refer to [HIP Upcoming changes](https://rocm.docs.amd.com/en/latest/about/release-notes.html#id15).

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.4.1"
<default revision="refs/tags/rocm-6.4.0"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -2,25 +2,21 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
@@ -42,7 +38,7 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
CUB,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
@@ -57,7 +53,7 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
@@ -115,9 +111,9 @@ ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
1 ROCm Version 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.6, 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
RDNA4
16 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
17 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
18 .. _gpu-support-compatibility-matrix-past-60:
19 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1201 [#RDNA-OS-past-60]_ gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
gfx1200 [#RDNA-OS-past-60]_
gfx1101 [#RDNA-OS-past-60]_
gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
20 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
21 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
22 gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
38 CUB 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
39
40 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
41 :doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` KMD versions 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
42
43 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
44 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
53
54 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
55 :doc:`RCCL <rccl:index>` 2.22.3 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
56 :doc:`rocSHMEM <rocshmem:index>` `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ 2.0.0 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
57
58 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
59 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
111 COMPILERS .. _compilers-support-compatibility-matrix-past-60:
112 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
113 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
114 `Flang <https://github.com/ROCm/flang>`_ 19.0.0.25184 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
115 :doc:`llvm-project <llvm-project:index>` 19.0.0.25184 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
116 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 19.0.0.25184 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
117
118 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
119 :doc:`AMD CLR <hip:understand/amd_clr>` 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830

View File

@@ -28,7 +28,7 @@ compatibility and system requirements.
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_","Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_
@@ -38,14 +38,10 @@ compatibility and system requirements.
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA
,RDNA4,,
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS]_,,
,gfx1200 [#RDNA-OS]_,,
,gfx1101 [#RDNA-OS]_,,
,gfx1100,gfx1100,gfx1100
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942
,gfx90a,gfx90a,gfx90a
@@ -66,7 +62,7 @@ compatibility and system requirements.
CUB,2.5.0,2.5.0,2.3.2
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
@@ -81,7 +77,7 @@ compatibility and system requirements.
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5
:doc:`rocSHMEM <rocshmem:index>`,2.0.0,2.0.0,N/A
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
@@ -139,9 +135,9 @@ compatibility and system requirements.
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25184,19.0.0.25133,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,19.0.0.25184,19.0.0.25133,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25184,19.0.0.25133,18.0.0.24491
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25172,19.0.0.25133,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,19.0.0.25172,19.0.0.25133,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25172,19.0.0.25133,18.0.0.24491
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42131
@@ -157,7 +153,6 @@ compatibility and system requirements.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.
.. _OS-kernel-versions:
@@ -175,8 +170,7 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 GA, 6.8 HWE", 2.35
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14+, 2.34
, 9.5, 5.14+, 2.34
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.5, 5.14+, 2.34
,9.4, 5.14+, 2.34
,9.3, 5.14+, 2.34
,,
@@ -237,4 +231,3 @@ Expand for full historical view of:
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#kfd_support-past-60] Starting from ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart (assuming hardware support is available in both). For earlier ROCm releases, the compatibility is provided for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.5, and RHEL 9.4.

