Compare commits

...

80 Commits

Author SHA1 Message Date
Aditya Lad
68c5c198df add rdc and half 2020-12-02 16:07:15 -08:00
Lad, Aditya
8d5a160f0a 3.10 : Manifest Files 2020-12-01 16:24:12 -08:00
Roopa Malavally
f61c2ad155 Add files via upload 2020-12-01 15:45:33 -08:00
Roopa Malavally
3e2e30cc9a Delete AMD_ROCm_DataCenter_Tool_User_Guide.pdf 2020-12-01 15:44:56 -08:00
Roopa Malavally
a1f3b4e6b8 Update README.md 2020-12-01 15:08:53 -08:00
Roopa Malavally
7a3a012e6a Update README.md 2020-11-30 15:45:42 -08:00
Roopa Malavally
5b6ab31db3 Update README.md 2020-11-30 14:12:01 -08:00
Roopa Malavally
acabe2c532 Update README.md 2020-11-30 14:10:06 -08:00
Roopa Malavally
39d8bcd504 Release notes for v3.10 (#1312)
* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Delete matrix.png

* Delete ROCMCLI3.PNG

* Delete ROCMCLI2.PNG

* Delete ROCMCLI1.PNG

* Delete GEMM2.PNG

* Add files via upload

* Delete ROCm_SMI_Manual_v3.9.pdf

* Delete AMD_ROCm_Release_Notes_v3.9.pdf

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2020-11-30 14:07:52 -08:00
Roopa Malavally
af6d1e9b26 Add files via upload 2020-11-30 14:01:36 -08:00
Roopa Malavally
1fa1d4a935 Add files via upload 2020-11-30 09:53:49 -08:00
Roopa Malavally
03d93c1948 Delete AMD_ROCm_Release_Notes_v3.9.pdf 2020-11-30 08:55:35 -08:00
Roopa Malavally
93984b0956 Add files via upload 2020-11-30 08:54:52 -08:00
Roopa Malavally
6ccb1cfc0f Add files via upload 2020-11-30 07:29:29 -08:00
Roopa Malavally
f054f82173 Delete ROCm_SMI_Manual_v3.9.pdf 2020-11-30 07:28:11 -08:00
Xu Huisheng
bb6756b58d remove dumplicated remote=roc-github (#1248) 2020-11-18 08:19:23 -08:00
Roopa Malavally
d957b8a17c Update README.md 2020-11-12 13:47:48 -08:00
Roopa Malavally
37ece61861 Update README.md 2020-11-11 14:16:48 -08:00
Roopa Malavally
434023f31b Update README.md 2020-11-03 07:45:53 -08:00
Aditya Lad
a555260687 Merge pull request #1268 from RadeonOpenCompute/roc-3.9.x
Roc 3.9.x
2020-10-28 17:39:17 -07:00
Lad, Aditya
bf89c6bbf1 3.9 documentation 2020-10-28 15:32:49 -07:00
Lad, Aditya
bd4b772255 ROCm 3.9 default.xml 2020-10-28 15:22:02 -07:00
Lad, Aditya
e99027c39c ROCm 3.9 : Manifest files 2020-10-28 15:14:41 -07:00
Roopa Malavally
93c69afb5b Add files via upload 2020-10-28 14:54:54 -07:00
Roopa Malavally
bc2ce5c35b Delete staticlinkinglib.PNG 2020-10-28 14:52:02 -07:00
Roopa Malavally
bf633aec6b Delete forweb.PNG 2020-10-28 14:51:49 -07:00
Roopa Malavally
8608a9a1c9 Delete RDCComponentsrevised.png 2020-10-28 14:51:33 -07:00
Roopa Malavally
76afb05b6c Delete AMD_ROCm_DataCenter_Tool_User_Guide.pdf 2020-10-28 14:51:19 -07:00
Roopa Malavally
8bc67a21ea Update README.md 2020-10-19 20:23:07 -07:00
Roopa Malavally
1ce148edb1 Update README.md 2020-10-19 20:21:08 -07:00
Roopa Malavally
cc6147c25b Update README.md 2020-10-19 20:20:20 -07:00
Roopa Malavally
aadd9e68e1 Update README.md 2020-10-19 20:17:34 -07:00
Roopa Malavally
dce5aee2dc Add files via upload 2020-10-19 19:34:27 -07:00
Aditya Lad
0bcae510a3 Merge pull request #1244 from RadeonOpenCompute/roc-3.8.x
Remove MiGraphX from 3.8
2020-09-25 10:06:57 -07:00
Lad, Aditya
86a09b146b Remove MiGraphX from 3.8 2020-09-25 10:05:32 -07:00
Roopa Malavally
506cdcf6db Update README.md 2020-09-25 08:06:49 -07:00
Roopa Malavally
a919ba64c9 Update README.md 2020-09-25 08:00:10 -07:00
Roopa Malavally
fae25ccf9b Update README.md 2020-09-22 16:52:31 -07:00
Lad, Aditya
d1f9aa98a3 hipfort addition to 3.8 2020-09-22 11:38:23 -07:00
Lad, Aditya
42fa0e0765 Remove version_history.md file. Since we are currently maintaining it on external documentation. 2020-09-21 16:04:25 -07:00
Lad, Aditya
e89903ed3a ROCm release 3.8 2020-09-21 15:58:09 -07:00
Roopa Malavally
ba2e1f0109 ROCm v3.8 Release Notes (#1226)
* Update README.md

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add files via upload

* Delete staticlinkinglib.PNG

* Add files via upload

* Delete staticlinkinglib.PNG

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Delete AMD_ROCm_Release_Notes_v3.7.pdf

* Update README.md

* Update README.md

* Update README.md

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Update README.md
2020-09-21 15:47:24 -07:00
Roopa Malavally
a1830b5330 Add files via upload 2020-09-17 12:23:13 -07:00
Roopa Malavally
0c596d155a Update README.md 2020-09-07 10:46:57 -07:00
Roopa Malavally
75c0d668d9 Update README.md 2020-09-02 06:13:56 -07:00
Roopa Malavally
49bd50c858 Update README.md 2020-09-02 06:13:23 -07:00
Roopa Malavally
a54214d05d Update README.md 2020-09-02 06:12:10 -07:00
Roopa Malavally
2524166765 Update README.md 2020-08-23 18:33:23 -07:00
Roopa Malavally
abc65687d4 Add files via upload 2020-08-23 09:44:46 -07:00
Roopa Malavally
0fddb14b8f Delete AMD_ROCm_Release_Notes_v3.7.pdf 2020-08-23 09:44:30 -07:00
Roopa Malavally
3909efb389 Update README.md 2020-08-23 09:34:53 -07:00
Roopa Malavally
e0361edcf8 Add files via upload 2020-08-20 17:41:22 -07:00
Lad, Aditya
67f7748999 ROCm 3.7 : Default.xml 2020-08-20 20:27:43 -04:00
Roopa Malavally
3b9619ac45 For v3.7 (#1191)
* Delete HIPClang2.png

* Delete ROCm_SMI_Manual.pdf

* Delete RPP.png

* Delete amd-dbgapi.pdf

* Delete gdb.pdf

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Delete AMD_ROCm_Release_Notes_v3.5.1.pdf

* Add files via upload

* Delete AMD_ROCm_Release_Notes_v3.7.pdf

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2020-08-20 16:58:26 -07:00
Roopa Malavally
3b421076e0 Update README.md 2020-08-06 14:35:43 -07:00
Roopa Malavally
3dfc8c3954 Add files via upload 2020-07-09 10:37:58 -07:00
Roopa Malavally
1d4cac07ae Delete ROCm_SMI_API_Guide.pdf 2020-07-09 10:36:16 -07:00
Roopa Malavally
de1efc447a Delete ROCgdb_User_Guide.pdf 2020-07-09 10:36:05 -07:00
Roopa Malavally
f0bcd280f1 Delete ROCgdb_API_Guide.pdf 2020-07-09 10:35:42 -07:00
Roopa Malavally
cf36f54099 Delete RDC_API_Guide_Alpha.pdf 2020-07-09 10:34:55 -07:00
Roopa Malavally
d304044378 Delete AMD_ROCm_Data_Center_Tool_User_Guide.pdf 2020-07-09 10:34:39 -07:00
Roopa Malavally
4464dc282e Delete gdb.pdf 2020-07-08 21:39:22 -07:00
Roopa Malavally
9f7604f51b Delete amd-dbgapi.pdf 2020-07-08 21:39:07 -07:00
Roopa Malavally
f213e32845 Add files via upload 2020-07-08 21:38:39 -07:00
Roopa Malavally
efad9684ee Add files via upload 2020-07-08 19:49:40 -07:00
Roopa Malavally
6d99ada0ae Delete ROCm_SMI_Manual.pdf 2020-07-08 15:20:09 -07:00
Roopa Malavally
fb77891fae Add files via upload 2020-07-08 15:19:37 -07:00
Roopa Malavally
b0b858d81c Add files via upload 2020-07-07 20:54:44 -07:00
Roopa Malavally
7c97c6b102 Update README.md 2020-06-29 09:23:56 -07:00
Roopa Malavally
dee1c4a0e7 Update README.md 2020-06-26 13:18:01 -07:00
Roopa Malavally
29060c09ec Add files via upload 2020-06-20 08:29:10 -07:00
Roopa Malavally
d7eb52fced Delete AMD_ROCm_Release_Notes_v3.5.1.pdf 2020-06-20 08:28:53 -07:00
Roopa Malavally
13e2fb06b9 Add files via upload 2020-06-19 17:02:39 -07:00
Roopa Malavally
e3017948a9 Delete AMD_ROCm_Release_Notes_v3.5.1.pdf 2020-06-19 17:02:21 -07:00
Roopa Malavally
09643c4a90 Update README.md 2020-06-19 16:48:56 -07:00
Lad, Aditya
8c835d14fc Manifest files : ROCm 3.5.1 2020-06-19 19:44:07 -04:00
Roopa Malavally
25dea0df9f Update README.md 2020-06-19 16:39:17 -07:00
Roopa Malavally
11968356fc Update README.md 2020-06-19 16:38:29 -07:00
Roopa Malavally
c2d8aa3426 Add files via upload 2020-06-19 16:36:16 -07:00
Roopa Malavally
cc37d13828 Update README.md 2020-06-03 12:43:24 -07:00
15 changed files with 559 additions and 1018 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

