Compare commits

...

51 Commits

Author SHA1 Message Date
Pratik Basyal
d3e0d6ac5b KMD UMD support footnote update ROCm 630 (#4969) 2025-06-26 15:33:43 -04:00
randyh62
178d5696aa Update RELEASE.md (#4744)
Add Optimized entry for HIP graph performance
2025-05-15 15:42:00 -07:00
Pratik Basyal
298ca30757 615 column added 630 (#4637)
* 6.1.5 compatibility column added
2025-04-17 11:49:13 -04:00
Peter Park
72970cda1f Merge pull request #4283 from ROCm/Llama-recipe-link-update
Fixed link for Llama recipe
2025-01-27 17:09:25 -05:00
Pratik Basyal
8edd5e550e Fixed link for Llama recipe 2025-01-21 16:12:36 -05:00
Pratik Basyal
b606b1577d HPC application list updated (#4066) (#4244)
* PETSc added

* List of HPC applications updated for 6.2.4

* Leo's feedback incorporated



* Review feedback incorporated

* vllm removed

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-01-08 10:06:54 -05:00
Pratik Basyal
596e606edc AMDSMI Github reference updated in 6.3.0 Release notes (#4237) (#4239)
* AMDSMi github reference updated (#4237)

* Release version fixed
2025-01-07 10:52:04 -05:00
Alex Xu
cf241d7269 update rocm-docs-core to 1.12.1 2025-01-02 16:05:35 -05:00
alexxu-amd
6afbb33144 Change version variable to latest
Since gpu-cluster-networking gets moved to dcgpu. All versioning will be renamed.

(cherry picked from commit 027b2ea376)
2024-12-23 18:31:29 -05:00
alexxu-amd
22e71b4dce Update index.md
(cherry picked from commit fe69fc1bb4)
2024-12-23 18:08:27 -05:00
alexxu-amd
aeb073716b Update _toc.yml.in
(cherry picked from commit 4d31d717a6)
2024-12-23 18:08:24 -05:00
Istvan Kiss
6a4247156f Remove hipExtHostAlloc add at HIP section 2024-12-23 15:31:26 +01:00
Peter Park
511b4b3a9a Merge pull request #4170 from ROCm/hip_changelog_update
Remove upcoming changes section in HIP changes
2024-12-18 13:15:57 -05:00
Peter Park
cacd5a7845 Merge pull request #4169 from peterjunpark/docs/6.3.0
Hotfix compatibility matrix
2024-12-18 13:02:34 -05:00
Istvan Kiss
42da33d8b6 Remove upcoming changes section 2024-12-18 17:49:44 +01:00
Peter Park
33ca42f743 hotfix compat matrix 2024-12-18 11:22:18 -05:00
Peter Park
449c0e00b3 Merge pull request #4165 from peterjunpark/docs/6.3.0
[6.3] Add megatron training doc (#4159)
2024-12-16 13:50:27 -05:00
Peter Park
6c426ff9fa add megatron training doc (#4159)
* add megatron training doc

update toc

add images

update formatting and wording

formatting

update formatting

update conf.py

update formatting

update docker img

tweak formatting

Fix stuff

fix mock-data/data-path

add specific commit hash to checkout

update docker pull tag

fix docker run cmd and examples path

fix docker cmd

* wording

words

words

* improve title

(cherry picked from commit f9dbc1f21f)
2024-12-16 13:38:40 -05:00
Jeffrey Novotny
43399d4eed Change reference to kernel-mode GPU compute driver in ROCm (#4147) (#4156)
* Change reference to kernel-mode GPU compute driver in ROCm

* More changes for kernel-mode terminology

* Fix linting

(cherry picked from commit 04fdc08328)
2024-12-13 12:27:10 -05:00
spolifroni-amd
555f4d43ca Merge pull request #4151 from spolifroni-amd/spolifroni-amd/cherry-pick-RN-update
Cherry pick release note update
2024-12-12 11:27:12 -05:00
spolifroni-amd
8db294f215 Added MIGraphX changes (#4150)
* Added MIGraphX changes

* removed gfx support

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Update RELEASE.md

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
(cherry picked from commit 2a7520f08a)
2024-12-12 11:21:59 -05:00
randyh62
309f3a19e6 Update index.md (#4144)
Remove Programming Guide topic from "How to"
2024-12-09 10:04:51 -08:00
Peter Park
8070f30a46 Merge pull request #4142 from peterjunpark/docs/6.3.0
[6.3] fix rccl hip streams section in workload tuning guide (#4140)
2024-12-09 11:10:55 -05:00
Peter Park
b5955a8d46 fix rccl hip streams section in workload tuning guide (#4140)
(cherry picked from commit 78f9adc6ec)
2024-12-09 11:07:40 -05:00
randyh62
5c25c3e797 Revert "Update RELEASE.md (#4127)" (#4141)
This reverts commit 7b57247b9a.
2024-12-09 07:46:47 -08:00
Sam Wu
6bbc7429df Merge pull request #4132 from ROCm/roc-6.3.x
Merge Roc 6.3.x into 6.3.0
2024-12-06 14:38:11 -07:00
Sam Wu
7e8947fdb4 Merge pull request #4128 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-06 11:34:46 -07:00
Peter Park
31d24eb5cc Merge pull request #4129 from peterjunpark/docs/6.3.0
[6.3] Add @hongxiayang updates to MI300X workload tuning guide (#4123)
2024-12-06 12:30:08 -05:00
Peter Park
9f6757b71d Add @hongxiayang updates to MI300X workload tuning guide (#4123)
minor fixes to formatting

fix spelling errors

more spelling

fixes

quantization update

fix format

simplify wording in tunableops and format fix

Apply suggestions from code review

review feedback by Peter

Co-authored-by: Peter Park <peter.park@amd.com>

Apply suggestions from code review

addressing feedback

Co-authored-by: Peter Park <peter.park@amd.com>

Apply suggestions from code review

feedback again

Co-authored-by: Peter Park <peter.park@amd.com>

add hipblaslt yaml file figure

feedback and minor formatting

formatting

update wordlist.txt

remove outdated sentence regarding fsdp and rccl

(cherry picked from commit 87fa9fd83a2e623f6cab4e69d65f49e3db0a45f6)

update wordlist

Co-authored-by: hongxyan <hongxyan@amd.com>
(cherry picked from commit b0722b3228)
2024-12-06 12:21:16 -05:00
Peter Park
b0722b3228 Add @hongxiayang updates to MI300X workload tuning guide (#4123)
minor fixes to formatting

fix spelling errors

more spelling

fixes

quantization update

fix format

simplify wording in tunableops and format fix

Apply suggestions from code review

review feedback by Peter

Co-authored-by: Peter Park <peter.park@amd.com>

Apply suggestions from code review

addressing feedback

Co-authored-by: Peter Park <peter.park@amd.com>

Apply suggestions from code review

feedback again

Co-authored-by: Peter Park <peter.park@amd.com>

add hipblaslt yaml file figure

feedback and minor formatting

formatting

update wordlist.txt

remove outdated sentence regarding fsdp and rccl

(cherry picked from commit 87fa9fd83a2e623f6cab4e69d65f49e3db0a45f6)

