mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-10 15:18:11 -05:00
Compare commits
27 Commits
rocm-6.3.2
...
docs/6.3.2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
506dec253c | ||
|
|
f277a8c8d2 | ||
|
|
adf2c962ef | ||
|
|
2a51638903 | ||
|
|
07669fbe06 | ||
|
|
0a00bcb1da | ||
|
|
b10cb618cf | ||
|
|
1ad5a42302 | ||
|
|
0189b5f4cf | ||
|
|
d3f2ce089f | ||
|
|
7170d9813d | ||
|
|
355846ad80 | ||
|
|
13f85fa72a | ||
|
|
9b28bc4f09 | ||
|
|
76ffcee2c8 | ||
|
|
2d0610b254 | ||
|
|
82062ce632 | ||
|
|
efdf8539d1 | ||
|
|
4776254a95 | ||
|
|
7aeec73c20 | ||
|
|
1888fa5b8b | ||
|
|
92ba9ff5e4 | ||
|
|
9616e612cb | ||
|
|
dd19f4b2f8 | ||
|
|
19641e5bdb | ||
|
|
688d1ad54b | ||
|
|
2ff7de6b0a |
@@ -74,6 +74,7 @@ Conda
|
||||
ConnectX
|
||||
CuPy
|
||||
Dashboarding
|
||||
DBRX
|
||||
DDR
|
||||
DF
|
||||
DGEMM
|
||||
@@ -92,6 +93,7 @@ DataFrame
|
||||
DataLoader
|
||||
DataParallel
|
||||
Debian
|
||||
DeepSeek
|
||||
DeepSpeed
|
||||
Dependabot
|
||||
Deprecations
|
||||
@@ -115,6 +117,7 @@ FX
|
||||
Filesystem
|
||||
FindDb
|
||||
Flang
|
||||
FluxBenchmark
|
||||
Fortran
|
||||
Fuyu
|
||||
GALB
|
||||
@@ -129,6 +132,7 @@ GDS
|
||||
GEMM
|
||||
GEMMs
|
||||
GFortran
|
||||
Gemma
|
||||
GiB
|
||||
GIM
|
||||
GL
|
||||
@@ -314,6 +318,7 @@ PipelineParallel
|
||||
PnP
|
||||
PowerEdge
|
||||
PowerShell
|
||||
Pretraining
|
||||
Profiler's
|
||||
PyPi
|
||||
Pytest
|
||||
@@ -712,6 +717,7 @@ preprocessing
|
||||
preprocessor
|
||||
prequantized
|
||||
prerequisites
|
||||
pretraining
|
||||
profiler
|
||||
profilers
|
||||
protobuf
|
||||
|
||||
@@ -29,8 +29,7 @@ The release notes provide a summary of notable changes since the previous ROCm r
|
||||
- [ROCm upcoming changes](#rocm-upcoming-changes)
|
||||
|
||||
```{note}
|
||||
If you’re using Radeon™ PRO or Radeon GPUs in a workstation setting with a
|
||||
display connected, continue to use ROCm 6.2.3. See the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
|
||||
If you’re using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
|
||||
documentation to verify compatibility and system requirements.
|
||||
```
|
||||
## Release highlights
|
||||
|
||||
@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
|
||||
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
|
||||
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
|
||||
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
|
||||
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
|
||||
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
|
||||
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
|
||||
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
|
||||
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
|
||||
|
||||
@@ -1,120 +1,120 @@
|
||||
ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
|
||||
,Debian 12 [#mi300x-past-60]_,Debian 12 [#mi300x-past-60]_,,,,,,,,,,
|
||||
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
|
||||
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
|
||||
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
|
||||
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
|
||||
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
|
||||
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
|
||||
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
|
||||
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
|
||||
,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
|
||||
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
|
||||
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
|
||||
,,,,,,,,,,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
|
||||
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
|
||||
,,,,,,,,,,,,
|
||||
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
Thrust,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
CUB,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
,,,,,,,,,,,,
|
||||
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
,,,,,,,,,,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
|
||||
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
|
||||
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
|
||||
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
|
||||
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
|
||||
,,,,,,,,,,,,
|
||||
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
|
||||
,,,,,,,,,,,,
|
||||
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
|
||||
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
|
||||
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
|
||||
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
|
||||
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
|
||||
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
|
||||
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
|
||||
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
|
||||
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
|
||||
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
|
||||
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
|
||||
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
|
||||
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
|
||||
,,,,,,,,,,,,
|
||||
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
|
||||
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
,,,,,,,,,,,,
|
||||
SUPPORT LIBS,,,,,,,,,,,,
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
|
||||
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
|
||||
,,,,,,,,,,,,
|
||||
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
|
||||
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
|
||||
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
|
||||
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
|
||||
,,,,,,,,,,,,
|
||||
PERFORMANCE TOOLS,,,,,,,,,,,,
|
||||
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
|
||||
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
|
||||
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
|
||||
,,,,,,,,,,,,
|
||||
DEVELOPMENT TOOLS,,,,,,,,,,,,
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
|
||||
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
|
||||
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
|
||||
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
|
||||
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
|
||||
,,,,,,,,,,,,
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
|
||||
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
,,,,,,,,,,,,
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
|
||||
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
|
||||
ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
|
||||
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
|
||||
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
|
||||
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
|
||||
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
|
||||
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
|
||||
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
|
||||
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
|
||||
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
|
||||
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
|
||||
,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
|
||||
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
|
||||
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
|
||||
,,,,,,,,,,,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
|
||||
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
|
||||
,,,,,,,,,,,,,
|
||||
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
Thrust,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
CUB,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
,,,,,,,,,,,,,
|
||||
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
,,,,,,,,,,,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
|
||||
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
|
||||
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
|
||||
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
|
||||
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
|
||||
,,,,,,,,,,,,,
|
||||
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
|
||||
,,,,,,,,,,,,,
|
||||
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
|
||||
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
|
||||
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
|
||||
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
|
||||
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
|
||||
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
|
||||
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
|
||||
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
|
||||
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
|
||||
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
|
||||
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
|
||||
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
|
||||
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
|
||||
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
|
||||
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
|
||||
,,,,,,,,,,,,,
|
||||
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
|
||||
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
|
||||
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
|
||||
,,,,,,,,,,,,,
|
||||
SUPPORT LIBS,,,,,,,,,,,,,
|
||||
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
|
||||
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
|
||||
,,,,,,,,,,,,,
|
||||
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
|
||||
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
|
||||
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
|
||||
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
|
||||
,,,,,,,,,,,,,
|
||||
PERFORMANCE TOOLS,,,,,,,,,,,,,
|
||||
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
|
||||
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
|
||||
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
|
||||
,,,,,,,,,,,,,
|
||||
DEVELOPMENT TOOLS,,,,,,,,,,,,,
|
||||
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
|
||||
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
|
||||
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
|
||||
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
|
||||
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
|
||||
,,,,,,,,,,,,,
|
||||
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
|
||||
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
|
||||
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
|
||||
,,,,,,,,,,,,,
|
||||
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,
|
||||
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
|
||||
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
|
||||
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
|
||||
|
||||
|
@@ -32,7 +32,7 @@ compatibility and system requirements.