998
README.md
View File

@@ -1,480 +1,518 @@
# AMD ROCm Release Notes v3.5.0
This page describes the features, fixed issues, and information about downloading and installing the ROCm software.
It also covers known issues and deprecated features in the ROCm v3.5.0 release.
- [Supported Operating Systems and Documentation Updates](#Supported-Operating-Systems-and-Documentation-Updates)
* [Supported Operating Systems](#Supported-Operating-Systems)
* [Documentation Updates](#Documentation-Updates)
- [What\'s New in This Release](#Whats-New-in-This-Release)
* [Upgrading to This Release](#Upgrading-to-This-Release)
* [Heterogeneous-Compute Interface for Portability](#Heterogeneous-Compute-Interface-for-Portability)
* [Radeon Open Compute Common Language Runtime](#Radeon-Open-Compute-Common-Language-Runtime)
* [OpenCL Runtime](#OpenCL-Runtime)
* [AMD ROCm GNU Debugger ROCgdb](#AMD-ROCm-GNU-Debugger-ROCgdb)
* [AMD ROCm Debugger API Library](#AMD-ROCm-Debugger-API-Library)
* [rocProfiler Dispatch Callbacks Start/Stop API](#rocProfiler-Dispatch-Callbacks-Start-Stop-API)
* [ROCm Communications Collective Library](#ROCm-Communications-Collective-Library)
* [NVIDIA Communications Collective Library Version Compatibility](#NVIDIA-Communications-Collective-Library-Version-Compatibility)
* [MIOpen Optional Kernel Package Installation](#MIOpen-Optional-Kernel-Package-Installation)
* [New SMI Event Interface and Library](#New-SMI-Event-Interface-and-Library)
* [API for CPU Affinity](#API-for-CPU-Affinity)
* [Radeon Performance Primitives Library](#Radeon-Performance-Primitives-Library)
- [Fixed Issues](#Fixed-Issues)
- [Known Issues](#Known-Issues)
- [Deprecations](#Deprecations)
* [Heterogeneous Compute Compiler](#Heterogeneous-Compute-Compiler)
- [Deploying ROCm](#Deploying-ROCm)
- [Hardware and Software Support](#Hardware-and-Software-Support)
- [Machine Learning and High Performance Computing Software Stack for AMD GPU](#Machine-Learning-and-High-Performance-Computing-Software-Stack-for-AMD-GPU)
* [ROCm Binary Package Structure](#ROCm-Binary-Package-Structure)
* [ROCm Platform Packages](#ROCm-Platform-Packages)
# Supported Operating Systems and Documentation Updates
## Supported Operating Systems
The AMD ROCm v3.5.x platform is designed to support the following operating systems:
* Ubuntu 16.04.6(Kernel 4.15) and 18.04.4(Kernel 5.3)
* CentOS 7.7 (Kernel 3.10-1062) and RHEL 7.8(Kernel 3.10.0-1127)(Using devtoolset-7 runtime support)
* SLES 15 SP1
* CentOS and RHEL 8.1(Kernel 4.18.0-147)
## Documentation Updates
### HIP-Clang Compile
* [HIP FAQ - Transition from HCC to HIP-Clang](https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq)
* [HIP-Clang Porting Guide](https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html#hip-porting-guide)
* [HIP - Glossary of Terms](https://rocmdocs.amd.com/en/latest/ROCm_Glossary/ROCm-Glossary.html)
### AMD ROCDebugger (ROCgdb)
* [ROCgdb User Guide](https://github.com/RadeonOpenCompute/ROCm/blob/master/gdb.pdf)
* [ROCgdbapi Guide](https://github.com/RadeonOpenCompute/ROCm/blob/master/amd-dbgapi.pdf)
### AMD ROCm Systems Management Interface
* [System Management Interface Event API Guide](https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_Manual.pdf)
### AMD ROCm Deep Learning
* [MIOpen API](https://github.com/ROCmSoftwarePlatform/MIOpen)
### AMD ROCm Glossary of Terms
* [Updated Glossary of Terms and Definitions](https://rocmdocs.amd.com/en/latest/ROCm_Glossary/ROCm-Glossary.html)
### General AMD ROCm Documentatin Links
Access the following links for more information on:
* For AMD ROCm documentation, see
https://rocmdocs.amd.com/en/latest/
* For installation instructions on supported platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
* For AMD ROCm binary structure, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#machine-learning-and-high-performance-computing-software-stack-for-amd-gpu-v3-3-0
* For AMD ROCm Release History, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#amd-rocm-version-history
# What\'s New in This Release
## Upgrading to This Release
You must perform a fresh and a clean AMD ROCm install to successfully upgrade from v3.3 to v3.5. The following changes apply in this release:
* HCC is deprecated and replaced with the HIP-Clang compiler
* HIP-HCC runtime is changed to Radeon Open Compute Common Language Runtime (HIP-ROCClr)
* In the v3.5 release, the firmware is separated from the kernel package. The difference is as follows:
* v3.5 release has two separate rock-dkms and rock-dkms-firmware packages
* v3.3 release had the firmware as part of the rock-dkms package
## rocProf Command Line Tool Python Requirement
SQLite3 is a required Python module for the rocprof command-line tool. You can install the SQLite3 Python module using the pip utility and set env var ROCP_PYTHON_VERSION to the Python version, which includes the SQLite3 module.
## Heterogeneous-Compute Interface for Portability
In this release, the Heterogeneous Compute Compiler (HCC) compiler is deprecated and the HIP-Clang compiler is introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs.
NOTE: The HCC environment variables will be gradually deprecated in subsequent releases.
The majority of the codebase for the HIP-Clang compiler has been upstreamed to the Clang trunk. The HIP-Clang implementation has undergone a strict code review by the LLVM/Clang community and comprehensive tests consisting of LLVM/Clang build bots. These reviews and tests resulted in higher productivity, code quality, and lower cost of maintenance.
![ScreenShot](HIPClang2.png)
For most HIP applications, the transition from HCC to HIP-Clang is transparent and efficient as the HIPCC and HIP cmake files automatically choose compilation options for HIP-Clang and hide the difference between the HCC and HIP-Clang code. However, minor changes may be required as HIP-Clang has a stricter syntax and semantic checks compared to HCC.
NOTE: Native HCC language features are no longer supported.
## Radeon Open Compute Common Language Runtime
In this release, the HIP runtime API is implemented on top of Radeon Open Compute Common Language Runtime (ROCclr). ROCclr is an abstraction layer that provides the ability to interact with different runtime backends such as ROCr.
## OpenCL Runtime
The following OpenCL runtime changes are made in this release:
* AMD ROCm OpenCL Runtime extends support to OpenCL2.2
* The developer branch is changed from master to master-next
## AMD ROCm GNU Debugger (ROCgdb)
The AMD ROCm Debugger (ROCgdb) is the AMD ROCm source-level debugger for Linux based on the GNU Debugger (GDB). It enables heterogeneous debugging on the AMD ROCm platform of an x86-based host architecture along with AMD GPU architectures and supported by the AMD Debugger API Library (ROCdbgapi).
The AMD ROCm Debugger is installed by the rocm-gdb package. The rocm-gdb package is part of the rocm-dev meta-package, which is in the rocm-dkms package.
The current AMD ROCm Debugger (ROCgdb) is an initial prototype that focuses on source line debugging. Note, symbolic variable debugging capabilities are not currently supported.
You can use the standard GDB commands for both CPU and GPU code debugging. For more information about ROCgdb, refer to the ROCgdb User Guide, which is installed at:
* /opt/rocm/share/info/gdb.info as a texinfo file
* /opt/rocm/share/doc/gdb/gdb.pdf as a PDF file
The AMD ROCm Debugger User Guide is available as a PDF at:
https://github.com/RadeonOpenCompute/ROCm/blob/master/gdb.pdf
For more information about GNU Debugger (GDB), refer to the GNU Debugger (GDB) web site at: http://www.gnu.org/software/gdb
## AMD ROCm Debugger API Library
The AMD ROCm Debugger API Library (ROCdbgapi) implements an AMD GPU debugger application programming interface (API) that provides the support necessary for a client of the library to control the execution and inspect the state of AMD GPU devices.
The following AMD GPU architectures are supported:
* Vega 10
* Vega 7nm
The AMD ROCm Debugger API Library is installed by the rocm-dbgapi package. The rocm-gdb package is part of the rocm-dev meta-package, which is in the rocm-dkms package.
The AMD ROCm Debugger API Specification is available as a PDF at:
https://github.com/RadeonOpenCompute/ROCm/blob/master/amd-dbgapi.pdf
## rocProfiler Dispatch Callbacks Start Stop API
In this release, a new rocprofiler start/stop API is added to enable/disable GPU kernel HSA dispatch callbacks. The callback can be registered with the 'rocprofiler_set_hsa_callbacks' API. The API helps you eliminate some profiling performance impact by invoking the profiler only for kernel dispatches of interest. This optimization will result in significant performance gains.
The API provides the following functions:
* *hsa_status_t rocprofiler_start_queue_callbacks();* is used to start profiling
* *hsa_status_t rocprofiler_stop_queue_callbacks();* is used to stop profiling.
For more information on kernel dispatches, see the HSA Platform System Architecture Specification guide at http://www.hsafoundation.com/standards/.
## ROCm Communications Collective Library
The ROCm Communications Collective Library (RCCL) consists of the following enhancements:
* Re-enable target 0x803
* Build time improvements for the HIP-Clang compiler
### NVIDIA Communications Collective Library Version Compatibility
AMD RCCL is now compatible with NVIDIA Communications Collective Library (NCCL) v2.6.4 and provides the following features:
* Network interface improvements with API v3
* Network topology detection
* Improved CPU type detection
* Infiniband adaptive routing support
## MIOpen Optional Kernel Package Installation
MIOpen provides an optional pre-compiled kernel package to reduce startup latency.
NOTE: The installation of this package is optional. MIOpen will continue to function as expected even if you choose to not install the pre-compiled kernel package. This is because MIOpen compiles the kernels on the target machine once the kernel is run. However, the compilation step may significantly increase the startup time for different operations.
To install the kernel package for your GPU architecture, use the following command:
*apt-get install miopen-kernels-<arch>-<num cu>*
* <arch> is the GPU architecture. For example, gfx900, gfx906
* <num cu> is the number of CUs available in the GPU. For example, 56 or 64
## New SMI Event Interface and Library
An SMI event interface is added to the kernel and ROCm SMI lib for system administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS input/output control is enhanced to allow notifications propagation to user mode through the event channel.
On the ROCm SMI lib side, APIs are added to set an event mask and receive event notifications with a timeout option. Further, ROCm SMI API details can be found in the PDF generated by Doxygen from source or by referring to the rocm_smi.h header file (see the rsmi_event_notification_* functions).
For the more details about ROCm SMI API, see
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_Manual.pdf
## API for CPU Affinity
A new API is introduced for aiding applications to select the appropriate memory node for a given accelerator(GPU).
The API for CPU affinity has the following signature:
*rsmi_status_t rsmi_topo_numa_affinity_get(uint32_t dv_ind, uint32_t *numa_node);*
This API takes as input, device index (dv_ind), and returns the NUMA node (CPU affinity), stored at the location pointed by numa_node pointer, associated with the device.
Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessing, where the memory access time depends on the memory location relative to the processor.
## Radeon Performance Primitives Library
The new Radeon Performance Primitives (RPP) library is a comprehensive high-performance computer vision library for AMD (CPU and GPU) with the HIP and OpenCL backend. The target operating system is Linux.
![ScreenShot](RPP.png)
For more information about prerequisites and library functions, see
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/docs