update wordlist

Co-authored-by: hongxyan <hongxyan@amd.com>
2024-12-06 12:10:57 -05:00
randyh62
7b57247b9a Update RELEASE.md (#4127)
Change __AMDGCN_WAVEFRONT_SIZE__ macro to __AMDGCN_WAVEFRONT_SIZE macro
2024-12-06 09:09:44 -08:00
Daniel Su
73e21c82c0 External CI: finalize rocJPEG enablement (#4125) 2024-12-06 11:47:45 -05:00
Swati Rawat
1f25c77654 Merge pull request #4126 from SwRaw/docs/6.3.0
Update what-is-rocm.rst (#4122)
2024-12-06 21:13:19 +05:30
Swati Rawat
3d3d3cb1da Update what-is-rocm.rst (#4122)
(cherry picked from commit 5e6ddec385)
2024-12-06 21:08:51 +05:30
Swati Rawat
5e6ddec385 Update what-is-rocm.rst (#4122) 2024-12-06 10:22:27 -05:00
Peter Park
0f16b8eb29 remove programming guide from TOC (#4116)
(cherry picked from commit 1a4d54a4f1)
2024-12-05 17:23:16 -05:00
Peter Park
1a4d54a4f1 remove programming guide from TOC (#4116) 2024-12-05 16:50:39 -05:00
Daniel Su
788796bfe1 External CI: create pipeline files for rocJPEG (#4117) 2024-12-05 16:17:42 -05:00
Daniel Su
922209e5c9 External CI: change rocm-core staging branch to master (#4115) 2024-12-05 14:45:38 -05:00
Sam Wu
66cac5301f Merge pull request #4113 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-05 09:35:17 -07:00
Peter Park
33a6c37f44 Merge pull request #4114 from ROCm/develop
[docs/6.3.0] fix stack image (#4112)
2024-12-04 22:01:55 -05:00
Peter Park
3b1d1fa5b7 fix stack image (#4112) 2024-12-04 21:55:17 -05:00
Sam Wu
3490079e2e Merge branch 'roc-6.3.x' into docs/6.3.0 2024-12-04 19:34:39 -07:00
Sam Wu
9f3a1de117 Merge branch 'develop' into roc-6.3.x 2024-12-04 19:34:29 -07:00
dependabot[bot]
c954022547 Build(deps): Bump rocm-docs-core from 1.9.2 to 1.11.0 in /docs/sphinx (#4111)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.9.2 to 1.11.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.9.2...v1.11.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-12-04 19:30:13 -07:00
Sam Wu
f9abf88965 Merge pull request #4110 from ROCm/roc-6.3.x
fix links to smi tools full changelog on GH (#4108) in 6.3.0 docs
2024-12-04 19:12:31 -07:00
Sam Wu
0915fb17e8 Merge pull request #4109 from ROCm/develop
fix links to smi tools full changelog on GH (#4108) in 6.3 release branch
2024-12-04 19:08:06 -07:00
Peter Park
0e9f50d093 fix links to smi tools full changelog on GH (#4108) 2024-12-04 19:05:15 -07:00
Sam Wu
480c23a83e Merge pull request #4105 from ROCm/roc-6.3.x
Merge ROCm 6.3 release branch into 6.3.0 docs branch
2024-12-04 17:14:34 -07:00
randyh62
52c44cccca Update license.md (#4099)
Change ROCgdb license to point to GNU version 3
2024-12-04 11:03:57 -08:00
Sam Wu
e868fb6c19 Merge pull request #4094 from ROCm/roc-6.3.x
Merge Roc 6.3.x into 6.3.0 docs
2024-12-03 16:19:00 -07:00
34 changed files with 1686 additions and 550 deletions

View File

@@ -0,0 +1,148 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: aptPackages
type: object
default:
- cmake
- libdrm-dev
- libstdc++-12-dev
- libva-amdgpu-dev
- mesa-amdgpu-va-drivers
- ninja-build
- pkg-config
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- rocm-cmake
- rocminfo
- rocm-core
- rocprofiler-register
- ROCR-Runtime
- name: rocmTestDependencies
type: object
default:
- clr
- llvm-project
- rocminfo
- rocprofiler-register
- ROCR-Runtime
jobs:
- job: rocJPEG
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
# CI case: download latest default branch build
${{ if eq(parameters.checkoutRef, 'develop') }}:
dependencySource: staging
# manual build case: triggered by ROCm/ROCm repo
${{ elseif ne(parameters.checkoutRef, 'develop') }}:
dependencySource: tag-builds
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_BUILD_TYPE=Release
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- job: rocJPEG_testing
dependsOn: rocJPEG
condition: and(succeeded(), eq(variables.ENABLE_GFX942_TESTS, 'true'), not(containsValue(split(variables.DISABLED_GFX942_TESTS, ','), variables['Build.DefinitionName'])))
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
name: $(JOB_TEST_POOL)
demands: firstRenderDeviceAccess
workspace:
clean: all
strategy:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
JOB_TEST_POOL: ${{ variables.GFX942_TEST_POOL }}
steps:
# Since mesa-amdgpu-multimedia-devel is not directly available from apt, register it
- task: Bash@3
displayName: 'Register ROCm packages'
inputs:
targetType: inline
script: |
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/${{ variables.KEYRING_VERSION }}/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/${{ variables.KEYRING_VERSION }} jammy main" | sudo tee --append /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
${{ if eq(parameters.checkoutRef, 'develop') }}:
dependencySource: staging
${{ elseif ne(parameters.checkoutRef, 'develop') }}:
dependencySource: tag-builds
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
${{ if eq(parameters.checkoutRef, 'develop') }}:
dependencySource: staging
${{ elseif ne(parameters.checkoutRef, 'develop') }}:
dependencySource: tag-builds
# anything in /opt may be persistent across runs
# so we need to remove the symlink if it already exists
- script: |
sudo rm -rf /opt/rocm
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
mkdir rocJPEG-tests
cd rocJPEG-tests
cmake $(Agent.BuildDirectory)/rocm/share/rocjpeg/test
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocJPEG
testDir: 'rocJPEG-tests'
- script: sudo rm /opt/rocm
condition: always()

View File

@@ -35,6 +35,7 @@ parameters:
- rocDecode
- rocFFT
- ROCgdb
- rocJPEG
- rocm-cmake
- rocm-core
- rocm-examples

View File

@@ -0,0 +1,29 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: checkoutRef
type: string
default: refs/tags/$(LATEST_RELEASE_TAG)
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
- repository: release_repo
type: github
endpoint: ROCm
name: ROCm/rocJPEG
ref: ${{ parameters.checkoutRef }}
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/rocJPEG.yml
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -60,8 +60,9 @@ parameters:
rocDecode: develop
rocFFT: develop
ROCgdb: amd-staging
rocJPEG: develop
rocm-cmake: develop
rocm-core: amd-staging
rocm-core: master
rocm-examples: develop
rocminfo: amd-staging
rocMLIR: develop
@@ -121,7 +122,8 @@ parameters:
ROCdbgapi : amd-mainline
rocDecode: mainline
rocFFT: mainline
ROCgdb: amd-mainline-rocgdb-15 #
ROCgdb: amd-mainline-rocgdb-15
rocJPEG: mainline
rocm-cmake: mainline
rocm-core: amd-master
rocm-examples: develop # no mainline