|
||||
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
|
||||
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
|
||||
,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
|
||||
,Debian 12 [#mi300x]_,Debian 12 [#mi300x]_,
|
||||
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
|
||||
,Azure Linux 3.0 [#mi300x]_,,
|
||||
,.. _architecture-support-compatibility-matrix:,,
|
||||
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
|
||||
@@ -148,9 +148,10 @@ compatibility and system requirements.
|
||||
|
||||
.. rubric:: Footnotes
|
||||
|
||||
.. [#mi300x] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
|
||||
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
|
||||
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
|
||||
|
||||
.. _OS-kernel-versions:
|
||||
@@ -215,7 +216,8 @@ Expand for full historical view of:
|
||||
|
||||
.. rubric:: Footnotes
|
||||
|
||||
.. [#mi300x-past-60] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
|
||||
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
|
||||
@@ -225,5 +227,5 @@ Expand for full historical view of:
|
||||
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
|
||||
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
|
||||
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
|
||||
.. [#kfd_support-past-60] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
|
||||
.. [#kfd_support-past-60] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
|
||||
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
|
||||
|
||||
@@ -49,6 +49,9 @@ article_pages = [
|
||||
|
||||
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/megatron-lm", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/pytorch-training", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
|
||||
|
||||
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
|
||||
|
||||
@@ -16,6 +16,9 @@ Throughout the following topics, this guide discusses the goals and :ref:`challe
|
||||
model <fine-tuning-llms-concept-challenge>` like Llama 2. In the
|
||||
sections that follow, you'll find practical guides on libraries and tools to accelerate your fine-tuning.
|
||||
|
||||
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
|
||||
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
|
||||
|
||||
- :doc:`Conceptual overview of fine-tuning LLMs <overview>`
|
||||
|
||||
- :doc:`Fine-tuning and inference <fine-tuning-and-inference>` using a
|
||||
|
||||
@@ -12,6 +12,9 @@ You can use ROCm to perform distributed training, which enables you to train mod
|
||||
|
||||
Overall, ROCm can be used to improve the performance and efficiency of your AI applications. With its training, fine-tuning, and inference support, ROCm provides a complete solution for optimizing AI workflows and achieving the optimum results possible on AMD GPUs.
|
||||
|
||||
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
|
||||
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
|
||||
|
||||
In this guide, you'll learn how to use ROCm for AI:
|
||||
|
||||
- :doc:`Training <training/index>`
|
||||
|
||||
@@ -277,7 +277,7 @@ Installing FBGEMM_GPU
|
||||
Installing FBGEMM_GPU consists of the following steps:
|
||||
|
||||
* Set up an isolated Miniconda environment
|
||||
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/native-install/index>`
|
||||
* Install ROCm using Docker or the :doc:`package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
|
||||
* Install the nightly `PyTorch <https://pytorch.org/>`_ build
|
||||
* Complete the pre-build and build tasks
|
||||
|
||||
|
||||
@@ -11,6 +11,9 @@ Understanding the ROCm™ software platform’s architecture and capabilities is
|
||||
|
||||
Throughout the following topics, this section provides a comprehensive guide to setting up and deploying AI inference on AMD GPUs. This includes instructions on how to install ROCm, how to use Hugging Face Transformers to manage pre-trained models for natural language processing (NLP) tasks, how to validate vLLM on AMD Instinct™ MI300X accelerators and illustrate how to deploy trained models in production environments.
|
||||
|
||||
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
|
||||
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
|
||||
|
||||
- :doc:`Installing ROCm and machine learning frameworks <install>`
|
||||
|
||||
- :doc:`Running models from Hugging Face <hugging-face-models>`
|
||||
|
||||
@@ -26,9 +26,9 @@ If you’re using a Radeon GPU for graphics-accelerated applications, refer to t
|
||||
|
||||
ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install/install-overview>`:
|
||||
|
||||
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/native-install/index>`
|
||||
* :doc:`Using your Linux distribution's package manager <rocm-install-on-linux:install/install-methods/package-manager-index>`
|
||||
|
||||
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`
|
||||
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/install-methods/amdgpu-installer-index>`
|
||||
|
||||
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`.
|
||||
|
||||
|
||||
@@ -10,49 +10,22 @@ LLM inference performance validation on AMD Instinct MI300X
|
||||
.. _vllm-benchmark-unified-docker:
|
||||
|
||||
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
|
||||
a prebuilt, optimized environment designed for validating large language model
|
||||
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
|
||||
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
|
||||
MI300X accelerator and includes the following components:
|
||||
a prebuilt, optimized environment for validating large language model (LLM)
|
||||
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
|
||||
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
|
||||
accelerator and includes the following components:
|
||||
|
||||
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
|
||||
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
|
||||
|
||||
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
|
||||
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
|
||||
|
||||
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
|
||||
|
||||
* Tuning files (in CSV format)
|
||||
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
|
||||
|
||||
With this Docker image, you can quickly validate the expected inference
|
||||
performance numbers on the MI300X accelerator. This topic also provides tips on
|
||||
optimizing performance with popular AI models.
|
||||
|
||||
.. hlist::
|
||||
:columns: 6
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* Llama 3.1 405B
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Mixtral 8x7B
|
||||
|
||||
* Mixtral 8x22B
|
||||
|
||||
* Mixtral 7B
|
||||
|
||||
* Qwen2 7B
|
||||
|
||||
* Qwen2 72B
|
||||
|
||||
* JAIS 13B
|
||||
|
||||
* JAIS 30B
|
||||
performance numbers for the MI300X accelerator. This topic also provides tips on
|
||||
optimizing performance with popular AI models. For more information, see the lists of
|
||||
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
|
||||
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
|
||||
|
||||
.. _vllm-benchmark-vllm:
|
||||
|
||||
@@ -91,9 +64,9 @@ MI300X accelerator with the prebuilt vLLM Docker image.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
|
||||
Once setup is complete, you can choose between two options to reproduce the
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
|
||||
@@ -130,45 +103,89 @@ Although the following models are preconfigured to collect latency and
|
||||
throughput performance data, you can also change the benchmarking parameters.