View File

@@ -14,18 +14,17 @@ JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
JAX uses composable transformations of Python and NumPy through just-in-time
(JIT) compilation, automatic vectorization, and parallelization. To learn about
JAX, including profiling and optimizations, see the official `JAX documentation
JAX uses composable transformations of Python and NumPy through just-in-time (JIT) compilation,
automatic vectorization, and parallelization. To learn about JAX, including profiling and
optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
ROCm support for JAX is upstreamed, and users can build the official source code
with ROCm support:
ROCm support for JAX is upstreamed and users can build the official source code with ROCm
support:
- ROCm JAX release:
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>`
with ROCm and JAX preinstalled.
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>` with ROCm and JAX pre-installed.
- ROCm JAX repository: `ROCm/jax <https://github.com/ROCm/jax>`_
@@ -37,8 +36,8 @@ with ROCm support:
- Official JAX repository: `jax-ml/jax <https://github.com/jax-ml/jax>`_
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in
the JAX documentation.
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in the JAX
documentation.
.. note::
@@ -47,44 +46,6 @@ with ROCm support:
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys JAX-based
nanoGPT. Comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in JAX and JAX, also highlights
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.
.. _jax-docker-compat:
Docker image compatibility
@@ -96,8 +57,8 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
associated inventories are validated for
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
@@ -110,19 +71,19 @@ icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.12/images/sha256-7a0745a2a2758bdf86397750bac00e9086cbf67d170cfdbb08af73f7c7d18a6a"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.12/images/sha256-4069398229078f3311128b6d276c6af377c7e97d3363d020b0bf7154fae619ca"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.1-jax0.4.35-py3.10/images/sha256-5f9e8d6e6e69fdc9a1a3f2ba3b1234c3f46c53b7468538c07fd18b00899da54f"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.10/images/sha256-a137f901f91ce6c13b424c40a6cf535248d4d20fd36d5daf5eee0570190a4a11"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
@@ -160,14 +121,13 @@ associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
.. _key_rocm_libraries:
Key ROCm libraries for JAX
Critical ROCm libraries for JAX
================================================================================
The following ROCm libraries represent potential targets that could be utilized
by JAX on ROCm for various computational tasks. The actual libraries used will
depend on the specific implementation and operations performed.
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:header-rows: 1
@@ -175,140 +135,539 @@ depend on the specific implementation and operations performed.
* - ROCm library
- Version
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
``jax.lax.dot_general``, operations like ``jax.numpy.dot``, which
involve vector and matrix computations and batch matrix multiplications
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- Matrix multiplication in ``jax.numpy.matmul`` or ``jax.lax.dot``, and
the XLA (Accelerated Linear Algebra) use hipBLASLt for optimized matrix
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
``jax.numpy.prod``, ``jax.numpy.max`` and ``jax.numpy.min``), prefix sum
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
.. note::
This table shows ROCm libraries that could potentially be utilized by JAX. Not
all libraries may be used in every configuration, and the actual library usage
will depend on the specific operations and implementation details.
Supported data types and modules
Supported and unsupported features
===============================================================================
The following tables lists the supported public JAX API data types and modules.
Supported data types
--------------------------------------------------------------------------------
ROCm supports all the JAX data types of `jax.dtypes <https://docs.jax.dev/en/latest/jax.dtypes.html>`_
module, `jax.numpy.dtype <https://docs.jax.dev/en/latest/_autosummary/jax.numpy.dtype.html>`_
and `default_dtype <https://docs.jax.dev/en/latest/default_dtypes.html>`_ .
The ROCm supported data types in JAX are collected in the following table.
The following table maps GPU-accelerated JAX modules to their supported
ROCm and JAX versions.
.. list-table::
:header-rows: 1
* - Data type
* - Module
- Description
- Since JAX
- Since ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
- 5.0.0
* - ``jax.scipy``
- Provides GPU-accelerated and differentiable implementations of many
functions from the SciPy library, leveraging JAX's transformations
(e.g., ``grad``, ``jit``, ``vmap``).
- 0.1.56
- 5.0.0
* - ``jax.lax``
- A library of primitives operations that underpins libraries such as
``jax.numpy.`` Transformation rules, such as Jacobian-vector product
(JVP) and batching rules, are typically defined as transformations on
``jax.lax`` primitives.
- 0.1.57
- 5.0.0
* - ``jax.random``
- Provides a number of routines for deterministic generation of sequences
of pseudorandom numbers.
- 0.1.58
- 5.0.0
* - ``jax.sharding``
- Allows to define partitioning and distributing arrays across multiple
devices.
- 0.3.20
- 5.1.0
* - ``jax.dlpack``
- For exchanging tensor data between JAX and other libraries that support the
DLPack standard.
- 0.1.57
- 5.0.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.dtypes``
- Provides utilities for working with and managing data types in JAX
arrays and computations.
- 0.1.66
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
- 5.0.0
* - ``jax.nn``
- Contains common functions for neural network libraries.
- 0.1.56
- 5.0.0
* - ``jax.ops``
- Computes the minimum, maximum, sum or product within segments of an
array.
- 0.1.57
- 5.0.0
* - ``jax.profiler``
- Contains JAXs tracing and time profiling features.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.tree``
- Provides utilities for working with tree-like container data structures.
- 0.4.26
- 5.6.0
* - ``jax.tree_util``
- Provides utilities for working with nested data structures, or
``pytrees``.
- 0.1.65
- 5.0.0
* - ``jax.typing``
- Provides JAX-specific static type annotations.
- 0.3.18
- 5.1.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
components.
- 0.4.15
- 5.5.0
* - ``jax.example_libraries``
- Serves as a collection of example code and libraries that demonstrate
various capabilities of JAX.
- 0.1.74
- 5.0.0
* - ``jax.experimental``
- Namespace for experimental features and APIs that are in development or
are not yet fully stable for production use.
- 0.1.56
- 5.0.0
* - ``jax.lib``
- Set of internal tools and types for bridging between JAXs Python
frontend and its XLA backend.
- 0.4.6
- 5.3.0
* - ``jax_triton``
- Library that integrates the Triton deep learning compiler with JAX.
- jax_triton 0.2.0
- 6.2.4
* - ``bfloat16``
- 16-bit bfloat (brain floating point).
jax.scipy module
-------------------------------------------------------------------------------
* - ``bool``
- Boolean.
A SciPy-like API for scientific computing.
* - ``complex128``
- 128-bit complex.
.. list-table::
:header-rows: 1
* - ``complex64``
- 64-bit complex.
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
* - ``jax.scipy.fft``
- 0.1.71
- 5.0.0
* - ``jax.scipy.integrate``
- 0.4.15
- 5.5.0
* - ``jax.scipy.interpolate``
- 0.1.76
- 5.0.0
* - ``jax.scipy.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.ndimage``
- 0.1.56
- 5.0.0
* - ``jax.scipy.optimize``
- 0.1.57
- 5.0.0
* - ``jax.scipy.signal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.spatial.transform``
- 0.4.12
- 5.4.0
* - ``jax.scipy.sparse.linalg``
- 0.1.56
- 5.0.0
* - ``jax.scipy.special``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats``
- 0.1.56
- 5.0.0
* - ``float16``
- 16-bit (half precision) floating-point.
jax.scipy.stats module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* - ``float32``
- 32-bit (single precision) floating-point.
.. list-table::
:header-rows: 1
* - ``float64``
- 64-bit (double precision) floating-point.
* - Module
- Since JAX
- Since ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.beta``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.betabinom``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.binom``
- 0.4.14
- 5.4.0
* - ``jax.scipy.stats.cauchy``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.chi2``
- 0.1.61
- 5.0.0
* - ``jax.scipy.stats.dirichlet``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.expon``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gamma``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.gennorm``
- 0.3.15
- 5.2.0
* - ``jax.scipy.stats.geom``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.laplace``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.logistic``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.multinomial``
- 0.3.18
- 5.1.0
* - ``jax.scipy.stats.multivariate_normal``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.nbinom``
- 0.1.72
- 5.0.0
* - ``jax.scipy.stats.norm``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.pareto``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.poisson``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.t``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.truncnorm``
- 0.4.0
- 5.3.0
* - ``jax.scipy.stats.uniform``
- 0.1.56
- 5.0.0
* - ``jax.scipy.stats.vonmises``
- 0.4.2
- 5.3.0
* - ``jax.scipy.stats.wrapcauchy``
- 0.4.20
- 5.6.0
* - ``half``
- 16-bit (half precision) floating-point.
jax.extend module
-------------------------------------------------------------------------------
* - ``int16``
- Signed 16-bit integer.
Modules for JAX extensions.
* - ``int32``
- Signed 32-bit integer.
.. list-table::
:header-rows: 1
* - ``int64``
- Signed 64-bit integer.
* - Module
- Since JAX
- Since ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
* - ``jax.extend.linear_util``
- 0.4.17
- 5.6.0
* - ``jax.extend.mlir``
- 0.4.26
- 5.6.0
* - ``jax.extend.random``
- 0.4.15
- 5.5.0
* - ``int8``
- Signed 8-bit integer.
jax.experimental module
-------------------------------------------------------------------------------
* - ``uint16``
- Unsigned 16-bit (word) integer.
Experimental modules and APIs.
* - ``uint32``
- Unsigned 32-bit (dword) integer.
.. list-table::
:header-rows: 1
* - ``uint64``
- Unsigned 64-bit (qword) integer.
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.checkify``
- 0.1.75
- 5.0.0
* - ``jax.experimental.compilation_cache.compilation_cache``
- 0.1.68
- 5.0.0
* - ``jax.experimental.custom_partitioning``
- 0.4.0
- 5.3.0
* - ``jax.experimental.jet``
- 0.1.56
- 5.0.0
* - ``jax.experimental.key_reuse``
- 0.4.26
- 5.6.0
* - ``jax.experimental.mesh_utils``
- 0.1.76
- 5.0.0
* - ``jax.experimental.multihost_utils``
- 0.3.2
- 5.0.0
* - ``jax.experimental.pallas``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pjit``
- 0.1.61
- 5.0.0
* - ``jax.experimental.serialize_executable``
- 0.4.0
- 5.3.0
* - ``jax.experimental.shard_map``
- 0.4.3
- 5.3.0
* - ``jax.experimental.sparse``
- 0.1.75
- 5.0.0
* - ``uint8``
- Unsigned 8-bit (byte) integer.
.. list-table::
:header-rows: 1
.. note::
* - API
- Since JAX
- Since ROCm
* - ``jax.experimental.enable_x64``
- 0.1.60
- 5.0.0
* - ``jax.experimental.disable_x64``
- 0.1.60
- 5.0.0
JAX data type support is effected by the :ref:`key_rocm_libraries` and it's
collected on :doc:`ROCm data types and precision support <rocm:reference/precision-support>`
page.
jax.experimental.pallas module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported modules
--------------------------------------------------------------------------------
Module for Pallas, a JAX extension for custom kernels.
For a complete and up-to-date list of JAX public modules (for example, ``jax.numpy``,
``jax.scipy``, ``jax.lax``), their descriptions, and usage, please refer directly to the
`official JAX API documentation <https://jax.readthedocs.io/en/latest/jax.html>`_.
.. list-table::
:header-rows: 1
.. note::
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.pallas.mosaic_gpu``
- 0.4.31
- 6.1.3
* - ``jax.experimental.pallas.tpu``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pallas.triton``
- 0.4.32
- 6.1.3
Since version 0.1.56, JAX has full support for ROCm, and the
:ref:`Known issues and important notes <jax_comp_known_issues>` section
contains details about limitations specific to the ROCm backend. The list of
JAX API modules is maintained by the JAX project and is subject to change.
Refer to the official Jax documentation for the most up-to-date information.
jax.experimental.sparse module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Experimental support for sparse matrix operations.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.linalg``
- 0.3.15
- 5.2.0
* - ``jax.experimental.sparse.sparsify``
- 0.3.25
- ❌
.. list-table::
:header-rows: 1
* - ``sparse`` data structure API
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.BCOO``
- 0.1.72
- 5.0.0
* - ``jax.experimental.sparse.BCSR``
- 0.3.20
- 5.1.0
* - ``jax.experimental.sparse.CSR``
- 0.1.75
- 5.0.0
* - ``jax.experimental.sparse.NM``
- 0.4.27
- 5.6.0
* - ``jax.experimental.sparse.COO``
- 0.1.75
- 5.0.0
Unsupported JAX features
------------------------
The following are GPU-accelerated JAX features not currently supported by
ROCm.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since JAX
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
- 0.2.25
* - RNN support
- Currently only LSTM with double bias is supported with float32 input
and weight.
- 0.3.25
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
- 0.4.0
* - ``jax.experimental.sparsify``
- Converts a dense matrix to a sparse matrix representation.
- Experimental
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys PyTorch-based
nanoGPT. By comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in PyTorch and JAX, also highlight
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.