# Fixed Issues
## Device printf Support for HIP-Clang
HIP now supports the use of printf in the device code. The parameters and return value for the device-side printf follow the POSIX.1 standard, with the exception that the "%n" specifier is not supported. A call to printf blocks the calling wavefront until the operation is completely processed by the host.
No host-side runtime calls by the application are needed to cause the output to appear. There is also no limit on the number of device-side calls to printf or the amount of data that is printed.
For more details, refer the HIP Programming Guide at:
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html#hip-guide
## Assertions in HIP Device Code
Previously, a failing assertion caused early termination of kernels and the application to exit with a line number, file, and failing condition printed to the screen.
This issue is now fixed and the assert() and abort() functions are implemented for HIP device code.
NOTE: There may be a performance impact in the use of device assertions in its current form.
You may choose to disable the assertion in the production code. For example, to disable an assertion of:
*assert(foo != 0);*
you may comment it out as:
*//assert(foo != 0);*
NOTE: Assertions are currently enabled by default.
# Known Issues
The following are the known issues in the v3.5 release.
## HIPify-Clang Installation Failure on CentOS/RHEL
HIPify-Clang fails to install on CentOS/RHEL with the following error:
*file from install of hipify-clang conflicts with file from package hip-base*
**Workaround**: This is a known issue and the following workaround is recommended for a successful installation of HIPify-Clang on CentOS/RHEL:
* Download HIPify-Clang RPM. For example, *hipify-clang-11.0.0.x86_64.rpm*
* Perform a force install using the following command:
*sudo rpm -ivh --force hipify-clang-11.0.0.x86_64.rpm*
## Failure to Process Breakpoint before Queue Destroy Results in ROCm Debugger Error
When ROCgdb is in non-stop mode with an application that rapidly creates and destroys queues, a breakpoint may be reported that is not processed by the debugger before the queue is deleted. In some cases, this can result in the following error that prevents further debugging:
*[amd-dbgapi]: fatal error: kfd_queue_id 2 should have been reported as a NEW_QUEUE before next_pending_event failed (rc=-2)*
There are no known workarounds at this time.
## Failure to Process Breakpoint before Queue Destroy Results in ROCm Debugger API Error
When the ROCdbgapi library is used with an application that rapidly creates and destroys queues, a breakpoint may be reported that is not processed by the client before the queue is deleted. In some cases, this can result in a fatal error and the following error log message is produced:
*[amd-dbgapi]: fatal error: kfd_queue_id 2 should have been reported as a NEW_QUEUE before next_pending_event failed (rc=-2)*
There are no known workarounds at this time.
## rocThrust and hipCUB Unit Test Failures
The following unit test failures have been observed due to known issues in the ROCclr runtime.
rocThrust
* sort
* sort_by_key
hipCUB
* BlockDiscontinuity
* BlockExchange
* BlockHistogram
* BlockRadixSort
* BlockReduce
* BlockScan
There are no known workarounds in the current release.
## Multiple GPU Configuration Freezes with Imagenet Training and tf_cnn_benchmark on TensorFlow
A random freeze has been observed with Imagenet training and tf_cnn_benchmark on TensorFlow when multiple GPU configurations are involved.
There is no freeze observed with single GPUs.
There are no known workarounds at this time.
## Issue with Running AMD ROCm v3.3 User Mode with AMD ROCm v3.5 DKMS Kernel Module
Running AMD ROCm v3.3 in the user mode with the AMD ROCm v3.5 DKMS kernel module will cause the following features to be broken:
* IPC import/export, cross memory copy (used by UCX and MPI)
* Experimental GDB support
**Resolution**: Install ROCm v3.5 Thunk (*Hsakmt*) when using ROCm 3.5 Kernel Fusion Driver (KFD).
## SQLite3 Library Not Found in ROCProfiler
The ROCProfiler tool appears to be broken when the SQLite3 library is not found.
**Resolution**: Install the SQLite3 Python module separately and ensure the environment variable is set to ROCP_PYTHON_VERSION to confirm the Python version, which includes the SQLite3 module.
# Deprecations
Install ROCm v3.5 Thunk (Hsakmt) when using ROCm 3.5 Kernel Fusion Driver (KFD). You can access the Thunk package at:
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface
## Heterogeneous Compute Compiler
In this release, the Heterogeneous Compute Compiler (HCC) compiler is deprecated and the HIP-Clang compiler is introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs.
For more information, see HIP documentation at:
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
## Deploying ROCm
AMD hosts both Debian and RPM repositories for the ROCm v3.5.x packages.
For more information on ROCM installation on all platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
## Hardware and Software Support
ROCm is focused on using AMD GPUs to accelerate computational tasks such as machine learning, engineering workloads, and scientific computing.
In order to focus our development efforts on these domains of interest, ROCm supports a targeted set of hardware configurations which are detailed further in this section.
#### Supported GPUs
Because the ROCm Platform has a focus on particular computational domains, we offer official support for a selection of AMD GPUs that are designed to offer good performance and price in these domains.
ROCm officially supports AMD GPUs that use following chips:
* GFX8 GPUs
* "Fiji" chips, such as on the AMD Radeon R9 Fury X and Radeon Instinct MI8
* "Polaris 10" chips, such as on the AMD Radeon RX 580 and Radeon Instinct MI6
* GFX9 GPUs
* "Vega 10" chips, such as on the AMD Radeon RX Vega 64 and Radeon Instinct MI25
* "Vega 7nm" chips, such as on the Radeon Instinct MI50, Radeon Instinct MI60 or AMD Radeon VII
ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools.
Some of this software may work with more GPUs than the "officially supported" list above, though AMD does not make any official claims of support for these devices on the ROCm software platform.
The following list of GPUs are enabled in the ROCm software, though full support is not guaranteed:
* GFX8 GPUs
* "Polaris 11" chips, such as on the AMD Radeon RX 570 and Radeon Pro WX 4100
* "Polaris 12" chips, such as on the AMD Radeon RX 550 and Radeon RX 540
* GFX7 GPUs
* "Hawaii" chips, such as the AMD Radeon R9 390X and FirePro W9100
As described in the next section, GFX8 GPUs require PCI Express 3.0 (PCIe 3.0) with support for PCIe atomics. This requires both CPU and motherboard support. GFX9 GPUs require PCIe 3.0 with support for PCIe atomics by default, but they can operate in most cases without this capability.
The integrated GPUs in AMD APUs are not officially supported targets for ROCm.
As described [below](#limited-support), "Carrizo", "Bristol Ridge", and "Raven Ridge" APUs are enabled in our upstream drivers and the ROCm OpenCL runtime.
However, they are not enabled in our HCC or HIP runtimes, and may not work due to motherboard or OEM hardware limitations.
As such, they are not yet officially supported targets for ROCm.
For a more detailed list of hardware support, please see [the following documentation](https://rocm.github.io/hardware.html).
#### Supported CPUs
As described above, GFX8 GPUs require PCIe 3.0 with PCIe atomics in order to run ROCm.
In particular, the CPU and every active PCIe point between the CPU and GPU require support for PCIe 3.0 and PCIe atomics.
The CPU root must indicate PCIe AtomicOp Completion capabilities and any intermediate switch must indicate PCIe AtomicOp Routing capabilities.
Current CPUs which support PCIe Gen3 + PCIe Atomics are:
* AMD Ryzen CPUs
* The CPUs in AMD Ryzen APUs
* AMD Ryzen Threadripper CPUs
* AMD EPYC CPUs
* Intel Xeon E7 v3 or newer CPUs
* Intel Xeon E5 v3 or newer CPUs
* Intel Xeon E3 v3 or newer CPUs
* Intel Core i7 v4, Core i5 v4, Core i3 v4 or newer CPUs (i.e. Haswell family or newer)
* Some Ivy Bridge-E systems
Beginning with ROCm 1.8, GFX9 GPUs (such as Vega 10) no longer require PCIe atomics.
We have similarly opened up more options for number of PCIe lanes.
GFX9 GPUs can now be run on CPUs without PCIe atomics and on older PCIe generations, such as PCIe 2.0.
This is not supported on GPUs below GFX9, e.g. GFX8 cards in the Fiji and Polaris families.
If you are using any PCIe switches in your system, please note that PCIe Atomics are only supported on some switches, such as Broadcom PLX.
When you install your GPUs, make sure you install them in a PCIe 3.1.0 x16, x8, x4, or x1 slot attached either directly to the CPU's Root I/O controller or via a PCIe switch directly attached to the CPU's Root I/O controller.
In our experience, many issues stem from trying to use consumer motherboards which provide physical x16 connectors that are electrically connected as e.g. PCIe 2.0 x4, PCIe slots connected via the Southbridge PCIe I/O controller, or PCIe slots connected through a PCIe switch that does
not support PCIe atomics.
If you attempt to run ROCm on a system without proper PCIe atomic support, you may see an error in the kernel log (`dmesg`):
```
kfd: skipped device 1002:7300, PCI rejects atomics
```
Experimental support for our Hawaii (GFX7) GPUs (Radeon R9 290, R9 390, FirePro W9100, S9150, S9170)
does not require or take advantage of PCIe Atomics. However, we still recommend that you use a CPU
from the list provided above for compatibility purposes.
#### Not supported or limited support under ROCm
##### Limited support
* ROCm 2.9.x should support PCIe 2.0 enabled CPUs such as the AMD Opteron, Phenom, Phenom II, Athlon, Athlon X2, Athlon II and older Intel Xeon and Intel Core Architecture and Pentium CPUs. However, we have done very limited testing on these configurations, since our test farm has been catering to CPUs listed above. This is where we need community support. _If you find problems on such setups, please report these issues_.
* Thunderbolt 1, 2, and 3 enabled breakout boxes should now be able to work with ROCm. Thunderbolt 1 and 2 are PCIe 2.0 based, and thus are only supported with GPUs that do not require PCIe 3.1.0 atomics (e.g. Vega 10). However, we have done no testing on this configuration and would need community support due to limited access to this type of equipment.
* AMD "Carrizo" and "Bristol Ridge" APUs are enabled to run OpenCL, but do not yet support HCC, HIP, or our libraries built on top of these compilers and runtimes.
* As of ROCm 2.1, "Carrizo" and "Bristol Ridge" require the use of upstream kernel drivers.
* In addition, various "Carrizo" and "Bristol Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
* AMD "Raven Ridge" APUs are enabled to run OpenCL, but do not yet support HCC, HIP, or our libraries built on top of these compilers and runtimes.
* As of ROCm 2.1, "Raven Ridge" requires the use of upstream kernel drivers.
* In addition, various "Raven Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
##### Not supported
* "Tonga", "Iceland", "Vega M", and "Vega 12" GPUs are not supported in ROCm 2.9.x
* We do not support GFX8-class GPUs (Fiji, Polaris, etc.) on CPUs that do not have PCIe 3.0 with PCIe atomics.
* As such, we do not support AMD Carrizo and Kaveri APUs as hosts for such GPUs.
* Thunderbolt 1 and 2 enabled GPUs are not supported by GFX8 GPUs on ROCm. Thunderbolt 1 & 2 are based on PCIe 2.0.
#### ROCm support in upstream Linux kernels
As of ROCm 1.9.0, the ROCm user-level software is compatible with the AMD drivers in certain upstream Linux kernels.
As such, users have the option of either using the ROCK kernel driver that are part of AMD's ROCm repositories or using the upstream driver and only installing ROCm user-level utilities from AMD's ROCm repositories.
These releases of the upstream Linux kernel support the following GPUs in ROCm:
* 4.17: Fiji, Polaris 10, Polaris 11
* 4.18: Fiji, Polaris 10, Polaris 11, Vega10
* 4.20: Fiji, Polaris 10, Polaris 11, Vega10, Vega 7nm