|
||||
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
|
||||
|
||||
.. _vllm-benchmark-mad-models:
|
||||
|
||||
Available models
|
||||
----------------
|
||||
|
||||
.. hlist::
|
||||
:columns: 3
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:widths: 2, 3
|
||||
|
||||
* ``pyt_vllm_llama-3.1-8b``
|
||||
* - Model name
|
||||
- Tag
|
||||
|
||||
* ``pyt_vllm_llama-3.1-70b``
|
||||
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
|
||||
- ``pyt_vllm_llama-3.1-8b``
|
||||
|
||||
* ``pyt_vllm_llama-3.1-405b``
|
||||
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
- ``pyt_vllm_llama-3.1-70b``
|
||||
|
||||
* ``pyt_vllm_llama-2-7b``
|
||||
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
|
||||
- ``pyt_vllm_llama-3.1-405b``
|
||||
|
||||
* ``pyt_vllm_llama-2-70b``
|
||||
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
|
||||
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
|
||||
|
||||
* ``pyt_vllm_mixtral-8x7b``
|
||||
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
|
||||
- ``pyt_vllm_llama-2-7b``
|
||||
|
||||
* ``pyt_vllm_mixtral-8x22b``
|
||||
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
|
||||
- ``pyt_vllm_llama-2-70b``
|
||||
|
||||
* ``pyt_vllm_mistral-7b``
|
||||
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
|
||||
- ``pyt_vllm_mixtral-8x7b``
|
||||
|
||||
* ``pyt_vllm_qwen2-7b``
|
||||
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
|
||||
- ``pyt_vllm_mixtral-8x22b``
|
||||
|
||||
* ``pyt_vllm_qwen2-72b``
|
||||
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
|
||||
- ``pyt_vllm_mistral-7b``
|
||||
|
||||
* ``pyt_vllm_jais-13b``
|
||||
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
|
||||
- ``pyt_vllm_qwen2-7b``
|
||||
|
||||
* ``pyt_vllm_jais-30b``
|
||||
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
|
||||
- ``pyt_vllm_qwen2-72b``
|
||||
|
||||
* ``pyt_vllm_llama-3.1-8b_fp8``
|
||||
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
|
||||
- ``pyt_vllm_jais-13b``
|
||||
|
||||
* ``pyt_vllm_llama-3.1-70b_fp8``
|
||||
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
|
||||
- ``pyt_vllm_jais-30b``
|
||||
|
||||
* ``pyt_vllm_llama-3.1-405b_fp8``
|
||||
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
|
||||
- ``pyt_vllm_dbrx-instruct``
|
||||
|
||||
* ``pyt_vllm_mixtral-8x7b_fp8``
|
||||
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
|
||||
- ``pyt_vllm_gemma-2-27b``
|
||||
|
||||
* ``pyt_vllm_mixtral-8x22b_fp8``
|
||||
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
|
||||
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
|
||||
|
||||
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
|
||||
- ``pyt_vllm_deepseek-moe-16b-chat``
|
||||
|
||||
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
|
||||
- ``pyt_vllm_llama-3.1-70b_fp8``
|
||||
|
||||
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
|
||||
- ``pyt_vllm_llama-3.1-405b_fp8``
|
||||
|
||||
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
|
||||
- ``pyt_vllm_mixtral-8x7b_fp8``
|
||||
|
||||
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
|
||||
- ``pyt_vllm_mixtral-8x22b_fp8``
|
||||
|
||||
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
|
||||
- ``pyt_vllm_mistral-7b_fp8``
|
||||
|
||||
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
|
||||
- ``pyt_vllm_dbrx_fp8``
|
||||
|
||||
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
|
||||
- ``pyt_vllm_command-r-plus_fp8``
|
||||
|
||||
.. _vllm-benchmark-standalone:
|
||||
|
||||
@@ -181,8 +198,8 @@ snippet.
|
||||
|
||||
.. code-block::
|
||||
|
||||
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
|
||||
|
||||
In the Docker container, clone the ROCm MAD repository and navigate to the
|
||||
benchmark scripts directory at ``~/MAD/scripts/vllm``.
|
||||
@@ -224,8 +241,8 @@ See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
|
||||
|
||||
.. _vllm-benchmark-standalone-options:
|
||||
|
||||
Options
|
||||
-------
|
||||
Options and available models
|
||||
----------------------------
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
@@ -248,72 +265,100 @@ Options
|
||||
- Measure both throughput and latency
|
||||
|
||||
* - ``$model_repo``
|
||||
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
|
||||
- Llama 3.1 8B
|
||||
- ``meta-llama/Llama-3.1-8B-Instruct``
|
||||
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
|
||||
|
||||
* - (``float16``)
|
||||
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
|
||||
- Llama 3.1 70B
|
||||
- ``meta-llama/Llama-3.1-70B-Instruct``
|
||||
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
|
||||
* -
|
||||
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
|
||||
- Llama 3.1 405B
|
||||
- ``meta-llama/Llama-3.1-405B-Instruct``
|
||||
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
|
||||
|
||||
* -
|
||||
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
|
||||
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
|
||||
|
||||
* -
|
||||
- ``meta-llama/Llama-2-7b-chat-hf``
|
||||
- Llama 2 7B
|
||||
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
|
||||
|
||||
* -
|
||||
- ``meta-llama/Llama-2-70b-chat-hf``
|
||||
- Llama 2 70B
|
||||
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
|
||||
|
||||
* -
|
||||
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
|
||||
- Mixtral 8x7B
|
||||
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
|
||||
|
||||
* -
|
||||
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
|
||||
- Mixtral 8x22B
|
||||
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
|
||||
|
||||
* -
|
||||
- ``mistralai/Mistral-7B-Instruct-v0.3``
|
||||
- Mixtral 7B
|
||||
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
|
||||
|
||||
* -
|
||||
- ``Qwen/Qwen2-7B-Instruct``
|
||||
- Qwen2 7B
|
||||
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
|
||||
|
||||
* -
|
||||
- ``Qwen/Qwen2-72B-Instruct``
|
||||
- Qwen2 72B
|
||||
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
|
||||
|
||||
* -
|
||||
- ``core42/jais-13b-chat``
|
||||
- JAIS 13B
|
||||
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
|
||||
|
||||
* -
|
||||
- ``core42/jais-30b-chat-v3``
|
||||
- JAIS 30B
|
||||
|
||||
* - ``$model_repo``
|
||||
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
|
||||
- Llama 3.1 8B
|
||||
|
||||
* - (``float8``)
|
||||
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
|
||||
- Llama 3.1 70B
|
||||
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
|
||||
|
||||
* -
|
||||
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
|
||||
- Llama 3.1 405B
|
||||
- ``databricks/dbrx-instruct``
|
||||
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
|
||||
|
||||
* -
|
||||
- ``google/gemma-2-27b``
|
||||
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
|
||||
|
||||
* -
|
||||
- ``CohereForAI/c4ai-command-r-plus-08-2024``
|
||||
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
|
||||
|
||||
* -
|
||||
- ``deepseek-ai/deepseek-moe-16b-chat``
|
||||
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
|
||||
|
||||
* - ``$model_repo``
|
||||
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
|
||||
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
|
||||
|
||||
* - (``float8``)
|
||||
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
|
||||
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
|
||||
|
||||
* -
|
||||
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
|
||||
- Mixtral 8x7B
|
||||
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
|
||||
|
||||
* -
|
||||
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
|
||||
- Mixtral 8x22B
|
||||
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
|
||||
|
||||
* -
|
||||
- ``amd/Mistral-7B-v0.1-FP8-KV``
|
||||
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
|
||||
|
||||
* -
|
||||
- ``amd/dbrx-instruct-FP8-KV``
|
||||
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
|
||||
|
||||
* -
|
||||
- ``amd/c4ai-command-r-plus-FP8-KV``
|
||||
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
|
||||
|
||||
* - ``$num_gpu``
|
||||
- 1 or 8
|
||||
@@ -335,34 +380,34 @@ options and their descriptions.
|
||||
Example 1: latency benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
|
||||
|
||||
.. code-block::
|
||||
|
||||
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
|
||||
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
|
||||
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
|
||||
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
|
||||
|
||||
Find the latency reports at:
|
||||
|
||||
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
|
||||
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
|
||||
|
||||
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
|
||||
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
|
||||
|
||||
Example 2: throughput benchmark
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
|
||||
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
|
||||
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
|
||||
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
|
||||
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
|
||||
|
||||
Find the throughput reports at:
|
||||
|
||||
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
|
||||
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
|
||||
|
||||
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
|
||||
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
|
||||
|
||||
.. raw:: html
|
||||
|
||||
@@ -394,17 +439,40 @@ Further reading
|
||||
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
|
||||
|
||||
- To learn how to run LLM models from Hugging Face or your own model, see
|
||||
:doc:`Using ROCm for AI <../index>`.