View File

@@ -65,6 +65,7 @@ parameters:
rocDecode: $(ROCDECODE_PIPELINE_ID)
rocFFT: $(ROCFFT_PIPELINE_ID)
ROCgdb: $(ROCGDB_PIPELINE_ID)
rocJPEG: $(ROCJPEG_PIPELINE_ID)
rocm-cmake: $(ROCM_CMAKE_PIPELINE_ID)
rocm-core: $(ROCM_CORE_PIPELINE_ID)
rocm-examples: $(ROCM_EXAMPLES_PIPELINE_ID)
@@ -128,6 +129,7 @@ parameters:
rocDecode: $(ROCDECODE_TAGGED_PIPELINE_ID)
rocFFT: $(ROCFFT_TAGGED_PIPELINE_ID)
ROCgdb: $(ROCGDB_TAGGED_PIPELINE_ID)
rocJPEG: $(ROCJPEG_TAGGED_PIPELINE_ID)
rocm-cmake: $(ROCM_CMAKE_TAGGED_PIPELINE_ID)
rocm-core: $(ROCM_CORE_TAGGED_PIPELINE_ID)
rocm-examples: $(ROCM_EXAMPLES_TAGGED_PIPELINE_ID)

View File

@@ -34,7 +34,7 @@ variables:
- name: LATEST_DOCKER_VERSION
value: 6.1
- name: KEYRING_VERSION
value: 6.1
value: 6.3
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID
value: 197
- name: AMDMIGRAPHX_PIPELINE_ID
@@ -219,6 +219,10 @@ variables:
value: 134
- name: ROCGDB_TAGGED_PIPELINE_ID
value: 50
- name: ROCJPEG_PIPELINE_ID
value: 262
- name: ROCJPEG_TAGGED_PIPELINE_ID
value: 263
- name: ROCM_BANDWIDTH_TEST_PIPELINE_ID
value: 88
- name: ROCM_BANDWIDTH_TEST_TAGGED_PIPELINE_ID

View File

@@ -159,6 +159,7 @@ HWS
Haswell
Higgs
Hyperparameters
Huggingface
ICD
ICV
IDE
@@ -188,6 +189,7 @@ Jupyter
KFD
KFDTest
KiB
KMD
KV
KVM
Keras
@@ -381,6 +383,7 @@ TCR
TF
TFLOPS
TP
TPS
TPU
TPUs
TSME
@@ -457,10 +460,12 @@ api
atmi
atomics
autogenerated
autotune
avx
awk
backend
backends
benchmarked
benchmarking
bfloat
bilinear
@@ -530,6 +535,7 @@ disambiguates
distro
distros
dkms
dtype
el
embeddings
enablement
@@ -562,6 +568,7 @@ heterogenous
hipBLAS
hipBLASLt
hipBLASLt's
hipblaslt
hipCUB
hipFFT
hipLIB
@@ -585,6 +592,7 @@ hpp
hsa
hsakmt
hyperparameter
hyperparameters
iDRAC
ib_core
inband
@@ -605,7 +613,9 @@ ipo
jax
kdb
kfd
kv
latencies
len
libfabric
libjpeg
libs
@@ -631,6 +641,7 @@ mutex
mvffr
namespace
namespaces
num
numref
ocl
opencl
@@ -726,7 +737,9 @@ runtimes
sL
scalability
scalable
seealso
sendmsg
seqs
serializers
shader
sharding
@@ -767,6 +780,7 @@ txt
uarch
uncached
uncorrectable
underoptimized
unhandled
uninstallation
unmapped

View File

@@ -232,7 +232,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.0/index.html">MIGraphX</a></td>
<td>2.11.0</td>
<td>2.10.0&nbsp;&Rightarrow;&nbsp;<a href="#migraphx-2-11-0">2.11.0</a></td>
<td><a href="https://github.com/ROCm/AMDMIGraphX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
@@ -395,7 +395,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<th rowspan="7">System management</th>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.0/index.html">AMD SMI</a></td>
<td>24.6.3&nbsp;&Rightarrow;&nbsp;<a href="#amd-smi-24-7-1">24.7.1</a></td>
<td><a href="https://github.com/ROCm/rocm-cmake"><i class="fab fa-github fa-lg"></i></a></td>
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.0/index.html">ROCm Data Center Tool</a></td>
@@ -643,7 +643,7 @@ The following sections describe key changes to ROCm components.
- The command will be at full functionality once additional partition information from `amdsmi_get_gpu_accelerator_partition_profile()` has been implemented.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.3.x/CHANGELOG.md) for more details and examples.
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/6.3.x/CHANGELOG.md) for more details and examples.
```
### **HIP** (6.3.0)
@@ -659,7 +659,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.3.x/
- `hipDrvGraphAddMemFreeNode` creates a memory free node and adds it to a graph.
- `hipDrvGraphExecMemcpyNodeSetParams` sets the parameters for a memcpy node in the given graphExec.
- `hipDrvGraphExecMemsetNodeSetParams` sets the parameters for a memset node in the given graphExec.
- `hipExtHostAlloc` preserves the functionality of `hipHostMalloc`.
#### Changed
@@ -673,6 +672,11 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.3.x/
* Optimized multi-threaded dispatches to improve performance.
* Limited the software batch size to control the number of command submissions for runtime to handle efficiently.
* Optimizes HSA callback performance when a large number of events are recorded by multiple threads and submitted to multiple GPUs.
* HIP graph execution performance improvement.
- Added the optimized multistream path in graph execution. It uses a fixed number of async streams in the execution
- Optimized the launch latency, where commands creation and execution is done at the same time
- Optimized the scheduling to use less barriers and waiting signals if the same queue can be detected
- The new path is controlled by a new environment variable, with the options either to use the original path, or to force the number of asynchronous queues for execution.
#### Resolved issues
@@ -684,12 +688,6 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.3.x/
preprocessor macro `HIP_ENABLE_WARP_SYNC_BUILTINS`, and will be enabled
unconditionally in the next ROCm release.
#### Upcoming changes
* Deprecated HIP APIs:
- `hipHostMalloc` to be replaced by `hipExtHostAlloc`.
- `hipHostFree` to be replaced by `hipFreeHost`.
### **hipBLAS** (2.3.0)
#### Added
@@ -897,6 +895,78 @@ See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.3.x/
srcLane, width)` function when one of the parameters to the function is undefined along some path
to the function. See [issue #3499](https://github.com/ROCm/ROCm/issues/3499) on GitHub.
### **MIGraphX** (2.11.0)
#### Added
* Initial code to run on Windows
* Support for `FP8` and `INT4`
* Support for the Log2 internal operator
* Support for the GCC 14 compiler
* The `BitwiseAnd`, `Scan`, `SoftmaxCrossEntropyLoss`, `GridSample`, and `NegativeLogLikelihoodLoss` ONNX operators
* The `MatMulNBits`, `QuantizeLinear`/`DequantizeLinear`, `GroupQueryAttention`, `SkipSimplifiedLayerNormalization`, and `SimpliedLayerNormalizationMicrosoft` Contrib operators
* Dynamic batch parameter support to `OneHot` operator
* Split-K as an optional performance improvement
* Scripts to validate ONNX models from the ONNX Model Zoo
* GPU Pooling Kernel
* `--mlir` flag the migraphx-driver program to offload entire module to MLIR
* Fusing split-reduce with MLIR
* Multiple outputs for the MLIR + Pointwise fusions
* Pointwise fusions with MLIR across reshape operations
* `MIGRAPHX_MLIR_DUMP` environment variable to dump MLIR modules to MXRs
* The `3` option to `MIGRAPHX_TRACE_BENCHMARKING` to print the MLIR program for improved debug output
* `MIGRAPHX_ENABLE_HIPBLASLT_GEMM` environment variable to call hipBLASLt libraries
* `MIGRAPHX_VERIFY_DUMP_DIFF` to improve the debugging of accuracy issues
* `reduce_any` and `reduce_all` options to the `Reduce` operation via Torch MIGraphX
* Examples for RNNT, and ControlNet
#### Changed
* Switched to MLIR's 3D Convolution operator.
* MLIR is now used for Attention operations by default on gfx942 and newer ASICs.
* Names and locations for VRM specific libraries have changed.
* Use random mode for benchmarking GEMMs and convolutions.
* Python version is now printed with an actual version number.
#### Removed
* Disabled requirements for MIOpen and rocBLAS when running on Windows.
* Removed inaccurate warning messages when using exhaustive-tune.
* Remove the hard coded path in `MIGRAPHX_CXX_COMPILER` allowing the compiler to be installed in different locations.
#### Optimized
* Improved:
* Infrastructure code to enable better Kernel fusions with all supported data types
* Subsequent model compile time by creating a cache for already performant kernels
* Use of Attention fusion with models
* Performance of the Softmax JIT kernel and of the Pooling operator
* Tuning operations through a new 50ms delay before running the next kernel
* Performance of several convolution-based models through an optimized NHWC layout
* Performance for the `FP8` datatype
* GPU utilization
* Verification tools
* Debug prints
* Documentation, including gpu-driver utility documentation
* Summary section of the `migraphx-driver perf` command
* Reduced model compilation time
* Reordered some compiler passes to allow for more fusions
* Preloaded tiles into LDS to improve performance of pointwise transposes
* Exposed the `external_data_path` property in `onnx_options` to set the path from `onnxruntime`
#### Resolved issues
* Fixed a bug with gfx1030 that overwrote `dpp_reduce`.
* Fixed a bug in 1-arg dynamic reshape that created a failure.
* Fixed a bug with `dot_broadcast` and `inner_broadcast` that caused compile failures.
* Fixed a bug where some configs were failing when using exhaustive-tune.
* Fixed the ROCm Install Guide URL.
* Fixed an issue while building a whl package due to an apostrophe.
* Fixed the BERT Squad example requirements file to support different versions of Python.
* Fixed a bug that stopped the Vicuna model from compiling.
* Fixed failures with the verify option of migraphx-driver that would cause the application to exit early.
### **MIOpen** (3.3.0)
#### Added
@@ -1170,7 +1240,7 @@ memory partition modes upon an invalid argument return from memory partition mod
- C++ tests for `memorypartition_read_write` are to be re-enabled in a future ROCm release.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rocm-6.3.x/CHANGELOG.md) for more details and examples.
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/6.3.x/CHANGELOG.md) for more details and examples.
```
### **ROCm Systems Profiler** (0.1.0)