View File

@@ -95,7 +95,7 @@ Docker image compatibility
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_.
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -116,122 +116,137 @@ Click |docker-icon| to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-c76af9bfb1c25b0f40d4c29e8652105c57250bf018d23ff595b06bd79666fdd7"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.16.0 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-f9d226135d51831c810dcb1251636ec61f85c65fcdda03e188c053a5d4f6585b"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-130536fdfceb374626a7bcb8d00b9d796ddfc3115677d51229e5b852d96b5ef4"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-3490e74d4f43dcdb3351dd334108d1ccd47e5a687c0523a2424ac1bcdd3dd6dd"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-20a2e24b4738dc1f1a44a04f23827918b56c99f7e697e6fccb90e9c4fae8ca9b"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-26c5dfffb4a54625884abca83166940f17dd27bc75f1b24f6e80fbcb7d4e9afb"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-f09cb8ca39cc39222fb554060711f5c19130f7b4047aaf41fad4ba3ec470ca03"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `3.11.9 <https://www.python.org/downloads/release/python-3119/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-f378a24561fa6efc178b6dc93fc7d82e5b93653ecd59c89d4476674d29e1284d"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-a91c100d1fe608dae3eb7f60a751630363d4027ac3d077d428e92945204c338e"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-66a89ce6485bb887af74bb9bd76bb613ab9834a6b1374649ea7ae379883454a4"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-2308dbd0e650b7bf8d548575cbb6e2bdc021f9386384ce570da16d58ee684d22"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-c716cf167e6e49893f11de03606ed37044153aca089e74ca615065c06877f86b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-eefd2ab019728f91f94c5e6a9463cb0ea900b3011458d18fe5d88e50c0b57d86"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-0434cbc9b07b2c26e39480d7447f676f9057a1054dcff00e0050c25a6eddbd3c"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`_
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-473643226ab0e93a04720b256ed772619878abf9c42b9f84828cefed522696fd"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-688b1c0073092615fb98778d78b16191e506097ee116a2d3d2628b264d5d367b"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`_
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Key ROCm libraries for PyTorch
@@ -372,15 +387,24 @@ feature set available to developers.
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported modules and data types
Supported features
================================================================================
The following section outlines the supported data types, modules, and domain libraries available in PyTorch on ROCm.
This section maps GPU-accelerated PyTorch features to their supported ROCm and
PyTorch versions.
Supported data types
torch
--------------------------------------------------------------------------------
The tensor data type is specified using the ``dtype`` attribute or argument.
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types and other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The tensor data type is specified using the ``dtype`` attribute or argument.
PyTorch supports many data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_
@@ -391,154 +415,539 @@ single data types:
* - Data type
- Description
- As of PyTorch
- As of ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
- 5.5
* - ``torch.float8_e5m2``
- 8-bit floating point, e5m2
- 2.3
- 5.5
* - ``torch.float16`` or ``torch.half``
- 16-bit floating point
- 0.1.6
- 2.0
* - ``torch.bfloat16``
- 16-bit floating point
- 1.6
- 2.6
* - ``torch.float32`` or ``torch.float``
- 32-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.float64`` or ``torch.double``
- 64-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.complex32`` or ``torch.chalf``
- 32-bit complex numbers
- PyTorch provides native support for 32-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex64`` or ``torch.cfloat``
- 64-bit complex numbers
- PyTorch provides native support for 64-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex128`` or ``torch.cdouble``
- 128-bit complex numbers
- PyTorch provides native support for 128-bit complex numbers
- 1.6
- 2.0
* - ``torch.uint8``
- 8-bit integer (unsigned)
- 0.1.12_2
- 2.0
* - ``torch.uint16``
- 16-bit integer (unsigned);
Not natively supported in ROCm
- 16-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint32``
- 32-bit integer (unsigned);
Not natively supported in ROCm
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint64``
- 64-bit integer (unsigned);
Not natively supported in ROCm
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.int8``
- 8-bit integer (signed)
- 1.12
- 5.0
* - ``torch.int16`` or ``torch.short``
- 16-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int32`` or ``torch.int``
- 32-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int64`` or ``torch.long``
- 64-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.bool``
- Boolean
- 1.2
- 2.0
* - ``torch.quint8``
- Quantized 8-bit integer (unsigned)
- 1.8
- 5.0
* - ``torch.qint8``
- Quantized 8-bit integer (signed)
- 1.8
- 5.0
* - ``torch.qint32``
- Quantized 32-bit integer (signed)
- 1.8
- 5.0
* - ``torch.quint4x2``
- Quantized 4-bit integer (unsigned)
- 1.8
- 5.0
.. note::
Unsigned types, except ``uint8``, have limited support in eager mode. They
Unsigned types except ``uint8`` have limited support in eager mode. They
primarily exist to assist usage with ``torch.compile``.
See :doc:`ROCm precision support <rocm:reference/precision-support>` for the
native hardware support of data types.
Supported modules
--------------------------------------------------------------------------------
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For a complete and up-to-date list of PyTorch core modules (for example., ``torch``,
``torch.nn``, ``torch.cuda``, ``torch.backends.cuda`` and
``torch.backends.cudnn``), their descriptions, and usage, please refer directly
to the `official PyTorch documentation <https://pytorch.org/docs/stable/index.html>`_.
Core PyTorch functionality on ROCm includes tensor operations, neural network
layers, automatic differentiation, distributed training, mixed-precision
training, compilation features, and domain-specific libraries for audio, vision,
text processing, and more.
Supported domain libraries
--------------------------------------------------------------------------------
PyTorch offers specialized `domain libraries <https://pytorch.org/domains/>`_ with
GPU acceleration that build on its core features to support specific application
areas. The table below lists the PyTorch domain libraries that are compatible
with ROCm.
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
computations, memory management, and efficient execution of tensor operations,
leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Library
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Performs tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance. Events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
- Functions to manage and inspect memory usage like
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Returns a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- Set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
* - ``torch.cuda.CUDAGraph``
- Graphs capture sequences of GPU operations to minimize kernel launch
overhead and improve performance.
- 1.10.0
- 5.3
* - TunableOp
- A mechanism that allows certain operations to be more flexible and
optimized for performance. It enables automatic tuning of kernel
configurations and other settings to achieve the best possible
performance based on the specific hardware (GPU) and workload.
- 2.0
- 5.4
* - NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.8.0
- ❌
* - Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.13.0
- ❌
* - Jiterator (beta)
- Jiterator allows asynchronous data streaming into computation streams
during training loops.
- 1.13.0
- 5.2
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
- Audio and signal processing library for PyTorch. Provides utilities for
audio I/O, signal and data processing functions, datasets, model
implementations, and application components for audio and speech
processing tasks.
.. Need to validate and extend.
**Note:** To ensure GPU-acceleration with ``torchaudio.transforms``,
you need to explicitly move audio data (waveform tensor) to GPU using
``.to('cuda')``.
torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* - `torchtune <https://docs.pytorch.org/torchtune/stable/index.html>`_
- PyTorch-native library designed for fine-tuning large language models
(LLMs). Provides supports the full fine-tuning workflow and offers
compatibility with popular production inference systems.
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of ROCm or CUDA operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the ROCm or CUDA environment.
**Note:** Only official release exists.
.. list-table::
:header-rows: 1
* - `torchvision <https://docs.pytorch.org/vision/stable/index.html>`_
- Computer vision library that is part of the PyTorch project. Provides
popular datasets, model architectures, and common image transformations
for computer vision applications.
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
- 5.0
* - ``matmul.allow_tf32``
- Enables or disables the use of TensorFloat-32 (TF32) precision for
faster matrix multiplications on GPUs with Tensor Cores.
- 1.10.0
- ❌
* - ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions (e.g., with fp16 accumulation type) are
allowed with fp16 GEMMs.
- 2.0
- ❌
* - ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
- ❌
* - ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
- ❌
* - ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
- ❌
* - ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
- ❌
* - ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
- ❌
* - `torchtext <https://docs.pytorch.org/text/stable/index.html>`_
- Text processing library for PyTorch. Provides data processing utilities
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
.. Need to validate and extend.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* - `torchdata <https://docs.pytorch.org/data/beta/index.html>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
Supported ``torch`` options include:
* - `torchrec <https://docs.pytorch.org/torchrec/>`_
- PyTorch domain library for common sparsity and parallelism primitives
needed for large-scale recommender systems, enabling authors to train
models with large embedding tables shared across many GPUs.
.. list-table::
:header-rows: 1
**Note:** ``torchrec`` does not implement ROCm-specific kernels. ROCm
acceleration is provided through the underlying PyTorch framework and
ROCm library integration.
* - Option
- Description
- As of PyTorch
- As of ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
- 1.12.0
- ❌
* - ``deterministic``
- A bool that, if True, causes cuDNN to only use deterministic
convolution algorithms.
- 1.12.0
- 6.0
* - `torchserve <https://docs.pytorch.org/serve/>`_
- Performant, flexible and easy-to-use tool for serving PyTorch models in
production, providing features for model management, batch processing,
and scalable deployment.
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
**Note:** `torchserve <https://docs.pytorch.org/serve/>`_ is no longer
actively maintained. Last official release is sent out with PyTorch 2.4.
PyTorch automates the process of using both 16-bit (half-precision, float16) and
32-bit (single-precision, float32) floating-point types in model training and
inference.
* - `torchrl <https://docs.pytorch.org/rl/stable/index.html>`_
- Open-source, Python-first Reinforcement Learning library for PyTorch
with a focus on high modularity and good runtime performance, providing
low and high-level RL abstractions and reusable functionals for cost
functions, returns, and data processing.
.. list-table::
:header-rows: 1
**Note:** Only official release exists.
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - Autocasting
- Autocast instances serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss by a scale factor and invokes a backward pass on the scaled
loss. The same factor then scales gradients flowing backward through
the network. In other words, gradient values have a larger magnitude so
that they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
- These ops always go through autocasting whether they are invoked as part
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
functions are exposed in multiple namespaces, they go through
autocasting regardless of the namespace.
- 1.9
- 2.5
* - `tensordict <https://docs.pytorch.org/tensordict/stable/index.html>`_
- Dictionary-like class that simplifies operations on batches of tensors,
enhancing code readability, compactness, and modularity by abstracting
tailored operations and reducing errors through automatic operation
dispatching.
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
**Note:** Only official release exists.
PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
The Distributed Library feature in PyTorch provides tools and APIs for building
and running distributed machine learning workflows. It allows training models
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - TensorPipe
- A point-to-point communication library integrated into
PyTorch for distributed training. It handles tensor data transfers
efficiently between different processes or devices, including those on
separate machines.
- 1.8
- 5.4
* - Gloo
- Designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
- 1.0
- 2.0
torch.compiler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of PyTorch
- As of ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
enables acceleration of both forwards and backwards pass using
``TorchInductor``.
- 2.0
- 5.3
* - ``torch.compiler`` (TorchInductor)
- The default ``torch.compile`` deep learning compiler that generates fast
code for multiple accelerators and backends. You need to use a backend
compiler to make speedups through ``torch.compile`` possible. For AMD,
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
- 2.0
- 5.3
torchaudio
--------------------------------------------------------------------------------
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to
explicitly move audio data (waveform tensor) to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of torchaudio version
- As of ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate a spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generates the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
- Extract of MFCC features.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resamples a signal from one frequency to another.
- 0.9.0
- 4.5
torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provides datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Feature
- Description
- As of torchvision version
- As of ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
- 0.2.0
- 4.0
* - ``torchvision.ops``
- GPU-accelerated operations for object detection and segmentation tasks.
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
``box_convert``.
- 0.6.0
- 3.3
* - ``torchvision.models`` with ``.to('cuda')``
- ``torchvision`` provides several pre-trained models (ResNet, Faster
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
training.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Enables video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3
torchtext
--------------------------------------------------------------------------------
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
utilities for processing and working with text data in PyTorch, including
tokenization, vocabulary management, and text embeddings. torchtext supports
preprocessing pipelines and integration with PyTorch models, simplifying the
implementation of natural language processing (NLP) tasks.
To leverage GPU acceleration in torchtext, you need to move tensors
explicitly to the GPU using ``.to('cuda')``.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchtune
--------------------------------------------------------------------------------
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: Enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
torchserve
--------------------------------------------------------------------------------
The `torchserve <https://pytorch.org/serve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
torchrec
--------------------------------------------------------------------------------
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
================================================================================
The following GPU-accelerated PyTorch features are not supported by ROCm for
the listed supported PyTorch versions.
.. list-table::
:widths: 30, 60, 10
:header-rows: 1
* - Feature
- Description
- As of PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
- A bool that controls whether TensorFloat-32 tensor cores may be used in
matrix multiplications.
- 1.7
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.7.0
* - ``torch.cuda`` / Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.8.0
* - ``torch-tensorrt``
- Integrate TensorRT library for optimizing and deploying PyTorch models.
ROCm does not have equialent library for TensorRT.
- 1.9.0
* - ``torch.backends`` / ``cudnn.allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
- 1.10.0
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions with fp16 accumulation type are
allowed with fp16 GEMMs.
- 2.0
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
- Flash attention backend for SDPA to accelerate attention computation in
transformer-based models.
- 2.0
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
* - Dynamic parallelism
- PyTorch itself does not directly expose dynamic parallelism as a core
feature. Dynamic parallelism allow GPU threads to launch additional
threads which can be reached using custom operations via the
``torch.utils.cpp_extension`` module.
- Not a core feature
* - Unified memory support in PyTorch
- Unified Memory is not directly exposed in PyTorch's core API, it can be
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click
validated for `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -73,122 +73,82 @@ the |docker-icon| icon to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-dev/images/sha256-fa9cf5fa6c6079a7118727531ccd0056c6e3224a42c3d6e78a49e7781daafff4"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.18-runtime/images/sha256-d14d8c4989e7c9a60f4e72461b9e349de72347c6162dcd6897e6f4f80ffbb440"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-runtime/images/sha256-14addca4b92a47c806b83ebaeed593fc6672cd99f0017ed8dad759fe72ed0309"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-dev/images/sha256-081e5bd6615a5dc17247ebd2ccc26895c3feeff086720400fa39b477e60a77c0"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-dev/images/sha256-f5e151060df04ff5fb59f5604b49cd371931bbe75b06aec9fe7781397c4be0ce"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.18-runtime/images/sha256-bf369637378264f4af6ddad5ca8b8611d3e372ffbea9ab7a06f1e122f0a0867b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-runtime/images/sha256-5cd4c03fdb1036570c0d4929da60a65c4466998dc80f1dc8a5a0b173eae017fb"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-dev/images/sha256-5a502008c50d0b6508e6027f911bdff070a7493700ae064bed74e1d22b91ed50"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-dev/images/sha256-b3add80e374a2db2d1088d746e740afa89d439aca02cacba959ad298f5cd2b3f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.17-runtime/images/sha256-1ee5dfffceb71ac66617ada33de3a10de0cb74199cc4b82441192e5e92fa2ddf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-runtime/images/sha256-3a244f026c32177eff7958ffbad390de85b438b2b48b455cc39f15d70fa1270d"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-dev/images/sha256-109218ad92bfae83bbd2710475f7502166e1ed54ca0b9748a9cbc3f5a1d75af1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-dev/images/sha256-e0cecdfacb59169335049983cdab6da578c209bb9f4d08aad97e184ae59171a6"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.17-runtime/images/sha256-5d78bd5918d394f92263daa2990e88d695d27200dd90ed83ec64d20c7661c9c1"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-runtime/images/sha256-6f43de12f7eb202791b698ac51d28b72098de90034dbcd48486629b0125f7707"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-dev/images/sha256-b09b1ad921c09c687b7c916141051e9fcf15539a5686e5aa67c689195a522719"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.12-tf2.16-runtime/images/sha256-20dbd824e85558abfe33fc9283cc547d88cde3c623fe95322743a5082f883a64"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-dev/images/sha256-36c4fa047c86e2470ac473ec1429aea6d4b8934b90ffeb34d1afab40e7e5b377>`__
- dev
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.1-py3.10-tf2.16-runtime/images/sha256-a94150ffb81365234ebfa34e764db5474bc6ab7d141b56495eac349778dafcf3"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.1/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
Critical ROCm libraries for TensorFlow
===============================================================================