The upstream driver may be useful for running ROCm software on systems that are not compatible with the kernel driver available in AMD's repositories.
For users that have the option of using either AMD's or the upstreamed driver, there are various tradeoffs to take into consideration:
| | Using AMD's `rock-dkms` package | Using the upstream kernel driver |
| ---- | ------------------------------------------------------------| ----- |
| Pros | More GPU features, and they are enabled earlier | Includes the latest Linux kernel features |
| | Tested by AMD on supported distributions | May work on other distributions and with custom kernels |
| | Supported GPUs enabled regardless of kernel version | |
| | Includes the latest GPU firmware | |
| Cons | May not work on all Linux distributions or versions | Features and hardware support varies depending on kernel version |
| | Not currently supported on kernels newer than 5.4 | Limits GPU's usage of system memory to 3/8 of system memory (before 5.6). For 5.6 and beyond, both DKMS and upstream kernels allow use of 15/16 of system memory. |
| | | IPC and RDMA capabilities are not yet enabled |
| | | Not tested by AMD to the same level as `rock-dkms` package |
| | | Does not include most up-to-date firmware |
## Machine Learning and High Performance Computing Software Stack for AMD GPU
For an updated version of the software stack for AMD GPU, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#machine-learning-and-high-performance-computing-software-stack-for-amd-gpu-v3-5-0
# AMD ROCm™ Release Notes v3.10.0
This page describes the features, fixed issues, and information about downloading and installing the ROCm software.
It also covers known issues in this release.
- [Supported Operating Systems and Documentation Updates](#Supported-Operating-Systems-and-Documentation-Updates)
* [Supported Operating Systems](#Supported-Operating-Systems)
* [ROCm Installation Updates](#ROCm-Installation-Updates)
* [AMD ROCm Documentation Updates](#AMD-ROCm-Documentation-Updates)
- [What\'s New in This Release](#Whats-New-in-This-Release)
* [ROCm Data Center Tool](#ROCm-Data-Center-Tool)
* [ROCm System Management Information](#ROCm-System-Management-Information)
* [ROCm Math and Communication Libraries](#ROCm-Math-and-Communication-Libraries)
* [ROCM AOMP Enhancements](#ROCm-AOMP-Enhancements)
- [Fixed Defects](#Fixed-Defects)
- [Known Issues](#Known-Issues)
- [Deprecations](#Deprecations)
- [Deploying ROCm](#Deploying-ROCm)
- [Hardware and Software Support](#Hardware-and-Software-Support)
- [Machine Learning and High Performance Computing Software Stack for AMD GPU](#Machine-Learning-and-High-Performance-Computing-Software-Stack-for-AMD-GPU)
* [ROCm Binary Package Structure](#ROCm-Binary-Package-Structure)
* [ROCm Platform Packages](#ROCm-Platform-Packages)
# Supported Operating Systems
## List of Supported Operating Systems
The AMD ROCm platform is designed to support the following operating systems:
* Ubuntu 20.04.1 (5.4 and 5.6-oem) and 18.04.5 (Kernel 5.4)
* CentOS 7.8 & RHEL 7.8 (Kernel 3.10.0-1127) (Using devtoolset-7 runtime support)
* CentOS 8.2 & RHEL 8.2 (Kernel 4.18.0 ) (devtoolset is not required)
* SLES 15 SP2
**Note**: The ROCm Data Center Tool is supported only on Ubuntu v18.04.5 and Ubuntu v20.04.1 in the AMD ROCm v3.10.0 release.
The CentOS/RHEL and SLES environments are not supported at this time.
# ROCm Installation Updates
## Fresh Installation of AMD ROCm v3.10 Recommended
A fresh and clean installation of AMD ROCm v3.10 is recommended. An upgrade from previous releases to AMD ROCm v3.10 is not supported.
For more information, refer to the AMD ROCm Installation Guide at:
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
**Note**: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.
**Note**: *render group* is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to use *video group*.
* For ROCm v3.5 and releases thereafter,the *clinfo* path is changed to - */opt/rocm/opencl/bin/clinfo*.
* For ROCm v3.3 and older releases, the *clinfo* path remains unchanged - */opt/rocm/opencl/bin/x86_64/clinfo*.
**Note**: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an operating system upgrade.
## ROCm MultiVersion Installation Update
With the AMD ROCm v3.10 release, the following ROCm multi-version installation changes apply:
The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.
* Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions. For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.
* Version files must be created for each multi-version rocm <= 3.10.0
* command: echo <version> | sudo tee /opt/rocm-<version>/.info/version
* example: echo 3.9.0 | sudo tee /opt/rocm-3.10.0/.info/version
* The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.
* ROCm v3.10 and above will not set any *ldconfig* entries for ROCm libraries for multi-version installation. Users must set *LD_LIBRARY_PATH* to load the ROCm library version of choice.
**NOTE**: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.
# AMD ROCm Documentation Updates
## AMD ROCm Installation Guide
The AMD ROCm Installation Guide in this release includes:
* Updated Supported Environments
* Installation Instructions for v3.10
* HIP Installation Instructions
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
## ROCm SMI API Documentation Updates
* System DMA (SDMA) Utilization API
* ROCm-SMI Command Line Interface
* Enhanced ROCm SMI Library for Events
For the updated ROCm SMI API Guide, see
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf
## ROCm Data Center Tool User Guide
The ROCm Data Center Tool User Guide includes the following enhancements:
* ROCm Data Center Tool Python Binding
* Prometheus plugin integration
For more information, refer to the ROCm Data Center Tool User Guide at:
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide.pdf
For ROCm Data Center APIs, see
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_Data_Center_API_Guide.pdf
## AMD ROCm - HIP Documentation Updates
* HIP FAQ
For more information, refer to
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq
## General AMD ROCm Documentation Links
Access the following links for more information:
* For AMD ROCm documentation, see
https://rocmdocs.amd.com/en/latest/
* For installation instructions on supped platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
* For AMD ROCm binary structure, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#software-stack-for-amd-gpu
* For AMD ROCm Release History, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#amd-rocm-version-history
# What\'s New in This Release
## ROCm DATA CENTER TOOL
The following enhancements are made to the ROCm Data Center Tool.
### Prometheus Plugin for ROCm Data Center Tool
The ROCm Data Center (RDC) Tool now provides the Prometheus plugin, a Python client to collect the telemetry data of the GPU.
The RDC uses Python binding for Prometheus and the collected plugin. The Python binding maps the RDC C APIs to Python using ctypes. The functions supported by C APIs can also be used in the Python binding.
For installation instructions, refer to the ROCm Data Center Tool User Guide at
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide.pdf
### Python Binding
The ROCm Data Center (RDC) Tool now uses PyThon Binding for Prometheus and collectd plugins. PyThon binding maps the RDC C APIs to PyThon using ctypes. All the functions supported by C APIs can also be used in PyThon binding. A generic PyThon class RdcReader is created to simplify the usage of the RDC:
* Users can only specify the fields they want to monitor. RdcReader creates groups and fieldgroups, watches the fields, and fetches the fields.
* RdcReader can support both the Embedded and Standalone mode. Standalone mode can be used with and without authentication.
* In the Standalone mode, the RdcReader can automatically reconnect to rdcd when connection is lost.When rdcd is restarted, the previously created group and fieldgroup may lose. The RdcReader can re-create them and watch the fields after a reconnect.
* If the client is restarted, RdcReader can detect the groups and fieldgroups created previously, and, therefore, can avoid recreating them.
* Users can pass the unit converter if they do not want to use the RDC default unit.
See the following sample program to monitor the power and GPU utilization using the RdcReader:
```
from RdcReader import RdcReader
from RdcUtil import RdcUtil
from rdc_bootstrap import *
default_field_ids = [
rdc_field_t.RDC_FI_POWER_USAGE,
rdc_field_t.RDC_FI_GPU_UTIL
]
class SimpleRdcReader(RdcReader):
def __init__(self):
RdcReader.__init__(self,ip_port=None, field_ids = default_field_ids, update_freq=1000000)
def handle_field(self, gpu_index, value):
field_name = self.rdc_util.field_id_string(value.field_id).lower()
print("%d %d:%s %d" % (value.ts, gpu_index, field_name, value.value.l_int))
if __name__ == '__main__':
reader = SimpleRdcReader()
while True:
time.sleep(1)
reader.process()
```
For more information about RDC Python binding and the Prometheus plugin integration, refer to the ROCm Data Center Tool User Guide at
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide.pdf
## ROCm SYSTEM MANAGEMENT INFORMATION
### System DMA (SDMA) Utilization
Per-process, the SDMA usage is exposed via the ROCm SMI library. The structure rsmi_process_info_t is extended to include sdma_usage. sdma_usage is a 64-bit value that counts the duration (in microseconds) for which the SDMA engine was active during that process's lifetime.
For example, see the rsmi_compute_process_info_by_pid_get() API below.
```
/**
* @brief This structure contains information specific to a process.
*/
typedef struct {
- - -,
uint64_t sdma_usage; // SDMA usage in microseconds
} rsmi_process_info_t;
rsmi_status_t
rsmi_compute_process_info_by_pid_get(uint32_t pid,
rsmi_process_info_t *proc);
```
### ROCm-SMI Command Line Interface
The SDMA usage per-process is available using the following command,
```
$ rocm-smi showpids
```
For more information, see the ROCm SMI API guide at,
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf
### Enhanced ROCm SMI Library for Events
ROCm-SMI library clients can now register to receive the following events:
* GPU PRE RESET: This reset event is sent to the client just before a GPU is going to be RESET.
* GPU POST RESET: This reset event is sent to the client after a successful GPU RESET.
* GPU THERMAL THROTTLE: This Thermal throttling event is sent if GPU clocks are throttled.
For more information, refer to the ROCm SMI API Guide at:
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf
### ROCm SMI Command Line Interface Hardware Topology
This feature provides a matrix representation of the GPUs present in a system by providing information of the manner in which the nodes are connected. This is represented in terms of weights, hops, and link types between two given GPUs. It also provides the numa node and the CPU affinity associated with every GPU.
![Screenshot](https://github.com/Rmalavally/ROCm/blob/master/images/CLI1.PNG)
![Screenshot](https://github.com/Rmalavally/ROCm/blob/master/images/CLI2.PNG)
## ROCm MATH and COMMUNICATION LIBRARIES
### New rocSOLVER APIs
The following new rocSOLVER APIs are added in this release:
![Screenshot](https://github.com/Rmalavally/ROCm/blob/master/images/rocsolverAPI.PNG)
For more information, refer to
https://rocsolver.readthedocs.io/en/latest/userguide_api.html
### RCCL Alltoallv Support in PyTorch
The AMD ROCm v3.10 release includes a new API for ROCm Communication Collectives Library (RCCL). This API sends data from all to all ranks and each rank provides arrays of input/output data counts and offsets.
For details about the functions and parameters, see
https://rccl.readthedocs.io/en/master/allapi.html
## ROCm AOMP ENHANCEMENTS
### AOMP Release 11.11-0
The source code base for this release is the upstream LLVM 11 monorepo release/11.x sources with the hash value
*176249bd6732a8044d457092ed932768724a6f06*
This release includes fixes to the internal Clang math headers:
* This set of changes applies to clang internal headers to support OpenMP C, C++, and FORTRAN and for HIP C. This establishes consistency between NVPTX and AMDGCN offloading and between OpenMP, HIP, and CUDA. OpenMP uses function variants and header overlays to define device versions of functions. This causes clang LLVM IR codegen to mangled names of variants in both the definition and callsites of functions defined in the internal clang headers. These changes apply to headers found in the installation subdirectory lib/clang/11.0.0/include.
* These changes temporarily eliminate the use of the libm bitcode libraries for C and C++. Although math functions are now defined with internal clang headers, a bitcode library of the C functions defined in the headers is still built for FORTRAN toolchain linking because FORTRAN cannot use c math headers. This bitcode library is installed in lib/libdevice/libm-.bc. The source build of this bitcode library is done with the aomp-extras repository and the component built script build_extras.sh. In the future, we will introduce across the board changes to eliminate massive header files for math libraries and replace them with linking to bitcode libraries.
* Added support for -gpubnames in Flang Driver
* Added an example category for Kokkos. The Kokkos example makefile detects if Kokkos is installed and, if not, it builds Kokkos from the Web. Refer to the script kokkos_build.sh in the bin directory on how to build Kokkos. Kokkos now builds cleanly with the OpenMP backend for simple test cases.
* Fixed hostrpc cmake race condition in the build of openmp
* Add a fatal error if missing -Xopenmp-target or -march options when -fopenmp-targets is specified. However, we do forgive this requirement for offloading to host when there is only a single target and that target is the host.
* Fix a bug in InstructionSimplify pass where a comparison of two constants of different sizes found in the optimization pass. This fixes issue #182 which was causing kokkos build failure.
* Fix openmp error message output for no_rocm_device_lib, was asserting.
* Changed linkage on constant per-kernel symbols from external to weaklinkageonly to prevent duplicate symbols when building kokkos.
# Fixed Defects
The following defects are fixed in this release:
* HIPfort failed to be installed
* rocm-smi does not work as-is in 3.9, instead prints a reference to documentation
* *--showtopo*, weight and hop count shows wrong data
* Unable to install RDC on CentOS/RHEL 7.8/8.2 & SLES
* Unable to install mivisionx with error "Problem: nothing provides opencv needed"
# Known Issues
The following are the known issues in this release.
## Upgrade to AMD ROCm v3.10 Not Supported
An upgrade from previous releases to AMD ROCm v3.10 is not supported. A fresh and clean installation of AMD ROCm v3.10 is recommended.
# Deprecations
This section describes deprecations and removals in AMD ROCm.
## WARNING: COMPILER-GENERATED CODE OBJECT VERSION 2 DEPRECATION
Compiler-generated code object version 2 is no longer supported and will be removed shortly. AMD ROCm users must plan for the code object version 2 deprecation immediately.
Support for loading code object version 2 is also being deprecated with no announced removal release.
# Deploying ROCm
AMD hosts both Debian and RPM repositories for the ROCm v3.10.x packages.
For more information on ROCM installation on all platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
## Machine Learning and High Performance Computing Software Stack for AMD GPU
For an updated version of the software stack for AMD GPU, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#software-stack-for-amd-gpu
# Hardware and Software Support
ROCm is focused on using AMD GPUs to accelerate computational tasks such as machine learning, engineering workloads, and scientific computing.
In order to focus our development efforts on these domains of interest, ROCm supports a targeted set of hardware configurations which are detailed further in this section.
#### Supported GPUs
Because the ROCm Platform has a focus on particular computational domains, we offer official support for a selection of AMD GPUs that are designed to offer good performance and price in these domains.
**Note:** The integrated GPUs of Ryzen are not officially supported targets for ROCm.
ROCm officially supports AMD GPUs that use following chips:
* GFX8 GPUs
* "Fiji" chips, such as on the AMD Radeon R9 Fury X and Radeon Instinct MI8
* "Polaris 10" chips, such as on the AMD Radeon RX 580 and Radeon Instinct MI6
* GFX9 GPUs
* "Vega 10" chips, such as on the AMD Radeon RX Vega 64 and Radeon Instinct MI25
* "Vega 7nm" chips, such as on the Radeon Instinct MI50, Radeon Instinct MI60 or AMD Radeon VII
ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools.
Some of this software may work with more GPUs than the "officially supported" list above, though AMD does not make any official claims of support for these devices on the ROCm software platform.
The following list of GPUs are enabled in the ROCm software, though full support is not guaranteed:
* GFX8 GPUs
* "Polaris 11" chips, such as on the AMD Radeon RX 570 and Radeon Pro WX 4100
* "Polaris 12" chips, such as on the AMD Radeon RX 550 and Radeon RX 540
* GFX7 GPUs
* "Hawaii" chips, such as the AMD Radeon R9 390X and FirePro W9100
As described in the next section, GFX8 GPUs require PCI Express 3.0 (PCIe 3.0) with support for PCIe atomics. This requires both CPU and motherboard support. GFX9 GPUs require PCIe 3.0 with support for PCIe atomics by default, but they can operate in most cases without this capability.
The integrated GPUs in AMD APUs are not officially supported targets for ROCm.
As described [below](#limited-support), "Carrizo", "Bristol Ridge", and "Raven Ridge" APUs are enabled in our upstream drivers and the ROCm OpenCL runtime.
However, they are not enabled in the HIP runtime, and may not work due to motherboard or OEM hardware limitations.
As such, they are not yet officially supported targets for ROCm.
For a more detailed list of hardware support, please see [the following documentation](https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units).
#### Supported CPUs
As described above, GFX8 GPUs require PCIe 3.0 with PCIe atomics in order to run ROCm.
In particular, the CPU and every active PCIe point between the CPU and GPU require support for PCIe 3.0 and PCIe atomics.
The CPU root must indicate PCIe AtomicOp Completion capabilities and any intermediate switch must indicate PCIe AtomicOp Routing capabilities.
Current CPUs which support PCIe Gen3 + PCIe Atomics are:
* AMD Ryzen CPUs
* The CPUs in AMD Ryzen APUs
* AMD Ryzen Threadripper CPUs
* AMD EPYC CPUs
* Intel Xeon E7 v3 or newer CPUs
* Intel Xeon E5 v3 or newer CPUs
* Intel Xeon E3 v3 or newer CPUs
* Intel Core i7 v4, Core i5 v4, Core i3 v4 or newer CPUs (i.e. Haswell family or newer)
* Some Ivy Bridge-E systems
Beginning with ROCm 1.8, GFX9 GPUs (such as Vega 10) no longer require PCIe atomics.
We have similarly opened up more options for number of PCIe lanes.
GFX9 GPUs can now be run on CPUs without PCIe atomics and on older PCIe generations, such as PCIe 2.0.
This is not supported on GPUs below GFX9, e.g. GFX8 cards in the Fiji and Polaris families.
If you are using any PCIe switches in your system, please note that PCIe Atomics are only supported on some switches, such as Broadcom PLX.
When you install your GPUs, make sure you install them in a PCIe 3.1.0 x16, x8, x4, or x1 slot attached either directly to the CPU's Root I/O controller or via a PCIe switch directly attached to the CPU's Root I/O controller.
In our experience, many issues stem from trying to use consumer motherboards which provide physical x16 connectors that are electrically connected as e.g. PCIe 2.0 x4, PCIe slots connected via the Southbridge PCIe I/O controller, or PCIe slots connected through a PCIe switch that does
not support PCIe atomics.
If you attempt to run ROCm on a system without proper PCIe atomic support, you may see an error in the kernel log (`dmesg`):
```
kfd: skipped device 1002:7300, PCI rejects atomics
```
Experimental support for our Hawaii (GFX7) GPUs (Radeon R9 290, R9 390, FirePro W9100, S9150, S9170)
does not require or take advantage of PCIe Atomics. However, we still recommend that you use a CPU
from the list provided above for compatibility purposes.
#### Not supported or limited support under ROCm
##### Limited support
* ROCm 2.9.x should support PCIe 2.0 enabled CPUs such as the AMD Opteron, Phenom, Phenom II, Athlon, Athlon X2, Athlon II and older Intel Xeon and Intel Core Architecture and Pentium CPUs. However, we have done very limited testing on these configurations, since our test farm has been catering to CPUs listed above. This is where we need community support. _If you find problems on such setups, please report these issues_.
* Thunderbolt 1, 2, and 3 enabled breakout boxes should now be able to work with ROCm. Thunderbolt 1 and 2 are PCIe 2.0 based, and thus are only supported with GPUs that do not require PCIe 3.1.0 atomics (e.g. Vega 10). However, we have done no testing on this configuration and would need community support due to limited access to this type of equipment.
* AMD "Carrizo" and "Bristol Ridge" APUs are enabled to run OpenCL, but do not yet support HIP or our libraries built on top of these compilers and runtimes.
* As of ROCm 2.1, "Carrizo" and "Bristol Ridge" require the use of upstream kernel drivers.
* In addition, various "Carrizo" and "Bristol Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
* AMD "Raven Ridge" APUs are enabled to run OpenCL, but do not yet support HIP or our libraries built on top of these compilers and runtimes.
* As of ROCm 2.1, "Raven Ridge" requires the use of upstream kernel drivers.
* In addition, various "Raven Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
##### Not supported
* "Tonga", "Iceland", "Vega M", and "Vega 12" GPUs are not supported in ROCm 2.9.x
* We do not support GFX8-class GPUs (Fiji, Polaris, etc.) on CPUs that do not have PCIe 3.0 with PCIe atomics.
* As such, we do not support AMD Carrizo and Kaveri APUs as hosts for such GPUs.
* Thunderbolt 1 and 2 enabled GPUs are not supported by GFX8 GPUs on ROCm. Thunderbolt 1 & 2 are based on PCIe 2.0.
#### ROCm support in upstream Linux kernels
As of ROCm 1.9.0, the ROCm user-level software is compatible with the AMD drivers in certain upstream Linux kernels.
As such, users have the option of either using the ROCK kernel driver that are part of AMD's ROCm repositories or using the upstream driver and only installing ROCm user-level utilities from AMD's ROCm repositories.
These releases of the upstream Linux kernel support the following GPUs in ROCm:
* 4.17: Fiji, Polaris 10, Polaris 11
* 4.18: Fiji, Polaris 10, Polaris 11, Vega10
* 4.20: Fiji, Polaris 10, Polaris 11, Vega10, Vega 7nm
The upstream driver may be useful for running ROCm software on systems that are not compatible with the kernel driver available in AMD's repositories.
For users that have the option of using either AMD's or the upstreamed driver, there are various tradeoffs to take into consideration:
| | Using AMD's `rock-dkms` package | Using the upstream kernel driver |
| ---- | ------------------------------------------------------------| ----- |
| Pros | More GPU features, and they are enabled earlier | Includes the latest Linux kernel features |
| | Tested by AMD on supported distributions | May work on other distributions and with custom kernels |
| | Supported GPUs enabled regardless of kernel version | |
| | Includes the latest GPU firmware | |
| Cons | May not work on all Linux distributions or versions | Features and hardware support varies depending on kernel version |
| | Not currently supported on kernels newer than 5.4 | Limits GPU's usage of system memory to 3/8 of system memory (before 5.6). For 5.6 and beyond, both DKMS and upstream kernels allow use of 15/16 of system memory. |
| | | IPC and RDMA capabilities are not yet enabled |
| | | Not tested by AMD to the same level as `rock-dkms` package |
| | | Does not include most up-to-date firmware |