View File

@@ -1,118 +1,118 @@
ROCm Version,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,"RHEL 8.10","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`PyTorch <rocm-install-on-linux:install/3rd-party/pytorch-install>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,
Thrust,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,
KFD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:index>`,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,Oracle Linux 8.9 [#oracle89-past-60]_,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`PyTorch <rocm-install-on-linux:install/3rd-party/pytorch-install>`,"2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>`,"2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>`,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,
Thrust,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:index>`,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2 RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2 RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2 RHEL 9.4 [#red-hat94-past-60]_, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 8.10 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_ Oracle Linux 8.9 [#oracle89-past-60]_
10 .. _architecture-support-compatibility-matrix-past-60:
11 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
12 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
13 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
14 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
15 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
16 .. _gpu-support-compatibility-matrix-past-60:
17 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
18 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
19 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
20 gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
21 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
22
23 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60:
24 :doc:`PyTorch <rocm-install-on-linux:install/3rd-party/pytorch-install>` 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
25 :doc:`TensorFlow <rocm-install-on-linux:install/3rd-party/tensorflow-install>` 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
26 :doc:`JAX <rocm-install-on-linux:install/3rd-party/jax-install>` 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
27 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
28
29 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
30 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
31 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
32
33 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
34 Thrust 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
35 CUB 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
36
37 KFD & USER SPACE [#kfd_support-past-60]_ KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
38 Tested user space versions 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
39
40 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
41 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
42 :doc:`MIGraphX <amdmigraphx:index>` 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
43 :doc:`MIOpen <miopen:index>` 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
44 :doc:`MIVisionX <mivisionx:index>` 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
45 :doc:`rocAL <rocal:index>` 2.1.0 2.0.0 2.0.0 2.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
46 :doc:`rocDecode <rocdecode:index>` 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
47 :doc:`rocJPEG <rocjpeg:index>` 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
48 :doc:`rocPyDecode <rocpydecode:index>` 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A N/A
49 :doc:`RPP <rpp:index>` 1.9.1 1.8.0 1.8.0 1.8.0 1.8.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0
50
51 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
52 :doc:`RCCL <rccl:index>` 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
53
54 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
55 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
56 :doc:`hipBLAS <hipblas:index>` 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0
57 :doc:`hipBLASLt <hipblaslt:index>` 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
58 :doc:`hipFFT <hipfft:index>` 1.0.17 1.0.16 1.0.15 1.0.15 1.0.14 1.0.14 1.0.14 1.0.14 1.0.14 1.0.13 1.0.13
59 :doc:`hipfort <hipfort:index>` 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0
60 :doc:`hipRAND <hiprand:index>` 2.11.0 2.11.1 2.11.0 2.11.0 2.11.0 2.10.16 2.10.16 2.10.16 2.10.16 2.10.16 2.10.16
61 :doc:`hipSOLVER <hipsolver:index>` 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.1 2.1.1 2.1.1 2.1.0 2.0.0 2.0.0
62 :doc:`hipSPARSE <hipsparse:index>` 3.1.2 3.1.1 3.1.1 3.1.1 3.1.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
63 :doc:`hipSPARSELt <hipsparselt:index>` 0.2.2 0.2.1 0.2.1 0.2.1 0.2.1 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0
64 :doc:`rocALUTION <rocalution:index>` 3.2.1 3.2.1 3.2.0 3.2.0 3.2.0 3.1.1 3.1.1 3.1.1 3.1.1 3.0.3 3.0.3
65 :doc:`rocBLAS <rocblas:index>` 4.3.0 4.2.4 4.2.1 4.2.1 4.2.0 4.1.2 4.1.2 4.1.0 4.1.0 4.0.0 4.0.0
66 :doc:`rocFFT <rocfft:index>` 1.0.31 1.0.30 1.0.29 1.0.29 1.0.28 1.0.27 1.0.27 1.0.27 1.0.26 1.0.25 1.0.23
67 :doc:`rocRAND <rocrand:index>` 3.2.0 3.1.1 3.1.0 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 2.10.17
68 :doc:`rocSOLVER <rocsolver:index>` 3.27.0 3.26.2 3.26.0 3.26.0 3.26.0 3.25.0 3.25.0 3.25.0 3.25.0 3.24.0 3.24.0
69 :doc:`rocSPARSE <rocsparse:index>` 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
70 :doc:`rocWMMA <rocwmma:index>` 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
71 :doc:`Tensile <tensile:index>` 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
72
73 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60:
74 :doc:`hipCUB <hipcub:index>` 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
75 :doc:`hipTensor <hiptensor:index>` 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
76 :doc:`rocPRIM <rocprim:index>` 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
77 :doc:`rocThrust <rocthrust:index>` 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
78
79 SUPPORT LIBS
80 `hipother <https://github.com/ROCm/hipother>`_ 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
81 `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
82 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
83
84 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60:
85 :doc:`AMD SMI <amdsmi:index>` 24.7.1 24.6.3 24.6.3 24.6.3 24.6.2 24.5.1 24.5.1 24.5.1 24.4.1 23.4.2 23.4.2
86 :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
87 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
88 :doc:`ROCm SMI <rocm_smi_lib:index>` 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
89 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60105 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
90
91 PERFORMANCE TOOLS
92 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
93 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.0.0 2.0.1 2.0.1 2.0.1 2.0.1 N/A N/A N/A N/A N/A N/A
94 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A N/A
95 :doc:`ROCProfiler <rocprofiler:index>` 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60105 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
96 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 N/A N/A N/A N/A N/A N/A
97 :doc:`ROCTracer <roctracer:index>` 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60105 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
98
99 DEVELOPMENT TOOLS
100 :doc:`HIPIFY <hipify:index>` 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
101 :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.13.0 0.13.0 0.13.0 0.13.0 0.12.0 0.12.0 0.12.0 0.12.0 0.11.0 0.11.0
102 :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
103 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
104 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.3.0 0.3.0 0.3.0 0.3.0 N/A N/A
105 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
106
107 COMPILERS .. _compilers-support-compatibility-matrix-past-60:
108 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
109 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
110 `Flang <https://github.com/ROCm/flang>`_ 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
111 :doc:`llvm-project <llvm-project:index>` 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
112 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
113
114 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
115 :doc:`AMD CLR <hip:understand/amd_clr>` 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
116 :doc:`HIP <hip:index>` 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
117 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
118 :doc:`ROCr Runtime <rocr-runtime:index>` 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -61,7 +61,7 @@ compatibility and system requirements.
Thrust,2.3.2,2.2.0,2.1.0
CUB,2.3.2,2.2.0,2.1.0
,,,
KFD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
@@ -146,11 +146,11 @@ compatibility and system requirements.
.. rubric:: Footnotes
.. [#red-hat94] RHEL 9.4 is supported only on AMD Instinct MI300A.
.. [#red-hat94] **For ROCm 6.1** - RHEL 9.4 is supported only on AMD Instinct MI300A.
.. [#oracle89] Oracle Linux is supported only on AMD Instinct MI300X.
.. [#mi300_624] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_610] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#kfd_support] ROCm provides forward and backward compatibility between the Kernel Fusion Driver (KFD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] As of ROCm 6.3.0, the ROCT Thunk Interface is now included as part of the ROCr runtime package.
.. _OS-kernel-versions:
@@ -172,9 +172,8 @@ Use this lookup table to confirm which operating system and kernel versions are
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 GA, 6.8 HWE"
, 22.04.4, "5.15 GA, 6.5 HWE"
, 22.04.3, "5.15 GA, 6.2 HWE"
, 22.04.2, "5.15 GA, 5.19 HWE"
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 20.04.06, "5.15 HWE"
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 20.04.6, "5.15 HWE"
, 20.04.5, "5.15 HWE"
,,
`Red Hat Enterprise Linux (RHEL) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.5, 5.14.0
@@ -194,7 +193,6 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 8.10, 5.15.0
,8.9, 5.15.0
`Azure Linux <https://github.com/microsoft/azurelinux/releases>`_, 3.0, 6.6.60
..
Footnotes and ref anchors in below historical tables should be appended with "-past-60", to differentiate from the
@@ -222,6 +220,7 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#red-hat94-past-60] **For ROCm 6.1** - RHEL 9.4 is supported only on AMD Instinct MI300A.
.. [#oracle89-past-60] Oracle Linux is supported only on AMD Instinct MI300X.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
@@ -232,5 +231,5 @@ Expand for full historical view of:
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#kfd_support-past-60] ROCm provides forward and backward compatibility between the Kernel Fusion Driver (KFD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#kfd_support-past-60] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] As of ROCm 6.3.0, the ROCT Thunk Interface is now included as part of the ROCr runtime package.

View File

@@ -43,6 +43,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/accelerate-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-hpc/index", "os": ["linux"]},

Binary file not shown.

After

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 341 KiB

After

Width:  |  Height:  |  Size: 173 KiB

View File

@@ -135,11 +135,13 @@ Installing vLLM
{"text":["What is AMD Instinct?\nAmd Instinct is a brand new line of high-performance computing (HPC) processors from Advanced Micro Devices (AMD). These processors are designed to deliver unparalleled performance for HPC workloads, including scientific simulations, data analytics, and machine learning.\nThe Instinct lineup includes a range of processors, from the entry-level Inst"]}
Refer to :ref:`mi300x-vllm-optimization` for performance optimization tips.
.. seealso::
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`.
See :ref:`mi300x-vllm-optimization` for performance optimization tips.
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in CSV
format. For more information, see :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`.
.. _fine-tuning-llms-tgi:

View File

@@ -16,6 +16,8 @@ In this guide, you'll learn about:
- :doc:`Installing ROCm and machine learning frameworks <install>`
- :doc:`Scaling model training <scale-model-training>`
- :doc:`Training a model <train-a-model>`
- :doc:`Running models from Hugging Face <hugging-face-models>`