View File

@@ -51,15 +51,12 @@ article_pages = [
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -69,11 +66,11 @@ article_pages = [
{"file": "how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/vllm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.8.5-20250513", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/pytorch-inference-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},

View File

@@ -1,152 +0,0 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250513
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4
rocm_version: 6.3.1
vllm_version: 0.8.5
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

@@ -23,11 +23,3 @@ pytorch_inference_benchmark:
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/chaidiscovery/chai-1
precision: float16
- group: Mochi Video
tag: mochi
models:
- model: Mochi 1
mad_tag: pyt_mochi_video_inference
model_repo: genmo/mochi-1-preview
url: https://huggingface.co/genmo/mochi-1-preview
precision: float16

View File

@@ -1,14 +1,14 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_vllm0.8.5_20250521
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250521/images/sha256-38410c51af7208897cd8b737c9bdfc126e9bc8952d4aa6b88c85482f03092a11
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.8.5 (0.8.6.dev315+g91a560098.rocm631)
pytorch_version: 2.7.0+gitf717b2a
hipblaslt_version: 0.15
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
- group: Meta Llama
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
@@ -56,7 +56,7 @@ vllm_benchmark:
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral AI
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
@@ -108,7 +108,7 @@ vllm_benchmark:
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: Databricks DBRX
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
@@ -121,7 +121,7 @@ vllm_benchmark:
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Google Gemma
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
@@ -150,13 +150,6 @@ vllm_benchmark:
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
- group: TII Falcon
tag: falcon
models:

View File

@@ -1,29 +0,0 @@
megatron-lm_benchmark:
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy

View File

@@ -678,7 +678,7 @@ To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
Cache <https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and

View File

@@ -1,348 +0,0 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
performance benchmark documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.8.5_20250513-benchmark-models.yaml
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements>` for
MI300X series accelerators.
.. _vllm-benchmark-available-models:
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-performance-measurements:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and latency measurements for inferencing
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/7bb0618b1fe725b7d4fad9e525aa44da12c94a8b/docs/dev-docker/README.md>`__.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
`Docker container <{{ unified_docker.docker_hub_url }}>`_
as shown in the following snippet.
.. code-block::
docker pull {{ unified_docker.pull_tag }}
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name test {{ unified_docker.pull_tag }}
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
To start the benchmark, use the following command with the appropriate options.
.. code-block::
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
Here are some examples of running the benchmark with various options.
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <../../hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../../fine-tuning/index>`.