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
RPP.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

View File

@@ -1,80 +1,86 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="roc-github"
fetch="http://github.com/RadeonOpenCompute/" />
fetch="http://github.com/RadeonOpenCompute/" />
<remote name="rocm-devtools"
fetch="https://github.com/ROCm-Developer-Tools/" />
fetch="https://github.com/ROCm-Developer-Tools/" />
<remote name="rocm-swplat"
fetch="https://github.com/ROCmSoftwarePlatform/" />
fetch="https://github.com/ROCmSoftwarePlatform/" />
<remote name="gpuopen-libs"
fetch="https://github.com/GPUOpen-ProfessionalCompute-Libraries/" />
fetch="https://github.com/GPUOpen-ProfessionalCompute-Libraries/" />
<remote name="gpuopen-tools"
fetch="https://github.com/GPUOpen-Tools/" />
<remote name="KhronosGroup"
fetch="https://github.com/KhronosGroup/" />
<default revision="refs/tags/rocm-3.5.0"
remote="roc-github"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCM-->
fetch="https://github.com/GPUOpen-Tools/" />
<remote name="KhronosGroup"
fetch="https://github.com/KhronosGroup/" />
<default revision="refs/tags/rocm-3.10.0"
remote="roc-github"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCM-->
<project name="ROCK-Kernel-Driver" />
<project name="ROCT-Thunk-Interface" />
<project name="ROCR-Runtime" />
<project name="ROC-smi" />
<project name="rocm_smi_lib" remote="roc-github" />
<project name="rocm_smi_lib" />
<project name="rocm-cmake" />
<project name="rocminfo" />
<project name="rocprofiler" remote="rocm-devtools" />
<project name="roctracer" remote="rocm-devtools" />
<project name="ROCm-OpenCL-Runtime" revision="refs/tags/roc-3.5.0" />
<project name="ROCm-OpenCL-Runtime" />
<project path="ROCm-OpenCL-Runtime/api/opencl/khronos/icd" name="OpenCL-ICD-Loader" remote="KhronosGroup" revision="6c03f8b58fafd9dd693eaac826749a5cfad515f8" />
<project name="clang-ocl" />
<!--HIP Projects-->
<project name="HCC-Example-Application" remote="rocm-devtools" revision="ffd6533305e79eed667badd3c4cdb7879a1281b8" />
<!--HIP Projects-->
<project name="HIP" remote="rocm-devtools" />
<project name="HIP-Examples" remote="rocm-devtools" />
<project name="ROCclr" remote="rocm-devtools" revision="refs/tags/roc-3.5.0" />
<project name="HIPIFY" remote="rocm-devtools" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="llvm-project" path="llvm_amd-stg-open" />
<project name="ROCclr" remote="rocm-devtools" />
<project name="HIPIFY" remote="rocm-devtools" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="llvm-project" />
<project name="ROCm-Device-Libs" />
<project name="atmi" />
<project name="ROCm-CompilerSupport" />
<project name="rocr_debug_agent" remote="rocm-devtools" revision="refs/tags/roc-3.5.0" />
<project name="rocr_debug_agent" remote="rocm-devtools" />
<project name="rocm_bandwidth_test" />
<project name="half" remote="rocm-swplat" revision="37742ce15b76b44e4b271c1e66d13d2fa7bd003e" />
<project name="RCP" remote="gpuopen-tools" revision="3a49405a1500067c49d181844ec90aea606055bb" />
<!-- gdb projects -->
<!-- gdb projects -->
<project name="ROCgdb" remote="rocm-devtools" />
<project name="ROCdbgapi" remote="rocm-devtools" />
<!-- ROCm Libraries -->
<!-- ROCm Libraries -->
<project name="rdc" remote="roc-github" />
<project name="rocBLAS" remote="rocm-swplat" />
<project name="hipBLAS" remote="rocm-swplat" />
<project name="rocFFT" remote="rocm-swplat" />
<project name="rocRAND" remote="rocm-swplat" />
<project name="rocSPARSE" remote="rocm-swplat" />
<project name="rocSOLVER" remote="rocm-swplat" />
<project name="hipSPARSE" remote="rocm-swplat" />
<project name="rocALUTION" remote="rocm-swplat" />
<project name="MIOpenGEMM" remote="rocm-swplat" revision="refs/tags/1.1.6" />
<project name="MIOpenGEMM" remote="rocm-swplat" />
<project name="MIOpen" remote="rocm-swplat" />
<project name="rccl" remote="rocm-swplat" />
<project name="MIVisionX" remote="gpuopen-libs" revision="refs/tags/1.7" />
<project name="rocSOLVER" remote="rocm-swplat" />
<project name="MIVisionX" remote="gpuopen-libs" />
<project name="rocThrust" remote="rocm-swplat" />
<project name="hipCUB" remote="rocm-swplat" />
<project name="rocPRIM" remote="rocm-swplat" />
<project name="hipfort" remote="rocm-swplat" />
<project name="AMDMIGraphX" remote="rocm-swplat" />
<project name="ROCmValidationSuite" remote="rocm-devtools" />
<!-- Projects for AOMP -->
<project name="ROCT-Thunk-Interface" path="aomp/roct-thunk-interface" remote="roc-github" />
<project name="ROCR-Runtime" path="aomp/rocr-runtime" remote="roc-github" />
<project name="ROCm-Device-Libs" path="aomp/rocm-device-libs" remote="roc-github" />
<project name="ROCm-CompilerSupport" path="aomp/rocm-compilersupport" remote="roc-github" />
<project name="rocminfo" path="aomp/rocminfo" remote="roc-github" />
<project name="HIP" path="aomp/hip-on-vdi" remote="rocm-devtools" revision="ffcbd7e63395f8a4d3ccb7e4d5133f8d2dde793e" />
<!-- Projects for AOMP -->
<project name="ROCT-Thunk-Interface" path="aomp/roct-thunk-interface" />
<project name="ROCR-Runtime" path="aomp/rocr-runtime" />
<project name="ROCm-Device-Libs" path="aomp/rocm-device-libs" />
<project name="ROCm-CompilerSupport" path="aomp/rocm-compilersupport" />
<project name="rocminfo" path="aomp/rocminfo" />
<project name="HIP" path="aomp/hip-on-vdi" remote="rocm-devtools" />
<project name="aomp" path="aomp/aomp" remote="rocm-devtools" />
<project name="aomp-extras" path="aomp/aomp-extras" remote="rocm-devtools" />
<project name="flang" path="aomp/flang" remote="rocm-devtools" />
<project name="amd-llvm-project" path="aomp/amd-llvm-project" remote="rocm-devtools" />
<project name="ROCclr" path="aomp/vdi" remote="rocm-devtools" revision="72ce2c9783d514fc7da94db40f9f420320df098d" />
<project name="ROCm-OpenCL-Runtime" path="aomp/opencl-on-vdi" remote="roc-github" revision="12fb33212c99cb4b596b0f34691e7d044218e3e9" />
<project name="ROCclr" path="aomp/vdi" remote="rocm-devtools" />
<project name="ROCm-OpenCL-Runtime" path="aomp/opencl-on-vdi" />
<!-- Projects for OpenMP-Extras -->
<project name="aomp" path="openmp-extras/aomp" remote="rocm-devtools" revision="refs/tags/rocm-uc-3.10.0" />
<project name="aomp-extras" path="openmp-extras/aomp-extras" remote="rocm-devtools" revision="refs/tags/rocm-uc-3.10.0" />
<project name="flang" path="openmp-extras/flang" remote="rocm-devtools" revision="refs/tags/rocm-uc-3.10.0" />
</manifest>

BIN
gdb.pdf

Binary file not shown.