View File

@@ -0,0 +1,135 @@
.. meta::
:description: How to scale and accelerate model training
:keywords: ROCm, AI, LLM, train, fine-tune, deploy, FSDP, DeepSpeed, LLaMA, tutorial
**********************
Scaling model training
**********************
To train a large-scale model like OpenAI GPT-2 or Meta Llama 2 70B, a single accelerator or GPU cannot store all the
model parameters required for training. This immense scale presents a fundamental challenge: no single GPU or
accelerator can simultaneously store and process the entire model's parameters during training. PyTorch
provides an answer to this computational constraint through its distributed training frameworks.
.. _rocm-for-ai-pytorch-distributed:
PyTorch distributed
===================
Features in ``torch.distributed`` are categorized into three main components:
- `Distributed data-parallel training
<https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`_ (DDP)
- `RPC-Based distributed training <https://pytorch.org/docs/stable/rpc.html>`_ (RPC)
- `Collective communication <https://pytorch.org/docs/stable/distributed.html>`_
In this topic, the focus is on the distributed data-parallelism strategy as its the most popular. To get started with DDP,
you need to first understand how to coordinate the model and its training data across multiple accelerators or GPUs.
The DDP workflow on multiple accelerators or GPUs is as follows:
#. Split the current global training batch into small local batches on each GPU. For instance, if you have 8 GPUs and
the global batch is set at 32 samples, each of the 8 GPUs will have a local batch size of 4 samples.
#. Copy the model to every device so each can process its local batches independently.
#. Run a forward pass, then a backward pass, and output the gradient of the weights with respect to the loss of the
model for that local batch. This happens in parallel on multiple devices.
#. Synchronize the local gradients computed by each device and combine them to update the model weights. The updated
weights are then redistributed to each device.
In DDP training, each process or worker owns a replica of the model and processes a batch of data, and then the reducer uses
``allreduce`` to sum up gradients over different workers.
See the following developer blogs for more in-depth explanations and examples.
* `Multi GPU training with DDP — PyTorch Tutorials <https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html>`_
* `Building a decoder transformer model on AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/decoder-transformer/README.html#distributed-training-on-multiple-gpus>`_
.. _rocm-for-ai-pytorch-fsdp:
PyTorch FSDP
------------
As noted in :ref:`PyTorch distributed <rocm-for-ai-pytorch-distributed>`, DDP model weights and optimizer states
are evenly replicated across all workers. Fully Sharded Data Parallel (FSDP) is a type of data parallelism that shards
model parameters, optimizer states, and gradients across DDP ranks.
When training with FSDP, the GPU memory footprint is smaller than when training with DDP across all workers. This makes
training some very large models feasible by allowing larger models or batch sizes to fit on-device. However, this
comes with the cost of increased communication volume. The communication overhead is reduced by internal optimizations
like overlapping communication and computation.
For a high-level overview of how FSDP works, review `Getting started with Fully Sharded Data Parallel
<https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html#how-fsdp-works>`_.
For detailed training steps, see `PyTorch FSDP examples
<https://github.com/pytorch/examples/tree/main/distributed/FSDP>`_.
.. _rocm-for-ai-deepspeed:
DeepSpeed
---------
`DeepSpeed <https://deepspeed.ai>`_ offers system innovations that make large-scale deep learning training effective,
efficient, and easy to use. Innovations such as ZeRO, 3D-Parallelism, DeepSpeed-MoE, ZeRO-Infinity, and so on fall under
the training pillar.
See `Pre-training a large language model with Megatron-DeepSpeed on multiple AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/megatron-deepspeed-pretrain/README.html>`_ for a detailed example of
training with DeepSpeed on an AMD accelerator or GPU.
.. _rocm-for-ai-automatic-mixed-precision:
Automatic mixed precision (AMP)
-------------------------------
As models increase in size, so do the time and memory needed to train them; their cost also increases. Any measure we
can take to reduce training time and memory usage through `automatic mixed precision
<https://pytorch.org/docs/stable/amp.html>`_ (AMP) is highly beneficial for most use cases.
See `Automatic mixed precision in PyTorch using AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/automatic-mixed-precision/README.html#automatic-mixed-precision-in-pytorch-using-amd-gpus>`_
for more information about running AMP on an AMD accelerator.
.. _rocm-for-ai-fine-tune:
Fine-tuning your model
======================
ROCm supports multiple techniques for :ref:`optimizing fine-tuning <fine-tuning-llms-concept-optimizations>`, for
example, LoRA, QLoRA, PEFT, and FSDP.
Learn more about challenges and solutions for model fine-tuning in :doc:`../llm-fine-tuning-optimization/index`.
The following developer blogs showcase examples of fine-tuning a model on an AMD accelerator or GPU.
* Fine-tuning Llama2 with LoRA
* `Fine-tune Llama 2 with LoRA: Customizing a large language model for question-answering
<https://rocm.blogs.amd.com/artificial-intelligence/llama2-lora/README.html>`_
* Fine-tuning Llama2 with QLoRA
* `Enhancing LLM accessibility: A deep dive into QLoRA through fine-tuning Llama 2 on a single AMD GPU
<https://rocm.blogs.amd.com/artificial-intelligence/llama2-Qlora/README.html>`_
* Fine-tuning a BERT-based LLM for a text classification task using JAX
* `LLM distributed supervised fine-tuning with JAX
<https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
* Fine-tuning StarCoder using PEFT
* `Instruction fine-tuning of StarCoder with PEFT on multiple AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/starcoder-fine-tune/README.html>`_
* Recipes for fine-tuning Llama2 and 3 with ``llama-recipes``
* `meta-llama/llama-recipes: Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT methods to cover
single/multi-node GPUs <https://github.com/meta-llama/llama-cookbook/tree/main/getting-started/finetuning>`_