View File

@@ -20,8 +20,6 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`LLM inference frameworks <llm-inference-frameworks>`
- :doc:`vLLM inference performance testing <vllm-benchmark>`
- :doc:`PyTorch inference performance testing <pytorch-inference-benchmark>`
- :doc:`Performance testing <vllm-benchmark>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -30,7 +30,7 @@ ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`.
.. grid:: 1
@@ -59,8 +59,4 @@ images with the framework pre-installed.
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
Next steps
==========
After installing ROCm and your desired ML libraries -- and before running AI workloads -- conduct system health benchmarks
to test the optimal performance of your AMD hardware. See :doc:`system-health-check` to get started.
The sections that follow in :doc:`Training a model <../training/train-a-model>` are geared for a ROCm with PyTorch installation.

View File

@@ -24,24 +24,20 @@ PyTorch inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with PyTorch and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-4 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1" style="display: none;">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -66,52 +62,47 @@ PyTorch inference performance testing
{% endfor %}
{% endfor %}
System validation
=================
Getting started
===============
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
Use the following procedures to reproduce the benchmark results on an
MI300X series accelerator with the prebuilt PyTorch Docker image.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. _pytorch-benchmark-get-started:
.. code-block:: shell
1. Disable NUMA auto-balancing.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. code-block:: shell
Pull the Docker image
=====================
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. container:: model-doc pyt_chai1_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
.. note::
.. note::
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference pyt_mochi_video_inference
.. container:: model-doc pyt_clip_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull rocm/pytorch:latest
.. _pytorch-benchmark-get-started:
docker pull rocm/pytorch:latest
Benchmarking
============
@@ -166,14 +157,11 @@ Further reading
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your model, see
:doc:`Running models from Hugging Face <../hugging-face-models>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../inference-optimization/index>`.
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.

View File

@@ -24,7 +24,7 @@ vLLM inference performance testing
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/ROCm/pytorch.git>`_
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
* `hipBLASLt {{ unified_docker.hipblaslt_version }} <https://github.com/ROCm/hipBLASLt>`_
@@ -37,15 +37,11 @@ vLLM inference performance testing
Supported models
================
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model group</div>
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
@@ -54,7 +50,7 @@ vLLM inference performance testing
</div>
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
@@ -115,37 +111,35 @@ vLLM inference performance testing
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
System validation
=================
Getting started
===============
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. _vllm-benchmark-get-started:
.. code-block:: shell
1. Disable NUMA auto-balancing.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. code-block:: shell
Pull the Docker image
=====================
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
.. code-block:: shell
Use the following command to pull the Docker image from Docker Hub.
docker pull {{ unified_docker.pull_tag }}
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
@@ -282,7 +276,7 @@ vLLM inference performance testing
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block::
@@ -292,11 +286,11 @@ vLLM inference performance testing
* Throughput benchmark
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
@@ -322,23 +316,23 @@ vLLM inference performance testing
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../inference-optimization/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Running models from Hugging Face <../hugging-face-models>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../../inference-optimization/index>`.
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../../fine-tuning/index>`.
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
Previous versions
=================
@@ -356,20 +350,6 @@ for benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - 6.3.1
- 0.8.5
- 2.7.0
-
* :doc:`Documentation <previous-versions/vllm-0.8.5-20250513>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_vllm_0.8.5_20250513/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4>`_
* - 6.3.1
- 0.8.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.4.0/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845>`_
* - 6.3.1
- 0.7.3
- 2.7.0

View File

@@ -1,104 +0,0 @@
.. meta::
:description: System health checks with RVS, RCCL tests, BabelStream, and TransferBench to validate AMD hardware performance running AI workloads.
:keywords: gpu, accelerator, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training, inference
.. _rocm-for-ai-system-health-bench:
************************
System health benchmarks
************************
Before running AI workloads, it is important to validate that your AMD hardware is configured correctly and is performing optimally. This topic outlines several system health benchmarks you can use to test key aspects like GPU compute capabilities (FLOPS), memory bandwidth, and interconnect performance. Many of these tests are part of the ROCm Validation Suite (RVS).
ROCm Validation Suite (RVS) tests
=================================
RVS provides a collection of tests, benchmarks, and qualification tools, each
targeting a specific subsystem of the system under test. It includes tests for
GPU stress and memory bandwidth.
.. _healthcheck-install-rvs:
Install ROCm Validation Suite
-----------------------------
To get started, install RVS. For example, on an Ubuntu system with ROCm already
installed, run the following command:
.. code-block:: shell
sudo apt update
sudo apt install rocm-validation-suite
See the `ROCm Validation Suite installation instructions <https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/install/installation.html>`_,
and `System validation tests <https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#system-validation-tests>`_
in the Instinct documentation for more detailed instructions.
Benchmark, stress, and qualification tests
------------------------------------------
The GPU stress test runs various GEMM computations as workloads to stress the GPU FLOPS performance and check whether it
meets the configured target GFLOPS.
Run the benchmark, stress, and qualification tests included with RVS. See the `Benchmark, stress, qualification
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#benchmark-stress-qualification>`_
section of the Instinct documentation for usage instructions.
BabelStream test
----------------
BabelStream is a synthetic GPU benchmark based on the STREAM benchmark for
CPUs, measuring memory transfer rates to and from global device memory.
BabelStream tests are included with the RVS package as part of the `BABEL module
<https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/conceptual/rvs-modules.html#babel-benchmark-test-babel-module>`_.
For more information, see `Performance benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#babelstream-benchmarking-results>`_
in the Instinct documentation.
RCCL tests
==========
The ROCm Communication Collectives Library (RCCL) enables efficient multi-GPU
communication. The `<https://github.com/ROCm/rccl-tests>`__ suite benchmarks
the performance and verifies the correctness of these collective operations.
This helps ensure optimal scaling for multi-accelerator tasks.
1. To get started, build RCCL-tests using the official instructions in the README at
`<https://github.com/ROCm/rccl-tests?tab=readme-ov-file#build>`__ or use the
following commands:
.. code-block:: shell
git clone https://github.com/ROCm/rccl-tests.git
cd rccl-tests
make
2. Run the suggested RCCL tests -- see `RCCL benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#rccl-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.
TransferBench test
==================
TransferBench is a standalone utility for benchmarking simultaneous data
transfer performance between various devices in the system, including
CPU-to-GPU and GPU-to-GPU (peer-to-peer). This helps identify potential
bottlenecks in data movement between the host system and the GPUs, or between
GPUs, which can impact end-to-end latency.
.. _healthcheck-install-transferbench:
1. To get started, use the instructions in the `TransferBench documentation
<https://rocm.docs.amd.com/projects/TransferBench/en/latest/install/install.html#install-transferbench>`_
or use the following commands:
.. code:: shell
git clone https://github.com/ROCm/TransferBench.git
cd TransferBench
CC=hipcc make
2. Run the suggested TransferBench tests -- see `TransferBench benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#transferbench-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.

View File

@@ -79,18 +79,11 @@ across different input sequences. Support for packed input format is planned for
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Environment setup
=================
@@ -182,8 +175,8 @@ with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
.. _amd-maxtext-download-docker:
Pull the Docker image
---------------------
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.