BIN
images/CLI1.PNG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

BIN
images/CLI2.PNG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
images/rocsolverAPI.PNG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -1,503 +0,0 @@
## ROCm Version History
This file contains archived version history information for the [ROCm project](https://github.com/RadeonOpenCompute/ROCm)
### Current ROCm Version: 3.3
- [New features and enhancements in ROCm v3.1](#new-features-and-enhancements-in-rocm-v31)
- [New features and enhancements in ROCm v3.0](#new-features-and-enhancements-in-rocm-v30)
- [New features and enhancements in ROCm v2.10](#new-features-and-enhancements-in-rocm-v210)
- [New features and enhancements in ROCm 2.9](#new-features-and-enhancements-in-rocm-29)
- [New features and enhancements in ROCm 2.8](#new-features-and-enhancements-in-rocm-28)
- [New features and enhancements in ROCm 2.7.2](#new-features-and-enhancements-in-rocm-272)
- [New features and enhancements in ROCm 2.7](#new-features-and-enhancements-in-rocm-27)
- [New features and enhancements in ROCm 2.6](#new-features-and-enhancements-in-rocm-26)
- [New features and enhancements in ROCm 2.5](#new-features-and-enhancements-in-rocm-25)
- [New features and enhancements in ROCm 2.4](#new-features-and-enhancements-in-rocm-24)
- [New features and enhancements in ROCm 2.3](#new-features-and-enhancements-in-rocm-23)
- [New features and enhancements in ROCm 2.2](#new-features-and-enhancements-in-rocm-22)
- [New features and enhancements in ROCm 2.1](#new-features-and-enhancements-in-rocm-21)
- [New features and enhancements in ROCm 2.0](#new-features-and-enhancements-in-rocm-20)
- [New features and enhancements in ROCm 1.9.2](#new-features-and-enhancements-in-rocm-192)
- [New features and enhancements in ROCm 1.9.2](#new-features-and-enhancements-in-rocm-192-1)
- [New features and enhancements in ROCm 1.9.1](#new-features-and-enhancements-in-rocm-191)
- [New features and enhancements in ROCm 1.9.0](#new-features-and-enhancements-in-rocm-190)
- [New features as of ROCm 1.8.3](#new-features-as-of-rocm-183)
- [New features as of ROCm 1.8](#new-features-as-of-rocm-18)
- [New Features as of ROCm 1.7](#new-features-as-of-rocm-17)
- [New Features as of ROCm 1.5](#new-features-as-of-rocm-15)
## New features and enhancements in ROCm v3.2
The AMD ROCm v3.2 release was not productized.
## New features and enhancements in ROCm v3.1
### Change in ROCm Installation Directory Structure
A fresh installation of the ROCm toolkit installs the packages in the /opt/rocm-<version> folder. Previously, ROCm toolkit packages were installed in the /opt/rocm folder.
### Reliability, Accessibility, and Serviceability Support for Vega 7nm
The Reliability, Accessibility, and Serviceability (RAS) support for Vega7nm is now available.
### SLURM Support for AMD GPU
SLURM (Simple Linux Utility for Resource Management) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters.
## New features and enhancements in ROCm v3.0
### Support for CentOS RHEL v7.7 <a id="centos-anchor"></a>
Support is extended for CentOS/RHEL v7.7 in the ROCm v3.0 release. For more information about the CentOS/RHEL v7.7 release, see:
[CentOS/RHEL](https://centos.org/forums/viewtopic.php?t=71657)
### Initial distribution of AOMP 0.7-5 in ROCm v3.0 <a id="aomp-anchor"></a>
The code base for this release of AOMP is the Clang/LLVM 9.0 sources as of October 8th, 2019. The LLVM-project branch used to build this release is AOMP-191008. It is now locked. With this release, an artifact tarball of the entire source tree is created. This tree includes a Makefile in the root directory used to build AOMP from the release tarball. You can use Spack to build AOMP from this source tarball or build manually without Spack.
For more information about AOMP 0.7-5, see: [AOMP](https://github.com/ROCm-Developer-Tools/aomp/tree/roc-3.0.0)
### Fast Fourier Transform Updates
The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform. Fast Fourier transforms are used in signal processing, image processing, and many other areas. The following real FFT performance change is made in the ROCm v3.0 release:
• Implement efficient real/complex 2D transforms for even lengths.
Other improvements:
• More 2D test coverage sizes.
• Fix buffer allocation error for large 1D transforms.
• C++ compatibility improvements.
### MemCopy Enhancement for rocProf
In the v3.0 release, the rocProf tool is enhanced with an additional capability to dump asynchronous GPU memcopy information into a .csv file. You can use the '-hsa-trace' option to create the results_mcopy.csv file.
Future enhancements will include column labels.
### New features and enhancements in ROCm v2.10
#### rocBLAS Support for Complex GEMM
The rocBLAS library is a gpu-accelerated implementation of the standard Basic Linear Algebra Subroutines (BLAS). rocBLAS is designed to enable you to develop algorithms, including high performance computing, image analysis, and machine learning.
In the AMD ROCm release v2.10, support is extended to the General Matrix Multiply (GEMM) routine for multiple small matrices processed simultaneously for rocBLAS in AMD Radeon Instinct MI50. Both single and double precision, CGEMM and ZGEMM, are now supported in rocBLAS.
#### Support for SLES 15 SP1
In the AMD ROCm v2.10 release, support is added for SUSE Linux® Enterprise Server (SLES) 15 SP1. SLES is a modular operating system for both multimodal and traditional IT.
#### Code Marker Support for rocProfiler and rocTracer Libraries
Code markers provide the external correlation ID for the calling thread. This function indicates that the calling thread is entering and leaving an external API region.
### New features and enhancements in ROCm 2.9
#### Initial release for Radeon Augmentation Library(RALI)
The AMD Radeon Augmentation Library (RALI) is designed to efficiently decode and process images from a variety of storage formats and modify them through a processing graph programmable by the user. RALI currently provides C API.
#### Quantization in MIGraphX v0.4
MIGraphX 0.4 introduces support for fp16 and int8 quantization. For additional details, as well as other new MIGraphX features, see [MIGraphX documentation](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.4).
#### rocSparse csrgemm
csrgemm enables the user to perform matrix-matrix multiplication with two sparse matrices in CSR format.
#### Singularity Support
ROCm 2.9 adds support for Singularity container version 2.5.2.
#### Initial release of rocTX
ROCm 2.9 introduces rocTX, which provides a C API for code markup for performance profiling. This initial release of rocTX supports annotation of code ranges and ASCII markers. For an example, see this [code](https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/MatrixTranspose_test/MatrixTranspose.cpp).
#### Added support for Ubuntu 18.04.3
Ubuntu 18.04.3 is now supported in ROCm 2.9.
### New features and enhancements in ROCm 2.8
#### Support for NCCL2.4.8 API
Implements ncclCommAbort() and ncclCommGetAsyncError() to match the NCCL 2.4.x API
### New features and enhancements in ROCm 2.7.2
This release is a hotfix for ROCm release 2.7.
#### Issues fixed in ROCm 2.7.2
##### A defect in upgrades from older ROCm releases has been fixed.
##### rocprofiler --hiptrace and --hsatrace fails to load roctracer library
In ROCm 2.7.2, rocprofiler --hiptrace and --hsatrace fails to load roctracer library defect has been fixed.
To generate traces, please provide directory path also using the parameter: -d <$directoryPath> for example:
```shell
/opt/rocm/bin/rocprof --hsa-trace -d $PWD/traces /opt/rocm/hip/samples/0_Intro/bit_extract/bit_extract
```
All traces and results will be saved under $PWD/traces path
#### Upgrading from ROCm 2.7 to 2.7.2
To upgrade, please remove 2.7 completely as specified [for ubuntu](#how-to-uninstall-from-ubuntu-1604-or-Ubuntu-1804) or [for centos/rhel](#how-to-uninstall-rocm-from-centosrhel-76), and install 2.7.2 as per instructions [install instructions](#installing-from-amd-rocm-repositories)
#### Other notes
To use rocprofiler features, the following steps need to be completed before using rocprofiler:
##### Step-1: Install roctracer
###### Ubuntu 16.04 or Ubuntu 18.04:
```shell
sudo apt install roctracer-dev
```
###### CentOS/RHEL 7.6:
```shell
sudo yum install roctracer-dev
```
##### Step-2: Add /opt/rocm/roctracer/lib to LD_LIBRARY_PATH
### New features and enhancements in ROCm 2.7
#### [rocFFT] Real FFT Functional
Improved real/complex 1D even-length transforms of unit stride. Performance improvements of up to 4.5x are observed. Large problem sizes should see approximately 2x.
#### rocRand Enhancements and Optimizations
- Added support for new datatypes: uchar, ushort, half.
- Improved performance on "Vega 7nm" chips, such as on the Radeon Instinct MI50
- mtgp32 uniform double performance changes due generation algorithm standardization. Better quality random numbers now generated with 30% decrease in performance
- Up to 5% performance improvements for other algorithms
#### RAS
Added support for RAS on Radeon Instinct MI50, including:
- Memory error detection
- Memory error detection counter
#### ROCm-SMI enhancements
Added ROCm-SMI CLI and LIB support for FW version, compute running processes, utilization rates, utilization counter, link error counter, and unique ID.
### New features and enhancements in ROCm 2.6
#### ROCmInfo enhancements
ROCmInfo was extended to do the following:
For ROCr API call errors including initialization determine if the error could be explained by:
- ROCk (driver) is not loaded / available
- User does not have membership in appropriate group - "video"
- If not above print the error string that is mapped to the returned error code
- If no error string is available, print the error code in hex
#### Thrust - Functional Support on Vega20
ROCm2.6 contains the first official release of rocThrust and hipCUB. rocThrust is a port of thrust, a parallel algorithm library. hipCUB is a port of CUB, a reusable software component library. Thrust/CUB has been ported to the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.
Note: rocThrust and hipCUB library replaces https://github.com/ROCmSoftwarePlatform/thrust (hip-thrust), i.e. hip-thrust has been separated into two libraries, rocThrust and hipCUB. Existing hip-thrust users are encouraged to port their code to rocThrust and/or hipCUB. Hip-thrust will be removed from official distribution later this year.
#### MIGraphX v0.3
MIGraphX optimizer adds support to read models frozen from Tensorflow framework. Further details and an example usage at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3
#### MIOpen 2.0
- This release contains several new features including an immediate mode for selecting convolutions, bfloat16 support, new layers, modes, and algorithms.
- MIOpenDriver, a tool for benchmarking and developing kernels is now shipped with MIOpen.
BFloat16 now supported in HIP requires an updated rocBLAS as a GEMM backend.
- Immediate mode API now provides the ability to quickly obtain a convolution kernel.
- MIOpen now contains HIP source kernels and implements the ImplicitGEMM kernels. This is a new feature and is currently disabled by default. Use the environmental variable "MIOPEN_DEBUG_CONV_IMPLICIT_GEMM=1" to activation this feature. ImplicitGEMM requires an up to date HIP version of at least 1.5.9211.
- A new "loss" catagory of layers has been added, of which, CTC loss is the first. See the API reference for more details.
2.0 is the last release of active support for gfx803 architectures. In future releases, MIOpen will not actively debug and develop new features specifically for gfx803.
- System Find-Db in memory cache is disabled by default. Please see build instructions to enable this feature.
Additional documentation can be found here: https://rocmsoftwareplatform.github.io/MIOpen/doc/html/
#### Bloat16 software support in rocBLAS/Tensile
Added mixed precision bfloat16/IEEE f32 to gemm_ex. The input and output matrices are bfloat16. All arithmetic is in IEEE f32.
#### AMD Infinity Fabric™ Link enablement
The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in two hives or two Radeon Instinct MI60 or Radeon Instinct MI50 boards in four hives via AMD Infinity Fabric™ Link GPU interconnect technology has been added.
#### ROCm-smi features and bug fixes
- mGPU & Vendor check
- Fix clock printout if DPM is disabled
- Fix finding marketing info on CentOS
- Clarify some error messages
#### ROCm-smi-lib enhancements
- Documentation updates
- Improvements to *name_get functions