View File

@@ -1,140 +1,503 @@
.. meta::
:description: How to use ROCm for AI
:keywords: ROCm, AI, LLM, train, fine-tune, FSDP, DeepSpeed, LLaMA, tutorial
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
****************
Training a model
****************
**************************************
Training a model with ROCm Megatron-LM
**************************************
The following is a brief overview of popular component paths per AI development use-case, such as training, LLMs,
and inferencing.
.. _amd-megatron-lm:
Accelerating model training
===========================
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
To train a large model like GPT2 or Llama 2 70B, a single accelerator or GPU cannot store all the model parameters
required for training. What if you could convert the single-GPU training code to run on multiple accelerators or GPUs?
PyTorch offers distributed training solutions to facilitate this.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
.. _rocm-for-ai-pytorch-distributed:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
PyTorch distributed
-------------------
Supported features and models
=============================
As of PyTorch 1.6.0, features in ``torch.distributed`` are categorized into three main components:
Megatron-LM provides the following key features to train large language models efficiently:
- `Distributed data-parallel training
<https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html>`_ (DDP)
- Transformer Engine (TE)
- `RPC-Based distributed training <https://pytorch.org/docs/stable/rpc.html>`_ (RPC)
- APEX
- `Collective communication <https://pytorch.org/docs/stable/distributed.html>`_
- GEMM tuning
In this guide, the focus is on the distributed data-parallelism strategy as its the most popular. To get started with DDP,
lets first understand how to coordinate the model and its training data across multiple accelerators or GPUs.
- Torch.compile
The DDP workflow on multiple accelerators or GPUs is as follows:
- 3D parallelism: TP + SP + CP
#. Split the current global training batch into small local batches on each GPU. For instance, if you have 8 GPUs and
the global batch is set at 32 samples, each of the 8 GPUs will have a local batch size of 4 samples.
- Distributed optimizer
#. Copy the model to every device so each device can process its local batches independently.
- Flash Attention (FA) 2
#. Run a forward pass, then a backward pass, and output the gradient of the weights with respect to the loss of the
model for that local batch. This happens in parallel on multiple devices.
- Fused kernels
#. Synchronize the local gradients computed by each device and combine them to update the model weights. The updated
weights are then redistributed to each device.
- Pre-training
In DDP training, each process or worker owns a replica of the model and processes a batch of data, then the reducer uses
``allreduce`` to sum up gradients over different workers.
.. _amd-megatron-lm-model-support:
See the following developer blogs for more in-depth explanations and examples.
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* `Multi GPU training with DDP — PyTorch Tutorials <https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html>`_
* Llama 2 7B
* `Building a decoder transformer model on AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/decoder-transformer/README.html#distributed-training-on-multiple-gpus>`_
* Llama 2 70B
.. _rocm-for-ai-pytorch-fsdp:
* Llama 3 8B
PyTorch FSDP
------------
* Llama 3 70B
As noted in :ref:`PyTorch distributed <rocm-for-ai-pytorch-distributed>`, in DDP model weights and optimizer states
are evenly replicated across all workers. Fully Sharded Data Parallel (FSDP) is a type of data parallelism that shards
model parameters, optimizer states, and gradients across DDP ranks.
* Llama 3.1 8B
When training with FSDP, the GPU memory footprint is smaller than when training with DDP across all workers. This makes
the training of some very large models feasible by allowing larger models or batch sizes to fit on-device. However, this
comes with the cost of increased communication volume. The communication overhead is reduced by internal optimizations
like overlapping communication and computation.
* Llama 3.1 70B
For a high-level overview of how FSDP works, review `Getting started with Fully Sharded Data Parallel
<https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html#how-fsdp-works>`_.
Prerequisite system validation steps
====================================
For detailed training steps, refer to the `PyTorch FSDP examples
<https://github.com/pytorch/examples/tree/main/distributed/FSDP>`_.
Complete the following system validation and optimization steps to set up your system before starting training.
.. _rocm-for-ai-deepspeed:
Disable NUMA auto-balancing
---------------------------
DeepSpeed
---------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
`DeepSpeed <https://deepspeed.ai>`_ offers system innovations that make large-scale deep learning training effective,
efficient, and easy to use. Innovations such as ZeRO, 3D-Parallelism, DeepSpeed-MoE, ZeRO-Infinity, and so on fall under
the training pillar.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
See `Pre-training a large language model with Megatron-DeepSpeed on multiple AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/megatron-deepspeed-pretrain/README.html>`_ for a detailed example of
training with DeepSpeed on an AMD accelerator or GPU.
.. code-block:: shell
.. _rocm-for-ai-automatic-mixed-precision:
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
Automatic mixed precision (AMP)
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
As models increase in size, the time and memory needed to train them; that is, their cost also increases. Any measure we
can take to reduce training time and memory usage through `automatic mixed precision
<https://pytorch.org/docs/stable/amp.html>`_ (AMP) is highly beneficial for most use cases.
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
See `Automatic mixed precision in PyTorch using AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/automatic-mixed-precision/README.html#automatic-mixed-precision-in-pytorch-using-amd-gpus>`_
for more information about running AMP on an AMD accelerator.
Run the command:
.. _rocm-for-ai-fine-tune:
.. code-block:: shell
Fine-tuning your model
======================
rocm-smi --setperfdeterminism 1900
ROCm supports multiple techniques for :ref:`optimizing fine-tuning <fine-tuning-llms-concept-optimizations>`, for
example, LoRA, QLoRA, PEFT, and FSDP.
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
Learn more about challenges and solutions for model fine-tuning in :doc:`../llm-fine-tuning-optimization/index`.
RCCL Bandwidth Test
-------------------
The following developer blogs showcase examples of how to fine-tune a model on an AMD accelerator or GPU.
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