View File

@@ -1,175 +0,0 @@
.. meta::
:description: How to train a model using LLM Foundry for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
******************************************
Training MPT-30B with LLM Foundry and ROCm
******************************************
MPT-30B is a 30-billion parameter decoder-style transformer-based model from
the Mosaic Pretrained Transformer (MPT) family -- learn more about it in
MosaicML's research blog `MPT-30B: Raising the bar for open-source foundation
models <https://www.databricks.com/blog/mpt-30b>`_.
ROCm and `<https://github.com/ROCm/MAD>`__ provide a pre-configured training
environment for the MPT-30B model using the ``rocm/pytorch-training:v25.5``
base `Docker image <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
and the `LLM Foundry <https://github.com/mosaicml/llm-foundry>`_ framework.
This environment packages the following software components to train
on AMD Instinct MI300X series accelerators:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git6374332 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0.post1 |
+--------------------------+--------------------------------+
Using this image, you can build, run, and test the training process
for MPT-30B with access to detailed logs and performance metrics.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Getting started
===============
The following procedures help you set up the training environment in a
reproducible Docker container. This training environment is tailored for
training MPT-30B using LLM Foundry and the specific model configurations outlined.
Other configurations and run conditions outside those described in this
document are not validated.
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
On your host machine, clone the ROCm Model Automation and Dashboarding
(`<https://github.com/ROCm/MAD>`__) repository to a local directory and
install the required packages.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to initiate the MPT-30B training benchmark.
.. code-block:: shell
python3 tools/run_models.py --tags pyt_mpt30b_training --keep-model-dir --live-output --clean-docker-cache
.. tip::
If you experience data download failures, set the
``MAD_SECRETS_HFTOKEN`` variable to your Hugging Face access token. See
`User access tokens <https://huggingface.co/docs/hub/security-tokens>`_
for details.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
.. note::
For improved performance (training throughput), consider enabling TunableOp.
By default, ``pyt_mpt30b_training`` runs with TunableOp disabled. To enable it,
run ``tools/run_models.py`` with the ``--tunableop on`` argument or edit the
``models.json`` configuration before running training.
Although this might increase the initial training time, it can result in a performance gain.
.. tab-item:: Standalone benchmarking
To set up the training environment, clone the
`<https://github.com/ROCm/MAD>`__ repo and build the Docker image. In
this snippet, the image is named ``mosaic_mpt30_image``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
docker build --build-arg MAD_SYSTEM_GPU_ARCHITECTURE=gfx942 -f docker/pyt_mpt30b_training.ubuntu.amd.Dockerfile -t mosaic_mpt30_image .
Start a ``mosaic_mpt30_image`` container using the following command.
.. code-block:: shell
docker run -it --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --shm-size=8G mosaic_mpt30_image
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory at
``/workspace/MAD/scripts/pyt_mpt30b_training``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pyt_mpt30b_training
To initiate the training process, use the following command. This script uses the hyperparameters defined in
``mpt-30b-instruct.yaml``.
.. code-block:: shell
source run.sh
.. note::
For improved performance (training throughput), consider enabling TunableOp.
To enable it, add the ``--tunableop on`` flag.
.. code-block:: shell
source run.sh --tunableop on
Although this might increase the initial training time, it can result in a performance gain.
Interpreting the output
=======================
The training output will be displayed in the terminal and simultaneously saved
to the ``output.txt`` file in the current directory. Key performance metrics will
also be extracted and appended to the ``perf_pyt_mpt30b_training.csv`` file.
Key performance metrics include:
- Training logs: Real-time display of loss metrics, accuracy, and training progress.
- Model checkpoints: Periodically saved model snapshots for potential resume or evaluation.
- Performance metrics: Detailed summaries of training speed and training loss metrics.
- Performance (throughput/samples_per_sec)
Overall throughput, measuring the total samples processed per second. Higher values indicate better hardware utilization.
- Performance per device (throughput/samples_per_sec)
Throughput on a per-device basis, showing how each GPU or CPU is performing.
- Language Cross Entropy (metrics/train/LanguageCrossEntropy)
Measures prediction accuracy. Lower cross entropy suggests the models output is closer to the expected distribution.
- Training loss (loss/train/total)
Overall training loss. A decreasing trend indicates the model is learning effectively.

View File

@@ -77,18 +77,11 @@ popular AI models.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.

View File

@@ -21,12 +21,8 @@ In this guide, you'll learn about:
- Training a model
- :doc:`With Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`With PyTorch <benchmark-docker/pytorch-training>`
- :doc:`With JAX MaxText <benchmark-docker/jax-maxtext>`
- :doc:`With LLM Foundry <benchmark-docker/mpt-llm-foundry>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -5,13 +5,12 @@
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
.. _rocm-for-ai-system-optimization:
**********************************************************
Prerequisite system validation before running AI workloads
**********************************************************
**********************************************
Prerequisite system validation before training
**********************************************
Complete the following system validation and optimization steps to set up your system before starting training and inference.
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
@@ -27,8 +26,7 @@ the output is ``1``, run the following command to disable NUMA auto-balancing.
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See `Disable NUMA auto-balancing <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#disable-numa-auto-balancing>`_
in the Instinct documentation for more information.
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
@@ -44,8 +42,7 @@ Run the command:
rocm-smi --setperfdeterminism 1900
See `Hardware verfication for ROCm <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#hardware-verification-with-rocm>`_
in the Instinct documentation for more information.
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------

View File

@@ -45,7 +45,7 @@
(communication-libraries)=
* {doc}`RCCL <rccl:index>`
* {doc}`rocSHMEM <rocshmem:index>`
* [rocSHMEM](https://github.com/ROCm/rocSHMEM)
:::
:::{grid-item-card} Math

View File

@@ -281,31 +281,13 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon AI PRO R9700
- RDNA4
- gfx1201
- 16
- 64
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon PRO V710
- RDNA3
- gfx1101
- 28
- 54
- 32 or 64
- 32
- 128
- 56
- 4
@@ -314,7 +296,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -323,7 +305,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32 or 64
- 32
- 128
- 96
- 6
@@ -332,7 +314,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -341,7 +323,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 96
- 32 or 64
- 32
- 128
- 96
- 6
@@ -350,7 +332,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -359,7 +341,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 48
- 70
- 32 or 64
- 32
- 128
- 96
- 6
@@ -368,7 +350,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -377,7 +359,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 32
- 70
- 32 or 64
- 32
- 128
- 64
- 6
@@ -386,7 +368,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -395,7 +377,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 48
- 32 or 64
- 32
- 128
- 64
- 4
@@ -404,7 +386,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -413,7 +395,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 60
- 32 or 64
- 32
- 128
- 128
- 4
@@ -422,7 +404,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -431,7 +413,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32 or 64
- 32
- 128
- 32
- 2
@@ -440,7 +422,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -449,7 +431,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 32
- 72
- 32 or 64
- 32
- 128
- 128
- 4
@@ -458,7 +440,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -467,7 +449,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1012
- 8
- 22
- 32 or 64
- 32
- 128
-
- 4
@@ -522,85 +504,13 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 9070 XT
- RDNA4
- gfx1201
- 16
- 64
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9070 GRE
- RDNA4
- gfx1201
- 16
- 48
- 32 or 64
- 128
- 48
- 6
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9070
- RDNA4
- gfx1201
- 16
- 56
- 32 or 64
- 128
- 64
- 8
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 9060 XT
- RDNA4
- gfx1200
- 16
- 32
- 32 or 64
- 128
- 32
- 4
- N/A
- 32
- 16
- 32
- 768
- 32
- 12
- 0
*
- Radeon RX 7900 XTX
- RDNA3
- gfx1100
- 24
- 96
- 32 or 64
- 32
- 128
- 96
- 6
@@ -609,7 +519,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -618,7 +528,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 20
- 84
- 32 or 64
- 32
- 128
- 80
- 6
@@ -627,7 +537,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -636,7 +546,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1100
- 16
- 80
- 32 or 64
- 32
- 128
- 64
- 6
@@ -645,7 +555,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -654,7 +564,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 16
- 60
- 32 or 64
- 32
- 128
- 64
- 4
@@ -663,7 +573,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -672,7 +582,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1101
- 12
- 54
- 32 or 64
- 32
- 128
- 48
- 4
@@ -681,7 +591,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 768
- 32
- 16
- 11
- 0
*
@@ -690,7 +600,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1102
- 8
- 32
- 32 or 64
- 32
- 128
- 32
- 2
@@ -699,7 +609,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 11
- 0
*
@@ -708,7 +618,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32 or 64
- 32
- 128
- 128
- 4
@@ -717,7 +627,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -726,7 +636,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 80
- 32 or 64
- 32
- 128
- 128
- 4
@@ -735,7 +645,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -744,7 +654,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 72
- 32 or 64
- 32
- 128
- 128
- 4
@@ -753,7 +663,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -762,7 +672,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1030
- 16
- 60
- 32 or 64
- 32
- 128
- 128
- 4
@@ -771,7 +681,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -780,7 +690,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32 or 64
- 32
- 128
- 96
- 3
@@ -789,7 +699,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -798,7 +708,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 12
- 40
- 32 or 64
- 32
- 128
- 96
- 3
@@ -807,7 +717,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -816,7 +726,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1031
- 10
- 36
- 32 or 64
- 32
- 128
- 80
- 3
@@ -825,7 +735,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -834,7 +744,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32 or 64
- 32
- 128
- 32
- 2
@@ -843,7 +753,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -852,7 +762,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 32
- 32 or 64
- 32
- 128
- 32
- 2
@@ -861,7 +771,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*
@@ -870,7 +780,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- gfx1032
- 8
- 28
- 32 or 64
- 32
- 128
- 32
- 2
@@ -879,7 +789,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 16
- 32
- 512
- 32
- 16
- 10
- 3
*