|
||||
:doc:`Running models from Hugging Face <hugging-face-models>`.
|
||||
|
||||
- To learn how to optimize inference on LLMs, see
|
||||
:doc:`Inference optimization <../inference-optimization/index>`.
|
||||
|
||||
<<<<<<< HEAD:docs/how-to/performance-validation/mi300x/vllm-benchmark.rst
|
||||
=======
|
||||
- To learn how to fine-tune LLMs, see
|
||||
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
|
||||
|
||||
>>>>>>> develop:docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst
|
||||
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
|
||||
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
This table lists previous versions of the ROCm vLLM Docker image for inference
|
||||
performance validation. For detailed information about available models for
|
||||
benchmarking, see the version-specific documentation.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:stub-columns: 1
|
||||
|
||||
* - ROCm version
|
||||
- vLLM version
|
||||
- PyTorch version
|
||||
- Resources
|
||||
|
||||
* - 6.2.1
|
||||
- 0.6.4
|
||||
- 2.5.0
|
||||
-
|
||||
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
|
||||
|
||||
* - 6.2.0
|
||||
- 0.4.3
|
||||
- 2.4.0
|
||||
-
|
||||
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_
|
||||
|
||||
@@ -0,0 +1,547 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using Megatron-LM for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
|
||||
|
||||
******************************************
|
||||
Training a model with Megatron-LM for ROCm
|
||||
******************************************
|
||||
|
||||
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
|
||||
designed to enable efficient training of large-scale language models on AMD
|
||||
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
|
||||
enhanced scalability, performance, and resource utilization for AI workloads.
|
||||
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
|
||||
DeepSeek, enabling developers to train next-generation AI models more
|
||||
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
|
||||
|
||||
AMD provides a ready-to-use Docker image for MI300X accelerators containing
|
||||
essential components, including PyTorch, ROCm libraries, and Megatron-LM
|
||||
utilities. It contains the following software components to accelerate training
|
||||
workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.3.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.7.0a0+git637433 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Python | 3.10 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.11 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | 3.0.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| hipBLASLt | git258a2162 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Triton | 3.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
Supported features and models
|
||||
=============================
|
||||
|
||||
Megatron-LM provides the following key features to train large language models efficiently:
|
||||
|
||||
- Transformer Engine (TE)
|
||||
|
||||
- APEX
|
||||
|
||||
- GEMM tuning
|
||||
|
||||
- Torch.compile
|
||||
|
||||
- 3D parallelism: TP + SP + CP
|
||||
|
||||
- Distributed optimizer
|
||||
|
||||
- Flash Attention (FA) 3
|
||||
|
||||
- Fused kernels
|
||||
|
||||
- Pre-training
|
||||
|
||||
.. _amd-megatron-lm-model-support:
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Llama 3 8B
|
||||
|
||||
* Llama 3 70B
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* DeepSeek-V2-Lite
|
||||
|
||||
.. note::
|
||||
|
||||
Some models, such as Llama 3, require an external license agreement through
|
||||
a third party (for example, Meta).
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
If you have already validated your system settings, skip this step. Otherwise,
|
||||
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
|
||||
to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
.. _mi300x-amd-megatron-lm-training:
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
|
||||
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
|
||||
image.
|
||||
|
||||
.. _amd-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/megatron-lm:v25.3
|
||||
|
||||
2. Launch the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
|
||||
|
||||
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start megatron_training_env
|
||||
docker exec -it megatron_training_env bash
|
||||
|
||||
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
|
||||
|
||||
.. _amd-megatron-lm-environment-setup:
|
||||
|
||||
Configuration scripts
|
||||
---------------------
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
|
||||
script in the ``examples/llama`` directory of
|
||||
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
|
||||
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
|
||||
the configuration script accordingly.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
|
||||
directory of
|
||||
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
|
||||
and update the configuration script accordingly.
|
||||
|
||||
Network interface
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
|
||||
is set in your training scripts.
|
||||
|
||||
1. Run the following command (outside the container) to find the active network interface on your system.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
ip a
|
||||
|
||||
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your system’s network interface. For
|
||||
example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export NCCL_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
export GLOO_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
Dataset options
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
|
||||
value is ``1`` for enabled.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=1
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=0
|
||||
|
||||
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
If you don't already have the dataset, download the DeepSeek dataset using the following
|
||||
commands:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir deepseek-datasets
|
||||
cd deepseek-datasets
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
|
||||
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
|
||||
value is ``1`` for enabled.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=1
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MOCK_DATA=0
|
||||
|
||||
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
Tokenizer
|
||||
^^^^^^^^^
|
||||
|
||||
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
|
||||
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
|
||||
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
|
||||
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
|
||||
handle a variety of input sequences, including unseen words or domain-specific terms.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
|
||||
|
||||
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
|
||||
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
|
||||
|
||||
For example, if you're using the Llama 3.1 8B model:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
|
||||
|
||||
Multi-node training
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
If you're running multi-node training, update the following environment variables. They can
|
||||
also be passed as command line arguments.
|
||||
|
||||
* Change ``localhost`` to the master node's hostname:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
MASTER_ADDR="${MASTER_ADDR:-localhost}"
|
||||
|
||||
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NNODES="${NNODES:-1}"
|
||||
|
||||
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NODE_RANK="${NODE_RANK:-0}"
|
||||
|
||||
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
|
||||
NFS directory) for multi-node runs:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
|
||||
|
||||
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
|
||||
inside a Docker, either install the drivers inside the Docker container or pass the network
|
||||
drivers from the host while creating the Docker container.
|
||||
|
||||
Start training on AMD Instinct accelerators
|
||||
===========================================
|
||||
|
||||
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
|
||||
system performance, conduct training benchmarks, and achieve superior
|
||||
performance for models like Llama 3.1 and Llama 2. This container should not be
|
||||
expected to provide generalized performance across all training workloads. You
|
||||
can expect the container to perform in the model configurations described in
|
||||
the following section, but other configurations are not validated by AMD.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script
|
||||
to train models, and reproduce the benchmark results on MI300X series
|
||||
accelerators with the AMD Megatron-LM Docker image.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single-node
|
||||
|
||||
To run training on a single node, navigate to the Megatron-LM folder and use the
|
||||
following command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
|
||||
|
||||
.. tab-item:: Multi-node training
|
||||
:sync: multi-node
|
||||
|
||||
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
|
||||
|
||||
* On the master node ``NODE0``:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
|
||||
|
||||
* On the worker node ``NODE1``:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
|
||||
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cd /workspace/Megatron-LM
|
||||
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
|
||||
|
||||
Key options
|
||||
-----------
|
||||
|
||||
.. _amd-megatron-lm-benchmark-test-vars:
|
||||
|
||||
The benchmark tests support the following sets of variables:
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
``TEE_OUTPUT``
|
||||
``1`` to enable training logs or ``0`` to disable.
|
||||
|
||||
``TE_FP8``
|
||||
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
|
||||
|
||||
``GEMM_TUNING``
|
||||
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
|
||||
|
||||
``USE_FLASH_ATTN``
|
||||
``1`` to enable Flash Attention.
|
||||
|
||||
``ENABLE_PROFILING``
|
||||
``1`` to enable PyTorch profiling for performance analysis.