* Fine-tuning Llama2 with LoRA
Running the RCCL bandwidth test helps verify that:
* `Fine-tune Llama 2 with LoRA: Customizing a large language model for question-answering — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/llama2-lora/README.html>`_
- The GPUs can communicate across nodes or within a single node.
* Fine-tuning Llama2 with QLoRA
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
* `Enhancing LLM accessibility: A deep dive into QLoRA through fine-tuning Llama 2 on a single AMD GPU — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/llama2-Qlora/README.html>`_
- No hardware setup or cabling issues could affect the communication between GPUs
* Fine-tuning a BERT-based LLM for a text classification task using JAX
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* `LLM distributed supervised fine-tuning with JAX — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
* Fine-tuning StarCoder using PEFT
.. code-block:: shell
* `Instruction fine-tuning of StarCoder with PEFT on multiple AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/starcoder-fine-tune/README.html>`_
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
* Recipes for fine-tuning Llama2 and 3 with ``llama-recipes``
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: ../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
* `meta-llama/llama-recipes: Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT methods to cover
single/multi-node GPUs <https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/finetuning>`_

View File

@@ -115,6 +115,12 @@ Ubuntu versions.
for non-destructive testing or for ocean acoustics.
* - Molecular dynamics
- `Amber <https://github.com/amd/InfinityHub-CI/tree/main/amber>`_
- Amber is a suite of biomolecular simulation programs. It is a set of molecular mechanical force fields for
simulating biomolecules. Amber is also a package of molecular simulation
programs which includes source code and demos.
* -
- `GROMACS with HIP (AMD implementation) <https://github.com/amd/InfinityHub-CI/tree/main/gromacs>`_
- GROMACS is a versatile package to perform molecular dynamics, i.e.
simulate the Newtonian equations of motion for systems with hundreds
@@ -129,6 +135,13 @@ Ubuntu versions.
Parallel Simulator.
* - Computational fluid dynamics
- `Ansys Fluent <https://github.com/amd/InfinityHub-CI/tree/main/ansys-fluent>`_
- Ansys Fluent is an advanced computational fluid dynamics (CFD) tool for
simulating and analyzing fluid flow, heat transfer, and related phenomena in complex systems.
It offers a range of powerful features for detailed and accurate modeling of various physical
processes, including turbulence, chemical reactions, and multiphase flows.
* -
- `NEKO <https://github.com/amd/InfinityHub-CI/tree/main/neko>`_
- Neko is a portable framework for high-order spectral element flow simulations.
Written in modern Fortran, Neko adopts an object-oriented approach, allowing
@@ -141,6 +154,26 @@ Ubuntu versions.
- nekRS is an open-source Navier Stokes solver based on the spectral element
method targeting classical processors and accelerators like GPUs.
* -
- `OpenFOAM <https://github.com/amd/InfinityHub-CI/tree/main/openfoam>`_
- OpenFOAM is a free, open-source computational fluid dynamics (CFD)
tool developed primarily by OpenCFD Ltd. It has a large user
base across most areas of engineering and science, from both commercial and
academic organizations. OpenFOAM has extensive features to solve
anything from complex fluid flows involving chemical reactions, turbulence, and
heat transfer, to acoustics, solid mechanics, and electromagnetics.
* -
- `PeleC <https://github.com/amd/InfinityHub-CI/tree/main/pelec>`_
- PeleC is an adaptive mesh refinement(AMR) solver for compressible reacting flows.
* -
- `Simcenter Star-CCM+ <https://github.com/amd/InfinityHub-CI/tree/main/siemens-star-ccm>`_
- Simcenter Star-CCM+ is a comprehensive computational fluid dynamics (CFD) and multiphysics
simulation tool developed by Siemens Digital Industries Software. It is designed to
help engineers and researchers analyze and optimize the performance of products and
systems across various industries.
* - Computational chemistry
- `QUDA <https://github.com/amd/InfinityHub-CI/tree/main/quda>`_
- Library designed for efficient lattice QCD computations on
@@ -170,12 +203,30 @@ Ubuntu versions.
developing atmosphere, ocean, and other earth-system simulation components
for use in climate, regional climate, and weather studies.
* - Energy, Oil, and Gas
- `DevitoPRO <https://github.com/amd/InfinityHub-CI/tree/main/devitopro>`_
- DevitoPRO is an advanced extension of the open-source Devito platform with added
features tailored for high-demand production workflows. It supports
high-performance computing (HPC) needs, especially in seismic imaging and inversion.
It is used to perform optimized finite difference (FD) computations
from high-level symbolic problem definitions. DevitoPro performs automated
code generation and Just-In-time (JIT) compilation based on symbolic equations
defined in SymPy to create and execute highly optimized Finite Difference stencil
kernels on multiple computer platforms.
* -
- `ECHELON <https://github.com/amd/InfinityHub-CI/tree/main/srt-echelon>`_
- ECHELON by Stone Ridge Technology is a reservoir simulation tool. With
fast processing, it retains precise accuracy and preserves legacy simulator results.
Faster reservoir simulation enables reservoir engineers to produce many realizations,
address larger models, and use advanced physics. It opens new workflows based on
ensemble methodologies for history matching and forecasting that yield
increased accuracy and more predictive results.
* - Benchmark
- `rocHPL <https://github.com/amd/InfinityHub-CI/tree/main/rochpl>`_
- HPL, or High-Performance Linpack, is a benchmark which solves a uniformly
random system of linear equations and reports floating-point execution rate.
This documentation supports the implementation of the HPL benchmark on
top of AMD's ROCm platform.
- HPL, or High-Performance Linpack, is a benchmark which solves a uniformly
random system of linear equations and reports floating-point execution rate.
* -
- `rocHPL-MxP <https://github.com/amd/InfinityHub-CI/tree/main/hpl-mxp>`_
@@ -216,6 +267,14 @@ Ubuntu versions.
range of hardware platforms via use of an in-built domain specific language derived
from the Mako templating engine.
* -
- `PETSc <https://github.com/amd/InfinityHub-CI/tree/main/petsc>`_
- Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures
and routines for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It supports MPI, GPUs through CUDA, HIP, and OpenCL,
as well as hybrid MPI-GPU parallelism. It also supports the NEC-SX Tsubasa Vector Engine.
PETSc also includes the Toolkit for Advanced Optimization (TAO) library.
* -
- `RAJA <https://github.com/amd/InfinityHub-CI/tree/main/raja>`_
- RAJA is a library of C++ software abstractions, primarily developed at Lawrence