View File

@@ -10,7 +10,6 @@
| Version | Release date |
| ------- | ------------ |
| [6.4.1](https://rocm.docs.amd.com/en/docs-6.4.1/) | May 21, 2025 |
| [6.4.0](https://rocm.docs.amd.com/en/docs-6.4.0/) | April 11, 2025 |
| [6.3.3](https://rocm.docs.amd.com/en/docs-6.3.3/) | February 19, 2025 |
| [6.3.2](https://rocm.docs.amd.com/en/docs-6.3.2/) | January 28, 2025 |

View File

@@ -12,14 +12,14 @@ subtrees:
- file: compatibility/compatibility-matrix.rst
title: Compatibility matrix
entries:
- url: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html
- url: https://rocm.docs.amd.com/projects/install-on-linux-internal/en/latest/reference/system-requirements.html
title: Linux system requirements
- url: https://rocm.docs.amd.com/projects/install-on-windows/en/${branch}/reference/system-requirements.html
title: Windows system requirements
- caption: Install
entries:
- url: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/
- url: https://rocm.docs.amd.com/projects/install-on-linux-internal/en/latest/
title: ROCm on Linux
- url: https://rocm.docs.amd.com/projects/install-on-windows/en/${branch}/
title: HIP SDK on Windows
@@ -36,22 +36,16 @@ subtrees:
title: Use ROCm for AI
subtrees:
- entries:
- file: how-to/rocm-for-ai/install.rst
title: Installation
- file: how-to/rocm-for-ai/system-health-check.rst
title: System health benchmarks
- file: how-to/rocm-for-ai/training/index.rst
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm.rst
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.rst
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.rst
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext
title: Train a model with JAX MaxText
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
title: Train a model with LLM Foundry
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training
@@ -74,13 +68,15 @@ subtrees:
title: Inference
subtrees:
- entries:
- file: how-to/rocm-for-ai/inference/install.rst
title: Installation
- file: how-to/rocm-for-ai/inference/hugging-face-models.rst
title: Run models from Hugging Face
- file: how-to/rocm-for-ai/inference/llm-inference-frameworks.rst
title: LLM inference frameworks
- file: how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst
- file: how-to/rocm-for-ai/inference/vllm-benchmark.rst
title: vLLM inference performance testing
- file: how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference.rst
- file: how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst
title: PyTorch inference performance testing
- file: how-to/rocm-for-ai/inference/deploy-your-model.rst
title: Deploy your model

View File

@@ -1,4 +1,4 @@
rocm-docs-core==1.20.1
rocm-docs-core==1.18.2
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -2,7 +2,7 @@
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile requirements.in
# pip-compile docs/sphinx/requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
@@ -10,73 +10,74 @@ alabaster==1.0.0
# via sphinx
asttokens==3.0.0
# via stack-data
attrs==25.3.0
attrs==25.1.0
# via
# jsonschema
# jupyter-cache
# referencing
babel==2.17.0
babel==2.16.0
# via
# pydata-sphinx-theme
# sphinx
beautifulsoup4==4.13.4
beautifulsoup4==4.12.3
# via pydata-sphinx-theme
breathe==4.36.0
breathe==4.35.0
# via rocm-docs-core
certifi==2025.4.26
certifi==2024.8.30
# via requests
cffi==1.17.1
# via
# cryptography
# pynacl
charset-normalizer==3.4.2
charset-normalizer==3.4.0
# via requests
click==8.2.1
click==8.1.7
# via
# jupyter-cache
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==45.0.3
cryptography==44.0.1
# via pyjwt
debugpy==1.8.14
debugpy==1.8.12
# via ipykernel
decorator==5.2.1
decorator==5.1.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.18
deprecated==1.2.15
# via pygithub
docutils==0.21.2
# via
# breathe
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.3.0
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.21.1
fastjsonschema==2.20.0
# via
# nbformat
# rocm-docs-core
gitdb==4.0.12
gitdb==4.0.11
# via gitpython
gitpython==3.1.44
gitpython==3.1.43
# via rocm-docs-core
greenlet==3.2.3
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==8.7.0
importlib-metadata==8.6.1
# via
# jupyter-cache
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.37.0
ipython==8.31.0
# via
# ipykernel
# myst-nb
@@ -86,9 +87,9 @@ jinja2==3.1.6
# via
# myst-parser
# sphinx
jsonschema==4.24.0
jsonschema==4.23.0
# via nbformat
jsonschema-specifications==2025.4.1
jsonschema-specifications==2024.10.1
# via jsonschema
jupyter-cache==1.0.1
# via myst-nb
@@ -96,7 +97,7 @@ jupyter-client==8.6.3
# via
# ipykernel
# nbclient
jupyter-core==5.8.1
jupyter-core==5.7.2
# via
# ipykernel
# jupyter-client
@@ -116,9 +117,9 @@ mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.2.0
myst-nb==1.1.2
# via rocm-docs-core
myst-parser==4.0.1
myst-parser==4.0.0
# via myst-nb
nbclient==0.10.2
# via
@@ -131,20 +132,19 @@ nbformat==5.10.4
# nbclient
nest-asyncio==1.6.0
# via ipykernel
packaging==25.0
packaging==24.2
# via
# ipykernel
# pydata-sphinx-theme
# sphinx
parso==0.8.4
# via jedi
pexpect==4.9.0
# via ipython
platformdirs==4.3.8
platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.51
prompt-toolkit==3.0.50
# via ipython
psutil==7.0.0
psutil==6.1.1
# via ipykernel
ptyprocess==0.7.0
# via pexpect
@@ -152,19 +152,19 @@ pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.15.4
pydata-sphinx-theme==0.16.0
# via
# rocm-docs-core
# sphinx-book-theme
pygithub==2.6.1
pygithub==2.5.0
# via rocm-docs-core
pygments==2.19.1
pygments==2.18.0
# via
# accessible-pygments
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.1
pyjwt[crypto]==2.10.0
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -178,7 +178,7 @@ pyyaml==6.0.2
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.4.0
pyzmq==26.2.0
# via
# ipykernel
# jupyter-client
@@ -186,23 +186,23 @@ referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
requests==2.32.4
requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.20.1
rocm-docs-core==1.18.2
# via -r requirements.in
rpds-py==0.25.1
rpds-py==0.22.3
# via
# jsonschema
# referencing
six==1.17.0
# via python-dateutil
smmap==5.0.2
smmap==5.0.1
# via gitdb
snowballstemmer==3.0.1
snowballstemmer==2.2.0
# via sphinx
soupsieve==2.7
soupsieve==2.6
# via beautifulsoup4
sphinx==8.1.3
# via
@@ -220,7 +220,7 @@ sphinx==8.1.3
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.4
sphinx-book-theme==1.1.3
# via rocm-docs-core
sphinx-copybutton==0.5.2
# via rocm-docs-core
@@ -228,7 +228,7 @@ sphinx-design==0.6.1
# via rocm-docs-core
sphinx-external-toc==1.0.1
# via rocm-docs-core
sphinx-notfound-page==1.1.0
sphinx-notfound-page==1.0.4
# via rocm-docs-core
sphinx-reredirects==0.1.6
# via -r requirements.in
@@ -250,13 +250,13 @@ sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.41
sqlalchemy==2.0.37
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.2.1
tomli==2.1.0
# via sphinx
tornado==6.4.2
# via
@@ -272,23 +272,21 @@ traitlets==5.14.3
# matplotlib-inline
# nbclient
# nbformat
typing-extensions==4.14.0
typing-extensions==4.12.2
# via
# beautifulsoup4
# exceptiongroup
# ipython
# myst-nb
# pydata-sphinx-theme
# pygithub
# referencing
# sqlalchemy
urllib3==2.4.0
urllib3==2.2.3
# via
# pygithub
# requests
wcwidth==0.2.13
# via prompt-toolkit
wrapt==1.17.2
wrapt==1.17.0
# via deprecated
zipp==3.23.0
zipp==3.21.0
# via importlib-metadata