|
||||
|
||||
``transformer-impl``
|
||||
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
|
||||
|
||||
``MODEL_SIZE``
|
||||
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
|
||||
|
||||
``TOTAL_ITERS``
|
||||
The total number of iterations -- ``10`` by default.
|
||||
|
||||
``MOCK_DATA``
|
||||
``1`` to use mock data or ``0`` to use real data provided by you.
|
||||
|
||||
``MBS``
|
||||
Micro batch size.
|
||||
|
||||
``BS``
|
||||
Global batch size.
|
||||
|
||||
``TP``
|
||||
Tensor parallel (``1``, ``2``, ``4``, ``8``).
|
||||
|
||||
``SEQ_LENGTH``
|
||||
Input sequence length.
|
||||
|
||||
.. tab-item:: DeepSeek V2
|
||||
:sync: deepseek
|
||||
|
||||
``PR``
|
||||
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
|
||||
|
||||
``GEMM_TUNING``
|
||||
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
|
||||
|
||||
``TOTAL_ITERS``
|
||||
The total number of iterations -- ``10`` by default.
|
||||
|
||||
``MOCK_DATA``
|
||||
``1`` to use mock data or ``0`` to use real data provided by you.
|
||||
|
||||
``MBS``
|
||||
Micro batch size.
|
||||
|
||||
``GBS``
|
||||
Global batch size.
|
||||
|
||||
Benchmarking examples
|
||||
---------------------
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Llama
|
||||
:sync: llama
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single-node
|
||||
|
||||
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
|
||||
datatype, and so on.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
See the sample output:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
|
||||
:width: 800
|
||||
|
||||
.. tab-item:: Multi-node training
|
||||
:sync: multi-node
|
||||
|
||||
Launch the Docker container on each node.
|
||||
|
||||
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
|
||||
so on.
|
||||
|
||||
On the master node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
On the worker node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
Sample output for 2-node training:
|
||||
|
||||
Master node:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
|
||||
:width: 800
|
||||
|
||||
Worker node:
|
||||
|
||||
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
|
||||
:width: 800
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
This table lists previous versions of the ROCm Megatron-LM Docker image for training
|
||||
performance validation. For detailed information about available models for
|
||||
benchmarking, see the version-specific documentation.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:stub-columns: 1
|
||||
|
||||
* - ROCm version
|
||||
- Megatron-LM version
|
||||
- PyTorch version
|
||||
- Resources
|
||||
|
||||
* - 6.1
|
||||
- 24.12-dev
|
||||
- 2.4.0
|
||||
-
|
||||
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_
|
||||
@@ -0,0 +1,341 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using PyTorch for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
**************************************
|
||||
Training a model with PyTorch for ROCm
|
||||
**************************************
|
||||
|
||||
PyTorch is an open-source machine learning framework that is widely used for
|
||||
model training with GPU-optimized components for transformer-based models.
|
||||
|
||||
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
|
||||
provides a prebuilt optimized environment for fine-tuning and pretraining a
|
||||
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
|
||||
software components to accelerate training workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.3.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.7.0a0+git637433 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Python | 3.10 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.11 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | 3.0.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| hipBLASLt | git258a2162 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Triton | 3.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
.. _amd-pytorch-training-model-support:
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
* FLUX.1-dev
|
||||
|
||||
.. note::
|
||||
|
||||
Only these models are supported in the following steps.
|
||||
|
||||
Some models, such as Llama 3, require an external license agreement through
|
||||
a third party (for example, Meta).
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
If you have already validated your system settings, skip this step. Otherwise,
|
||||
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
|
||||
to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t validate configurations and run conditions outside those described.
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/pytorch-training:v25.3
|
||||
|
||||
2. Run the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
|
||||
|
||||
3. Use these commands if you exit the ``training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start training_env
|
||||
docker exec -it training_env bash
|
||||
|
||||
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/pytorch-train
|
||||
|
||||
Prepare training datasets and dependencies
|
||||
------------------------------------------
|
||||
|
||||
The following benchmarking examples may require downloading models and datasets
|
||||
from Hugging Face. To ensure successful access to gated repos, set your
|
||||
``HF_TOKEN``.
|
||||
|
||||
Run the setup script to install libraries and datasets needed for benchmarking.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_setup.sh
|
||||
|
||||
``pytorch_benchmark_setup.sh`` installs the following libraries:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Library
|
||||
- Benchmark model
|
||||
- Reference
|
||||
|
||||
* - ``accelerate``
|
||||
- Llama 3.1 8B, FLUX
|
||||
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
|
||||
|
||||
* - ``datasets``
|
||||
- Llama 3.1 8B, 70B, FLUX
|
||||
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
|
||||
|
||||
* - ``torchdata``
|
||||
- Llama 3.1 70B
|
||||
- `TorchData <https://pytorch.org/data/beta/index.html>`_
|
||||
|
||||
* - ``tomli``
|
||||
- Llama 3.1 70B
|
||||
- `Tomli <https://pypi.org/project/tomli/>`_
|
||||
|
||||
* - ``tiktoken``
|
||||
- Llama 3.1 70B
|
||||
- `tiktoken <https://github.com/openai/tiktoken>`_
|
||||
|
||||
* - ``blobfile``
|
||||
- Llama 3.1 70B
|
||||
- `blobfile <https://pypi.org/project/blobfile/>`_
|
||||
|
||||
* - ``tabulate``
|
||||
- Llama 3.1 70B
|
||||
- `tabulate <https://pypi.org/project/tabulate/>`_
|
||||
|
||||
* - ``wandb``
|
||||
- Llama 3.1 70B
|
||||
- `Weights & Biases <https://github.com/wandb/wandb>`_
|
||||
|
||||
* - ``sentencepiece``
|
||||
- Llama 3.1 70B, FLUX
|
||||
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
|
||||
|
||||
* - ``tensorboard``
|
||||
- Llama 3.1 70 B, FLUX
|
||||
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
|
||||
|
||||
* - ``csvkit``
|
||||
- FLUX
|
||||
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
|
||||
|
||||
* - ``deepspeed``
|
||||
- FLUX
|
||||
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
|
||||
|
||||
* - ``diffusers``
|
||||
- FLUX
|
||||
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
|
||||
|
||||
* - ``GitPython``
|
||||
- FLUX
|
||||
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
|
||||
|
||||
* - ``opencv-python-headless``
|
||||
- FLUX
|
||||
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
|
||||
|
||||
* - ``peft``
|
||||
- FLUX
|
||||
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
|
||||
|
||||
* - ``protobuf``
|
||||
- FLUX
|
||||
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
|
||||
|
||||
* - ``pytest``
|
||||
- FLUX
|
||||
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
|
||||
|
||||
* - ``python-dotenv``
|
||||
- FLUX
|
||||
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
|
||||
|
||||
* - ``seaborn``
|
||||
- FLUX
|
||||
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
|
||||
|
||||
* - ``transformers``
|
||||
- FLUX
|
||||
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
|
||||
|
||||
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
|
||||
|
||||
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
|
||||
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
|
||||
|
||||
Along with the following datasets:
|
||||
|
||||
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
|
||||
|
||||
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
|
||||
|
||||
Start training on AMD Instinct accelerators
|
||||
===========================================
|
||||
|
||||
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
|
||||
system performance, conduct training benchmarks, and achieve superior
|
||||
performance for models like Llama 3.1 and Llama 2. This container should not be
|
||||
expected to provide generalized performance across all training workloads. You
|
||||
can expect the container to perform in the model configurations described in
|
||||
the following section, but other configurations are not validated by AMD.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script
|
||||
to train models, and reproduce the benchmark results on MI300X series
|
||||
accelerators with the AMD PyTorch training Docker image.