#### RCCL2 Enablement
RCCL2 supports collectives intranode communication using PCIe, Infinity Fabric™, and pinned host memory, as well as internode communication using Ethernet (TCP/IP sockets) and Infiniband/RoCE (Infiniband Verbs). Note: For Infiniband/RoCE, RDMA is not currently supported.
#### rocFFT enhancements
- Added: Debian package with FFT test, benchmark, and sample programs
- Improved: hipFFT interfaces
- Improved: rocFFT CPU reference code, plan generation code and logging code
### New features and enhancements in ROCm 2.5
#### UCX 1.6 support
Support for UCX version 1.6 has been added.
#### BFloat16 GEMM in rocBLAS/Tensile
Software support for BFloat16 on Radeon Instinct MI50, MI60 has been added. This includes:
- Mixed precision GEMM with BFloat16 input and output matrices, and all arithmetic in IEEE32 bit
- Input matrix values are converted from BFloat16 to IEEE32 bit, all arithmetic and accumulation is IEEE32 bit. Output values are rounded from IEEE32 bit to BFloat16
- Accuracy should be correct to 0.5 ULP
#### ROCm-SMI enhancements
CLI support for querying the memory size, driver version, and firmware version has been added to ROCm-smi.
#### [PyTorch] multi-GPU functional support (CPU aggregation/Data Parallel)
Multi-GPU support is enabled in PyTorch using Dataparallel path for versions of PyTorch built using the 06c8aa7a3bbd91cda2fd6255ec82aad21fa1c0d5 commit or later.
#### rocSparse optimization on Radeon Instinct MI50 and MI60
This release includes performance optimizations for csrsv routines in the rocSparse library.
#### [Thrust] Preview
Preview release for early adopters. rocThrust is a port of thrust, a parallel algorithm library. Thrust has been ported to the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.
Note: This library will replace https://github.com/ROCmSoftwarePlatform/thrust in a future release. The package for rocThrust (this library) currently conflicts with version 2.5 package of thrust. They should not be installed together.
#### Support overlapping kernel execution in same HIP stream
HIP API has been enhanced to allow independent kernels to run in parallel on the same stream.
#### AMD Infinity Fabric&#x2122; Link enablement
The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in one hive via AMD Infinity Fabric™ Link GPU interconnect technology has been added.
### New features and enhancements in ROCm 2.4
#### TensorFlow 2.0 support
ROCm 2.4 includes the enhanced compilation toolchain and a set of bug fixes to support TensorFlow 2.0 features natively
#### AMD Infinity Fabric&#x2122; Link enablement
ROCm 2.4 adds support to connect two Radeon Instinct MI60 or Radeon Instinct MI50 boards via AMD Infinity Fabric&#x2122; Link GPU interconnect technology.
### New features and enhancements in ROCm 2.3
#### Mem usage per GPU
Per GPU memory usage is added to rocm-smi.
Display information regarding used/total bytes for VRAM, visible VRAM and GTT, via the --showmeminfo flag
#### MIVisionX, v1.1 - ONNX
ONNX parser changes to adjust to new file formats
#### MIGraphX, v0.2
MIGraphX 0.2 supports the following new features:
* New Python API
* Support for additional ONNX operators and fixes that now enable a large set of Imagenet models
* Support for RNN Operators
* Support for multi-stream Execution
* [Experimental] Support for Tensorflow frozen protobuf files
See: [Getting-started:-using-the-new-features-of-MIGraphX-0.2](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.2) for more details
#### MIOpen, v1.8 - 3d convolutions and int8
* This release contains full 3-D convolution support and int8 support for inference.
* Additionally, there are major updates in the performance database for major models including those found in Torchvision.
See: [MIOpen releases](https://github.com/ROCmSoftwarePlatform/MIOpen/releases)
#### Caffe2 - mGPU support
Multi-gpu support is enabled for Caffe2.
#### rocTracer library, ROCm tracing API for collecting runtimes API and asynchronous GPU activity traces
HIP/HCC domains support is introduced in rocTracer library.
#### BLAS - Int8 GEMM performance, Int8 functional and performance
Introduces support and performance optimizations for Int8 GEMM, implements TRSV support, and includes improvements and optimizations with Tensile.
#### Prioritized L1/L2/L3 BLAS (functional)
Functional implementation of BLAS L1/L2/L3 functions
#### BLAS - tensile optimization
Improvements and optimizations with tensile
#### MIOpen Int8 support
Support for int8
### New features and enhancements in ROCm 2.2
#### rocSparse Optimization on Vega20
Cache usage optimizations for csrsv (sparse triangular solve), coomv
(SpMV in COO format) and ellmv (SpMV in ELL format) are available.
#### DGEMM and DTRSM Optimization
Improved DGEMM performance for reduced matrix sizes (k=384, k=256)
#### Caffe2
Added support for multi-GPU training
### New features and enhancements in ROCm 2.1
#### RocTracer v1.0 preview release 'rocprof' HSA runtime tracing and statistics support -
Supports HSA API tracing and HSA asynchronous GPU activity including kernels execution and memory copy
#### Improvements to ROCM-SMI tool -
Added support to show real-time PCIe bandwidth usage via the -b/--showbw flag
#### DGEMM Optimizations -
Improved DGEMM performance for large square and reduced matrix sizes (k=384, k=256)
### New features and enhancements in ROCm 2.0
#### Adds support for RHEL 7.6 / CentOS 7.6 and Ubuntu 18.04.1
#### Adds support for Vega 7nm, Polaris 12 GPUs
#### Introduces MIVisionX
* A comprehensive computer vision and machine intelligence libraries, utilities and applications bundled into a single toolkit.
#### Improvements to ROCm Libraries
* rocSPARSE & hipSPARSE
* rocBLAS with improved DGEMM efficiency on Vega 7nm
#### MIOpen
* This release contains general bug fixes and an updated performance database
* Group convolutions backwards weights performance has been improved
* RNNs now support fp16
#### Tensorflow multi-gpu and Tensorflow FP16 support for Vega 7nm
* TensorFlow v1.12 is enabled with fp16 support
#### PyTorch/Caffe2 with Vega 7nm Support
* fp16 support is enabled
* Several bug fixes and performance enhancements
* Known Issue: breaking changes are introduced in ROCm 2.0 which are not addressed upstream yet. Meanwhile, please continue to use ROCm fork at https://github.com/ROCmSoftwarePlatform/pytorch
#### Improvements to ROCProfiler tool
* Support for Vega 7nm
#### Support for hipStreamCreateWithPriority
* Creates a stream with the specified priority. It creates a stream on which enqueued kernels have a different priority for execution compared to kernels enqueued on normal priority streams. The priority could be higher or lower than normal priority streams.
#### OpenCL 2.0 support
* ROCm 2.0 introduces full support for kernels written in the OpenCL 2.0 C language on certain devices and systems.  Applications can detect this support by calling the “clGetDeviceInfo” query function with “parame_name” argument set to “CL_DEVICE_OPENCL_C_VERSION”.  In order to make use of OpenCL 2.0 C language features, the application must include the option “-cl-std=CL2.0” in options passed to the runtime API calls responsible for compiling or building device programs.  The complete specification for the OpenCL 2.0 C language can be obtained using the following link: https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
#### Improved Virtual Addressing (48 bit VA) management for Vega 10 and later GPUs
* Fixes Clang AddressSanitizer and potentially other 3rd-party memory debugging tools with ROCm
* Small performance improvement on workloads that do a lot of memory management
* Removes virtual address space limitations on systems with more VRAM than system memory
#### Kubernetes support
### New features and enhancements in ROCm 1.9.2
#### RDMA(MPI) support on Vega 7nm
* Support ROCnRDMA based on Mellanox InfiniBand
#### Improvements to HCC
* Improved link time optimization
#### Improvements to ROCProfiler tool
* General bug fixes and implemented versioning APIs
### New features and enhancements in ROCm 1.9.2
#### RDMA(MPI) support on Vega 7nm
* Support ROCnRDMA based on Mellanox InfiniBand
#### Improvements to HCC
* Improved link time optimization
#### Improvements to ROCProfiler tool
* General bug fixes and implemented versioning APIs
#### Critical bug fixes
### New features and enhancements in ROCm 1.9.1
#### Added DPM support to Vega 7nm
* Dynamic Power Management feature is enabled on Vega 7nm.
#### Fix for 'ROCm profiling' that used to fail with a “Version mismatch between HSA runtime and libhsa-runtime-tools64.so.1” error
### New features and enhancements in ROCm 1.9.0
#### Preview for Vega 7nm
* Enables developer preview support for Vega 7nm
#### System Management Interface
* Adds support for the ROCm SMI (System Management Interface) library, which provides monitoring and management capabilities for AMD GPUs.
#### Improvements to HIP/HCC
* Support for gfx906
* Added deprecation warning for C++AMP. This will be the last version of HCC supporting C++AMP.
* Improved optimization for global address space pointers passing into a GPU kernel
* Fixed several race conditions in the HCC runtime
* Performance tuning to the unpinned copy engine
* Several codegen enhancement fixes in the compiler backend
#### Preview for rocprof Profiling Tool
Developer preview (alpha) of profiling tool rocProfiler. It includes a command-line front-end, `rpl_run.sh`, which enables:
* Cmd-line tool for dumping public per kernel perf-counters/metrics and kernel timestamps
* Input file with counters list and kernels selecting parameters
* Multiple counters groups and app runs supported
* Output results in CSV format
The tool can be installed from the `rocprofiler-dev` package. It will be installed into: `/opt/rocm/bin/rpl_run.sh`
#### Preview for rocr Debug Agent rocr_debug_agent
The ROCr Debug Agent is a library that can be loaded by ROCm Platform Runtime to provide the following functionality:
* Print the state for wavefronts that report memory violation or upon executing a "s_trap 2" instruction.
* Allows SIGINT (`ctrl c`) or SIGTERM (`kill -15`) to print wavefront state of aborted GPU dispatches.
* It is enabled on Vega10 GPUs on ROCm1.9.
The ROCm1.9 release will install the ROCr Debug Agent library at `/opt/rocm/lib/librocr_debug_agent64.so`
#### New distribution support
* Binary package support for Ubuntu 18.04
#### ROCm 1.9 is ABI compatible with KFD in upstream Linux kernels.
Upstream Linux kernels support the following GPUs in these releases:
4.17: Fiji, Polaris 10, Polaris 11
4.18: Fiji, Polaris 10, Polaris 11, Vega10
Some ROCm features are not available in the upstream KFD:
* More system memory available to ROCm applications
* Interoperability between graphics and compute
* RDMA
* IPC
To try ROCm with an upstream kernel, install ROCm as normal, but do not install the rock-dkms package. Also add a udev rule to control `/dev/kfd` permissions:
```
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
```
### New features as of ROCm 1.8.3
* ROCm 1.8.3 is a minor update meant to fix compatibility issues on Ubuntu releases running kernel 4.15.0-33
### New features as of ROCm 1.8
#### DKMS driver installation
* Debian packages are provided for DKMS on Ubuntu
* RPM packages are provided for CentOS/RHEL 7.4 and 7.5 support
* See the [ROCT-Thunk-Interface](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/roc-1.8.x) and [ROCK-Kernel-Driver](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/roc-1.8.x) for additional documentation on driver setup
#### New distribution support
* Binary package support for Ubuntu 16.04 and 18.04
* Binary package support for CentOS 7.4 and 7.5
* Binary package support for RHEL 7.4 and 7.5
#### Improved OpenMPI via UCX support
* UCX support for OpenMPI
* ROCm RDMA
### New Features as of ROCm 1.7
#### DKMS driver installation
* New driver installation uses Dynamic Kernel Module Support (DKMS)
* Only amdkfd and amdgpu kernel modules are installed to support AMD hardware
* Currently only Debian packages are provided for DKMS (no Fedora suport available)
* See the [ROCT-Thunk-Interface](https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/roc-1.7.x) and [ROCK-Kernel-Driver](https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/roc-1.7.x) for additional documentation on driver setup
### New Features as of ROCm 1.5
#### Developer preview of the new OpenCL 1.2 compatible language runtime and compiler
* OpenCL 2.0 compatible kernel language support with OpenCL 1.2 compatible
runtime
* Supports offline ahead of time compilation today;
during the Beta phase we will add in-process/in-memory compilation.
#### Binary Package support for Ubuntu 16.04
#### Binary Package support for Fedora 24 is not currently available
#### Dropping binary package support for Ubuntu 14.04, Fedora 23
#### IPC support