View File

@@ -52,7 +52,7 @@ Communication
:header: "Component", "Description"
":doc:`RCCL <rccl:index>`", "Standalone library that provides multi-GPU and multi-node collective communication primitives"
":doc:`rocSHMEM <rocshmem:index>`", "An intra-kernel networking library that provides GPU-centric networking through an OpenSHMEM-like interface"
"`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_", "Runtime that provides GPU-centric networking through an OpenSHMEM-like interface. This intra-kernel networking library simplifies application code complexity and enables more fine-grained communication/computation overlap than traditional host-driven networking."
Math
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -117,11 +117,6 @@ Performance
":doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`", "Toolkit for developing analysis tools for profiling and tracing GPU compute applications. This toolkit is in beta and subject to change"
":doc:`ROCTracer <roctracer:index>`", "Intercepts runtime API calls and traces asynchronous activity"
.. note::
`ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is a tool for visualizing and analyzing GPU thread trace data collected using :doc:`rocprofv3 <rocprofiler-sdk:index>`.
Note that `ROCprof Compute Viewer <https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/>`_ is in an early access state. Running production workloads is not recommended.
Development
^^^^^^^^^^^

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.4.1"
<default revision="refs/tags/rocm-6.4.0"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -87,6 +87,7 @@ endef
$(call adddep,amd_smi_lib,${ASAN_DEP})
$(call adddep,aqlprofile,${ASAN_DEP} rocr)
$(call adddep,aqlprofiletest,lightning rocminfo aqlprofile opencl_on_rocclr hip_on_rocclr)
$(call adddep,comgr,lightning devicelibs)
$(call adddep,dbgapi,rocr comgr)
$(call adddep,devicelibs,lightning)
@@ -114,7 +115,7 @@ $(call adddep,roctracer,${ASAN_DEP} rocr hip_on_rocclr)
# rocm-dev points to all possible last finish components of Stage1 build.
rocm-dev-components :=amd_smi_lib aqlprofile comgr dbgapi devicelibs hip_on_rocclr hipcc hipify_clang \
rocm-dev-components :=amd_smi_lib aqlprofile aqlprofiletest comgr dbgapi devicelibs hip_on_rocclr hipcc hipify_clang \
lightning rocprofiler-compute opencl_on_rocclr openmp_extras rocm_bandwidth_test rocm_smi_lib \
rocm-cmake rocm-core rocm-gdb rocminfo rocprofiler-register rocprofiler-sdk rocprofiler-systems \
rocprofiler rocr rocr_debug_agent rocrsamples roctracer

View File

@@ -255,8 +255,8 @@ print_output_directory() {
# Common variables
target="build"
kfdtest_target="no"
rocrtst_target="no"
kfdtest_target="yes"
rocrtst_target="yes"
rocr_target="ON"
package_root="$(getPackageRoot)"

View File

@@ -60,6 +60,7 @@ libfile-find-rule-perl
libgflags-dev
libglew-dev
libgmp-dev
libgoogle-glog-dev
libgtk2.0-dev
libhdf5-serial-dev
libjpeg-dev
@@ -89,6 +90,7 @@ libsuitesparse-dev
libsystemd-dev
libtinfo-dev
libtool
libunwind-dev
liburi-encode-perl
libva-dev
libvirt-clients
@@ -96,6 +98,7 @@ libvirt-daemon-system
libyaml-cpp-dev
libzstd-dev
llvm
llvm-6.0-dev
llvm-dev
llvm-runtime
mesa-common-dev
@@ -109,7 +112,8 @@ pigz
pkg-config
protobuf-compiler
python-is-python3
python3-pip-whl
python-pip-whl
python-yaml
python3-dev
python3-pip
python3-venv

View File

@@ -17,7 +17,7 @@ git --version
# venv for python to be able to run pip3 without --break-system-packages
python3 -m venv /opt/venv
source /opt/venv/bin/activate
pip3 install CppHeaderParser argparse lxml recommonmark jinja2==3.0.0 \
websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas \
myst-parser setuptools lit

View File

@@ -217,7 +217,7 @@ export RCCL_ROOT=$WORK_ROOT/rccl
export ROCM_DBGAPI_ROOT=$WORK_ROOT/ROCdbgapi
export ROCM_GDB_ROOT=$WORK_ROOT/ROCgdb
# export ROCclr_ROOT=$WORK_ROOT/vdi
export HIP_ON_ROCclr_ROOT=$WORK_ROOT/hip
export HIP_ON_ROCclr_ROOT=$WORK_ROOT/HIP
export HIPAMD_ROOT=$WORK_ROOT/hipamd
export HIP_CATCH_TESTS_ROOT=$WORK_ROOT/hip-tests
# export OPENCL_ON_ROCclr_ROOT=$WORK_ROOT/opencl-on-vdi

View File

@@ -1,79 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.4.1"
remote="rocm-org"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCm-->
<project name="ROCm" revision="roc-6.4.x" />
<project name="ROCK-Kernel-Driver" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="rdc" />
<project name="rocm_bandwidth_test" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-examples" />
<project name="rocminfo" />
<project name="rocprofiler" />
<project name="rocprofiler-register" />
<project name="rocprofiler-sdk" />
<project name="rocprofiler-compute" />
<project name="rocprofiler-systems" />
<project name="roctracer" />
<!--HIP Projects-->
<project name="HIP" />
<project name="hip-tests" />
<project name="HIPIFY" />
<project name="clr" />
<project name="hipother" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="half" />
<project name="llvm-project" />
<project name="spirv-llvm-translator" />
<!-- gdb projects -->
<project name="ROCdbgapi" />
<project name="ROCgdb" />
<project name="rocr_debug_agent" />
<!-- ROCm Libraries -->
<project groups="mathlibs" name="AMDMIGraphX" />
<project groups="mathlibs" name="MIOpen" />
<project groups="mathlibs" name="MIVisionX" />
<project groups="mathlibs" name="ROCmValidationSuite" />
<project groups="mathlibs" name="Tensile" />
<project groups="mathlibs" name="composable_kernel" />
<project groups="mathlibs" name="hipBLAS-common" />
<project groups="mathlibs" name="hipBLAS" />
<project groups="mathlibs" name="hipBLASLt" />
<project groups="mathlibs" name="hipCUB" />
<project groups="mathlibs" name="hipFFT" />
<project groups="mathlibs" name="hipRAND" />
<project groups="mathlibs" name="hipSOLVER" />
<project groups="mathlibs" name="hipSPARSE" />
<project groups="mathlibs" name="hipSPARSELt" />
<project groups="mathlibs" name="hipTensor" />
<project groups="mathlibs" name="hipfort" />
<project groups="mathlibs" name="rccl" />
<project groups="mathlibs" name="rocAL" />
<project groups="mathlibs" name="rocALUTION" />
<project groups="mathlibs" name="rocBLAS" />
<project groups="mathlibs" name="rocDecode" />
<project groups="mathlibs" name="rocJPEG" />
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocFFT" />
<project groups="mathlibs" name="rocPRIM" />
<project groups="mathlibs" name="rocRAND" />
<project groups="mathlibs" name="rocSHMEM" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocSPARSE" />
<project groups="mathlibs" name="rocThrust" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />
<project groups="mathlibs" name="rpp" />
<project groups="mathlibs" name="TransferBench" />
<!-- Projects for OpenMP-Extras -->
<project name="aomp" path="openmp-extras/aomp" />
<project name="aomp-extras" path="openmp-extras/aomp-extras" />
<project name="flang" path="openmp-extras/flang" />
</manifest>