|
||||
|
||||
Once your environment is set up, use the following commands and examples to start benchmarking.
|
||||
|
||||
Pretraining
|
||||
-----------
|
||||
|
||||
To start the pretraining benchmark, use the following command with the
|
||||
appropriate options. See the following list of options and their descriptions.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
|
||||
|
||||
Options and available models
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
* - ``$training_mode``
|
||||
- ``pretrain``
|
||||
- Benchmark pretraining
|
||||
|
||||
* -
|
||||
- ``finetune_fw``
|
||||
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
|
||||
|
||||
* -
|
||||
- ``finetune_lora``
|
||||
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
|
||||
|
||||
* - ``$datatype``
|
||||
- FP8 or BF16
|
||||
- Only Llama 3.1 8B supports FP8 precision.
|
||||
|
||||
* - ``$model_repo``
|
||||
- Llama-3.1-8B
|
||||
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
|
||||
|
||||
* -
|
||||
- Llama-3.1-70B
|
||||
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
|
||||
|
||||
* -
|
||||
- Flux
|
||||
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
|
||||
|
||||
Fine-tuning
|
||||
-----------
|
||||
|
||||
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
|
||||
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
|
||||
|
||||
Benchmarking examples
|
||||
---------------------
|
||||
|
||||
Here are some examples of how to use the command.
|
||||
|
||||
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
|
||||
|
||||
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
|
||||
|
||||
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
|
||||
|
||||
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
|
||||
|
||||
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
|
||||
@@ -14,8 +14,15 @@ Training models on AMD GPUs with the ROCm™ software platform allows you to use
|
||||
|
||||
The ROCm software platform makes it easier to train models on AMD GPUs while maintaining compatibility with existing code and tools. The platform also provides features like multi-GPU support, allowing for scaling and parallelization of model training across multiple GPUs to enhance performance.
|
||||
|
||||
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
|
||||
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.
|
||||
|
||||
In this guide, you'll learn about:
|
||||
|
||||
- :doc:`Training a model <train-a-model>`
|
||||
- Training a model
|
||||
|
||||
- :doc:`Scale model training <scale-model-training>`
|
||||
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
|
||||
|
||||
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
|
||||
|
||||
- :doc:`Scaling model training <scale-model-training>`
|
||||
|
||||
@@ -0,0 +1,130 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: Prerequisite system validation before using ROCm for AI.
|
||||
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
|
||||
|
||||
.. _train-a-model-system-validation:
|
||||
|
||||
**********************************************
|
||||
Prerequisite system validation before training
|
||||
**********************************************
|
||||
|
||||
Complete the following system validation and optimization steps to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Hardware verification with ROCm
|
||||
-------------------------------
|
||||
|
||||
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
|
||||
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
|
||||
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
|
||||
You can restore this setting to its default value with the ``rocm-smi -r`` command.
|
||||
|
||||
Run the command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
rocm-smi --setperfdeterminism 1900
|
||||
|
||||
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
|
||||
|
||||
RCCL Bandwidth Test for multi-node setups
|
||||
-----------------------------------------
|
||||
|
||||
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
|
||||
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
|
||||
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
|
||||
for efficient distributed training.
|
||||
|
||||
Running the RCCL bandwidth test helps verify that:
|
||||
|
||||
- The GPUs can communicate across nodes or within a single node.
|
||||
|
||||
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
|
||||
provides adequate bandwidth for communication.
|
||||
|
||||
- No hardware setup or cabling issues could affect the communication between GPUs
|
||||
|
||||
Tuning and optimizing hyperparameters
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
|
||||
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# force all RCCL streams to be high priority
|
||||
export TORCH_NCCL_HIGH_PRIORITY=1
|
||||
|
||||
# specify which RDMA interfaces to use for communication
|
||||
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
|
||||
|
||||
# define the Global ID index used in RoCE mode
|
||||
export NCCL_IB_GID_INDEX=3
|
||||
|
||||
# avoid data corruption/mismatch issue that existed in past releases
|
||||
export RCCL_MSCCL_ENABLE=0
|
||||
|
||||
Running the RCCL Bandwidth Test
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
|
||||
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
|
||||
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
|
||||
See :ref:`mi300x-rccl` for more information.
|
||||
|
||||
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
|
||||
:width: 800
|
||||
|
||||
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
|
||||
recommended. So, a run on 8 GPUs looks something like:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
|
||||
:width: 800
|
||||
|
||||
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
|
||||
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
|
||||
PyTorch and TensorFlow.
|
||||
|
||||
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
|
||||
|
||||
.. code-block::
|
||||
|
||||
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
|
||||
--mca pml ucx \
|
||||
--mca btl ^openib \
|
||||
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
|
||||
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
|
||||
-x NCCL_IB_GID_INDEX=3 \
|
||||
-x NCCL_MIN_NCHANNELS=40 \
|
||||
-x NCCL_DEBUG=version \
|
||||
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
|
||||
:width: 800
|
||||
@@ -1,503 +0,0 @@
|
||||
.. meta::
|
||||
:description: How to train a model using ROCm Megatron-LM
|
||||
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
|
||||
|
||||
**************************************
|
||||
Training a model with ROCm Megatron-LM
|
||||
**************************************
|
||||
|
||||
.. _amd-megatron-lm:
|
||||
|
||||
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
|
||||
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
|
||||
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
|
||||
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
|
||||
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
|
||||
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
|
||||
|
||||
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
|
||||
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
|
||||
following software to accelerate training workloads:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.1 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.4.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch Lightning | 2.4.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Megatron Core | 0.9.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformer Engine | 1.5.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | v2.6 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Transformers | 4.44.0 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
Supported features and models
|
||||
=============================
|
||||
|
||||
Megatron-LM provides the following key features to train large language models efficiently:
|
||||
|
||||
- Transformer Engine (TE)
|
||||
|
||||
- APEX
|
||||
|
||||
- GEMM tuning
|
||||
|
||||
- Torch.compile
|
||||
|
||||
- 3D parallelism: TP + SP + CP
|
||||
|
||||
- Distributed optimizer
|
||||
|
||||
- Flash Attention (FA) 2
|
||||
|
||||
- Fused kernels
|
||||
|
||||
- Pre-training
|
||||
|
||||
.. _amd-megatron-lm-model-support:
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
|
||||
|
||||
* Llama 2 7B
|
||||
|
||||
* Llama 2 70B
|
||||
|
||||
* Llama 3 8B
|
||||
|
||||
* Llama 3 70B
|
||||
|
||||
* Llama 3.1 8B
|
||||
|
||||
* Llama 3.1 70B
|
||||
|
||||
Prerequisite system validation steps
|
||||
====================================
|
||||
|
||||
Complete the following system validation and optimization steps to set up your system before starting training.
|
||||
|
||||
Disable NUMA auto-balancing
|
||||
---------------------------
|
||||
|
||||
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
|
||||
it might be detrimental to performance with certain types of workloads.
|
||||
|
||||
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
|
||||
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
|
||||
the output is ``1``, run the following command to disable NUMA auto-balancing.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
|
||||
|
||||
See :ref:`mi300x-disable-numa` for more information.