View File

@@ -537,6 +537,8 @@ installation was successful, refer to the
:doc:`rocm-install-on-linux:install/post-install`.
Should verification fail, consult :doc:`/how-to/system-debugging`.
.. _mi300x-hardware-verification-with-rocm:
Hardware verification with ROCm
-------------------------------

File diff suppressed because it is too large Load Diff

View File

@@ -37,13 +37,12 @@ ROCm documentation is organized into the following categories:
:::{grid-item-card} How to
:class-body: rocm-card-banner rocm-hue-12
* [Programming guide](./how-to/hip_programming_guide.rst)
* [Use ROCm for AI](./how-to/rocm-for-ai/index.rst)
* [Use ROCm for HPC](./how-to/rocm-for-hpc/index.rst)
* [Fine-tune LLMs and inference optimization](./how-to/llm-fine-tuning-optimization/index.rst)
* [System optimization](./how-to/system-optimization/index.rst)
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)
* [GPU cluster networking](https://rocm.docs.amd.com/projects/gpu-cluster-networking/en/latest/index.html)
* [GPU cluster networking](https://dcgpu.docs.amd.com/projects/gpu-cluster-networking/en/latest/index.html)
* [System debugging](./how-to/system-debugging.md)
* [Use MPI](./how-to/gpu-enabled-mpi.rst)
* [Use advanced compiler features](./conceptual/compiler-topics.md)

View File

@@ -63,7 +63,7 @@
* {doc}`hipSPARSELt <hipsparselt:index>`
* {doc}`rocALUTION <rocalution:index>`
* {doc}`rocWMMA <rocwmma:index>`
* {doc}`Tensile <tensile:index>`
* {doc}`Tensile <tensile:src/index>`
:::
::::

View File

@@ -32,8 +32,6 @@ subtrees:
- caption: How to
entries:
- file: how-to/programming_guide.rst
title: Programming guide
- file: how-to/rocm-for-ai/index.rst
title: Use ROCm for AI
subtrees:
@@ -42,6 +40,8 @@ subtrees:
title: Installation
- file: how-to/rocm-for-ai/train-a-model.rst
title: Train a model
- file: how-to/rocm-for-ai/scale-model-training.rst
title: Scale model training
- file: how-to/rocm-for-ai/hugging-face-models.rst
title: Run models from Hugging Face
- file: how-to/rocm-for-ai/deploy-your-model.rst
@@ -94,7 +94,7 @@ subtrees:
title: System tuning
- file: how-to/tuning-guides/mi300x/workload.rst
title: Workload tuning
- url: https://rocm.docs.amd.com/projects/gpu-cluster-networking/en/${branch}/index.html
- url: https://dcgpu.docs.amd.com/projects/gpu-cluster-networking/en/latest/index.html
title: GPU cluster networking
- file: how-to/gpu-enabled-mpi.rst
title: Use MPI

View File

@@ -1,3 +1,3 @@
rocm-docs-core==1.9.2
rocm-docs-core==1.12.1
sphinx-reredirects
sphinx-sitemap

View File

@@ -16,17 +16,17 @@ beautifulsoup4==4.12.3
# via pydata-sphinx-theme
breathe==4.35.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2024.12.14
# via requests
cffi==1.17.1
# via
# cryptography
# pynacl
charset-normalizer==3.4.0
charset-normalizer==3.4.1
# via requests
click==8.1.7
click==8.1.8
# via sphinx-external-toc
cryptography==43.0.3
cryptography==44.0.0
# via pyjwt
deprecated==1.2.15
# via pygithub
@@ -36,17 +36,17 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
fastjsonschema==2.20.0
fastjsonschema==2.21.1
# via rocm-docs-core
gitdb==4.0.11
gitdb==4.0.12
# via gitpython
gitpython==3.1.43
gitpython==3.1.44
# via rocm-docs-core
idna==3.10
# via requests
imagesize==1.4.1
# via sphinx
jinja2==3.1.4
jinja2==3.1.5
# via
# myst-parser
# sphinx
@@ -66,7 +66,7 @@ packaging==24.2
# via sphinx
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
@@ -77,7 +77,7 @@ pygments==2.18.0
# accessible-pygments
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -90,9 +90,9 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.9.2
rocm-docs-core==1.12.1
# via -r requirements.in
smmap==5.0.1
smmap==5.0.2
# via gitdb
snowballstemmer==2.2.0
# via sphinx
@@ -137,13 +137,13 @@ sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
tomli==2.1.0
tomli==2.2.1
# via sphinx
typing-extensions==4.12.2
# via
# pydata-sphinx-theme
# pygithub
urllib3==2.2.3
urllib3==2.3.0
# via
# pygithub
# requests

View File

@@ -75,7 +75,7 @@ Math
":doc:`rocSOLVER <rocsolver:index>`", "An implementation of LAPACK routines on ROCm software, implemented in the HIP programming language and optimized for AMD's latest discrete GPUs"
":doc:`rocSPARSE <rocsparse:index>`", "Exposes a common interface that provides BLAS for sparse computation implemented on ROCm runtime and toolchains (in the HIP programming language)"
":doc:`rocWMMA <rocwmma:index>`", "C++ library for accelerating mixed-precision matrix multiply-accumulate (MMA) operations"
":doc:`Tensile <tensile:index>`", "Creates benchmark-driven backend libraries for GEMMs, GEMM-like problems, and general N-dimensional tensor contractions"
":doc:`Tensile <tensile:src/index>`", "Creates benchmark-driven backend libraries for GEMMs, GEMM-like problems, and general N-dimensional tensor contractions"
Primitives
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^