|
||||
|
||||
Hardware verification with ROCm
|
||||
-------------------------------
|
||||
|
||||
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
|
||||
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
|
||||
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
|
||||
You can restore this setting to its default value with the ``rocm-smi -r`` command.
|
||||
|
||||
Run the command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
rocm-smi --setperfdeterminism 1900
|
||||
|
||||
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
|
||||
|
||||
RCCL Bandwidth Test
|
||||
-------------------
|
||||
|
||||
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
|
||||
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
|
||||
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
|
||||
for efficient distributed training.
|
||||
|
||||
Running the RCCL bandwidth test helps verify that:
|
||||
|
||||
- The GPUs can communicate across nodes or within a single node.
|
||||
|
||||
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
|
||||
provides adequate bandwidth for communication.
|
||||
|
||||
- No hardware setup or cabling issues could affect the communication between GPUs
|
||||
|
||||
Tuning and optimizing hyperparameters
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
|
||||
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# force all RCCL streams to be high priority
|
||||
export TORCH_NCCL_HIGH_PRIORITY=1
|
||||
|
||||
# specify which RDMA interfaces to use for communication
|
||||
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
|
||||
|
||||
# define the Global ID index used in RoCE mode
|
||||
export NCCL_IB_GID_INDEX=3
|
||||
|
||||
# avoid data corruption/mismatch issue that existed in past releases
|
||||
export RCCL_MSCCL_ENABLE=0
|
||||
|
||||
Running the RCCL Bandwidth Test
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
|
||||
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
|
||||
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
|
||||
See :ref:`mi300x-rccl` for more information.
|
||||
|
||||
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
|
||||
:width: 800
|
||||
|
||||
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
|
||||
recommended. So, a run on 8 GPUs looks something like:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
|
||||
:width: 800
|
||||
|
||||
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
|
||||
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
|
||||
PyTorch and TensorFlow.
|
||||
|
||||
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
|
||||
|
||||
.. code-block::
|
||||
|
||||
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
|
||||
--mca pml ucx \
|
||||
--mca btl ^openib \
|
||||
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
|
||||
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
|
||||
-x NCCL_IB_GID_INDEX=3 \
|
||||
-x NCCL_MIN_NCHANNELS=40 \
|
||||
-x NCCL_DEBUG=version \
|
||||
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
|
||||
:width: 800
|
||||
|
||||
.. _mi300x-amd-megatron-lm-training:
|
||||
|
||||
Start training on MI300X accelerators
|
||||
=====================================
|
||||
|
||||
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
|
||||
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
|
||||
image.
|
||||
|
||||
.. _amd-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image and required packages
|
||||
-----------------------------------------------
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull rocm/megatron-lm:24.12-dev
|
||||
|
||||
2. Launch the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
|
||||
|
||||
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/Megatron-LM
|
||||
cd Megatron-LM
|
||||
|
||||
.. note::
|
||||
|
||||
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
|
||||
Checking out this specific commit is recommended for a stable and reproducible environment.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
|
||||
|
||||
Prepare training datasets
|
||||
-------------------------
|
||||
|
||||
If you already have the preprocessed data, you can skip this section.
|
||||
|
||||
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
|
||||
end-of-document token, remove sentence splitting, and use the tokenizer type.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
python tools/preprocess_data.py \
|
||||
--input my-corpus.json \
|
||||
--output-prefix my-gpt2 \
|
||||
--vocab-file gpt2-vocab.json \
|
||||
--tokenizer-type GPT2BPETokenizer \
|
||||
--merge-file gpt2-merges.txt \
|
||||
--append-eod
|
||||
|
||||
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
|
||||
``my-gpt2_text_document.idx``.
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
|
||||
:width: 800
|
||||
|
||||
.. _amd-megatron-lm-environment-setup:
|
||||
|
||||
Environment setup
|
||||
-----------------
|
||||
|
||||
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
|
||||
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
|
||||
``train_llama3.sh`` and update the configuration script accordingly.
|
||||
|
||||
Network interface
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
|
||||
|
||||
1. Run the following command to find the active network interface on your system.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
ip a
|
||||
|
||||
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your system’s network interface. For
|
||||
example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export NCCL_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
export GLOO_SOCKET_IFNAME=ens50f0np0
|
||||
|
||||
Dataset options
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
You can use either mock data or real data for training.
|
||||
|
||||
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
|
||||
|
||||
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
--data-path $DATA_PATH
|
||||
|
||||
Ensure that the files are accessible inside the Docker container.
|
||||
|
||||
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
--mock-data
|
||||
|
||||
Tokenizer
|
||||
^^^^^^^^^
|
||||
|
||||
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
|
||||
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
|
||||
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
|
||||
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
|
||||
handle a variety of input sequences, including unseen words or domain-specific terms.
|
||||
|
||||
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
|
||||
|
||||
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
|
||||
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
|
||||
|
||||
For example, if you're using the Llama 3.1 8B model:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
|
||||
|
||||
Run benchmark tests
|
||||
-------------------
|
||||
|
||||
.. note::
|
||||
|
||||
If you're running **multi node training**, update the following environment variables. They can
|
||||
also be passed as command line arguments.
|
||||
|
||||
* Change ``localhost`` to the master node's hostname:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
MASTER_ADDR="${MASTER_ADDR:-localhost}"
|
||||
|
||||
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NNODES="${NNODES:-1}"
|
||||
|
||||
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
NODE_RANK="${NODE_RANK:-0}"
|
||||
|
||||
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
{variables} bash examples/llama/train_llama2.sh
|
||||
|
||||
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
{variables} bash examples/llama/train_llama3.sh
|
||||
|
||||
.. _amd-megatron-lm-benchmark-test-vars:
|
||||
|
||||
The benchmark tests support the same set of variables:
|
||||
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| Name | Options | Description |
|
||||
+==========================+=======================+=======================+
|
||||
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
|
||||
| | | log |
|
||||
| | | |
|
||||
| | | 1: enable training |
|
||||
| | | log |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``MBS`` | | Micro batch size |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``BS`` | | Batch size |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TE_FP8`` | 0 or 1 | Datatype. |
|
||||
| | | If it is set to 1, |
|
||||
| | | FP8. |
|
||||
| | | |
|
||||
| | | If it is set to 0. |
|
||||
| | | BP16 |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
|
||||
| | | enable torch.compile. |
|
||||
| | | |
|
||||
| | | If it is set to 0. |
|
||||
| | | Disable torch.compile |
|
||||
| | | (default) |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``SEQ_LENGTH`` | | Input sequence length |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
|
||||
| | | enable gemm tuning. |
|
||||
| | | |
|
||||
| | | If it is set to 0, |
|
||||
| | | disable gemm tuning |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
|
||||
| | | attention |
|
||||
| | | |
|
||||
| | | 1: enable flash |
|
||||
| | | attention |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
|
||||
| | | profiling |
|
||||
| | | |
|
||||
| | | 1: enable torch |
|
||||
| | | profiling |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``MODEL_SIZE`` | | The size of the mode: |
|
||||
| | | 7B/70B, etc. |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``TOTAL_ITERS`` | | Total number of |
|
||||
| | | iterations |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
| ``transformer-impl`` | transformer_engine or | Enable transformer |
|
||||
| | local | engine by default |
|
||||
+--------------------------+-----------------------+-----------------------+
|
||||
|
||||
Benchmarking examples
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: Single node training
|
||||
:sync: single
|
||||
|
||||
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
|
||||
datatype, and so on.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
See the sample output:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
|
||||
:width: 800
|
||||
|
||||
.. tab-item:: Multi node training
|
||||
:sync: multi
|
||||
|
||||
Launch the Docker container on each node.
|
||||
|
||||
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
|
||||
so on.
|
||||
|
||||
On the master node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
On the worker node:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
|
||||
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
|
||||
|
||||
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
|
||||
|
||||
Sample output for 2-node training:
|
||||
|
||||
Master node:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
|
||||
:width: 800
|
||||
|
||||
Worker node:
|
||||
|
||||
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
|
||||
:width: 800
|
||||
|
||||
@@ -12,7 +12,7 @@ myst:
|
||||
This chapter reviews system settings that are required to configure the system
|
||||
for ROCm virtualization on RDNA2-based AMD Radeon™ PRO GPUs. Installing ROCm on
|
||||
Bare Metal follows the routine ROCm
|
||||
{doc}`installation procedure<rocm-install-on-linux:install/native-install/index>`.
|
||||
{doc}`installation procedure<rocm-install-on-linux:install/install-methods/package-manager-index>`.
|
||||
|
||||
To enable ROCm virtualization on V620, one has to setup Single Root I/O
|
||||
Virtualization (SR-IOV) in the BIOS via setting found in the following
|
||||
@@ -166,4 +166,4 @@ First, assign GPU virtual function (VF) to VM using the following steps.
|
||||
Then start the VM.
|
||||
|
||||
Finally install ROCm on the virtual machine (VM). For detailed instructions,
|
||||
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/native-install/index>`.
|
||||
refer to the {doc}`Linux install guide<rocm-install-on-linux:install/install-methods/package-manager-index>`.
|
||||
|
||||
@@ -38,6 +38,7 @@ ROCm documentation is organized into the following categories:
|
||||
:class-body: rocm-card-banner rocm-hue-12
|
||||
|
||||
* [Use ROCm for AI](./how-to/rocm-for-ai/index.rst)
|
||||
* [AI tutorials](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/)
|
||||
* [Use ROCm for HPC](./how-to/rocm-for-hpc/index.rst)
|
||||
* [System optimization](./how-to/system-optimization/index.rst)
|
||||
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)
|
||||
|
||||
@@ -40,11 +40,13 @@ subtrees:
|
||||
title: Training
|
||||
subtrees:
|
||||
- entries:
|
||||
- file: how-to/rocm-for-ai/training/train-a-model.rst
|
||||
title: Train a model
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
|
||||
title: Train a model with Megatron-LM
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
|
||||
title: Train a model with PyTorch
|
||||
- file: how-to/rocm-for-ai/training/scale-model-training.rst
|
||||
title: Scale model training
|
||||
|
||||
|
||||
- file: how-to/rocm-for-ai/fine-tuning/index.rst
|
||||
title: Fine-tuning LLMs
|
||||
subtrees:
|
||||
@@ -89,7 +91,10 @@ subtrees:
|
||||
title: Profile and debug
|
||||
- file: how-to/rocm-for-ai/inference-optimization/workload.rst
|
||||
title: Workload tuning
|
||||
|
||||
|
||||
- url: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
|
||||
title: AI tutorials
|
||||
|
||||
- file: how-to/rocm-for-hpc/index.rst
|
||||
title: Use ROCm for HPC
|
||||
- file: how-to/system-optimization/index.rst
|
||||
@@ -126,6 +131,7 @@ subtrees:
|
||||
- url: https://github.com/amd/rocm-examples
|
||||
title: ROCm examples
|
||||
|
||||
|
||||
- caption: Conceptual
|
||||
entries:
|
||||
- file: conceptual/gpu-arch.md
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
rocm-docs-core==1.13.0
|
||||
rocm-docs-core==1.15.0
|
||||
sphinx-reredirects
|
||||
sphinx-sitemap
|
||||
|
||||
@@ -8,27 +8,42 @@ accessible-pygments==0.0.5
|
||||
# via pydata-sphinx-theme
|
||||
alabaster==1.0.0
|
||||
# via sphinx
|
||||
babel==2.16.0
|
||||
asttokens==3.0.0
|
||||
# via stack-data
|
||||
attrs==25.1.0
|
||||
# via
|
||||
# jsonschema
|
||||
# jupyter-cache
|
||||
# referencing
|
||||
babel==2.17.0
|
||||
# via
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
beautifulsoup4==4.12.3
|
||||
beautifulsoup4==4.13.3
|
||||
# via pydata-sphinx-theme
|
||||
breathe==4.35.0
|
||||
# via rocm-docs-core
|
||||
certifi==2024.8.30
|
||||
certifi==2025.1.31
|
||||
# via requests
|
||||
cffi==1.17.1
|
||||
# via
|
||||
# cryptography
|
||||
# pynacl
|
||||
charset-normalizer==3.4.0
|
||||
charset-normalizer==3.4.1
|
||||
# via requests
|
||||
click==8.1.7
|
||||
# via sphinx-external-toc
|
||||
cryptography==43.0.3
|
||||
click==8.1.8
|
||||
# via
|
||||
# jupyter-cache
|
||||
# sphinx-external-toc
|
||||
comm==0.2.2
|
||||
# via ipykernel
|
||||
cryptography==44.0.1
|
||||
# via pyjwt
|
||||
deprecated==1.2.15
|
||||
debugpy==1.8.12
|
||||
# via ipykernel
|
||||
decorator==5.1.1
|
||||
# via ipython
|
||||
deprecated==1.2.18
|
||||
# via pygithub
|
||||
docutils==0.21.2
|
||||
# via
|
||||
@@ -36,63 +51,151 @@ docutils==0.21.2
|
||||
# myst-parser
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
fastjsonschema==2.20.0
|
||||
# via rocm-docs-core
|
||||
gitdb==4.0.11
|
||||
exceptiongroup==1.2.2
|
||||
# via ipython
|
||||
executing==2.2.0
|
||||
# via stack-data
|
||||
fastjsonschema==2.21.1
|
||||
# via
|
||||
# nbformat
|
||||
# rocm-docs-core
|
||||
gitdb==4.0.12
|
||||
# via gitpython
|
||||
gitpython==3.1.43
|
||||
gitpython==3.1.44
|
||||
# via rocm-docs-core
|
||||
greenlet==3.1.1
|
||||
# via sqlalchemy
|
||||
idna==3.10
|
||||
# via requests
|
||||
imagesize==1.4.1
|
||||
# via sphinx
|
||||
importlib-metadata==8.6.1
|
||||
# via
|
||||
# jupyter-cache
|
||||
# myst-nb
|
||||
ipykernel==6.29.5
|
||||
# via myst-nb
|
||||
ipython==8.32.0
|
||||
# via
|
||||
# ipykernel
|
||||
# myst-nb
|
||||
jedi==0.19.2
|
||||
# via ipython
|
||||
jinja2==3.1.5
|
||||
# via
|
||||
# myst-parser
|
||||
# sphinx
|
||||
jsonschema==4.23.0
|
||||
# via nbformat
|
||||
jsonschema-specifications==2024.10.1
|
||||
# via jsonschema
|
||||
jupyter-cache==1.0.1
|
||||
# via myst-nb
|
||||
jupyter-client==8.6.3
|
||||
# via
|
||||
# ipykernel
|
||||
# nbclient
|
||||
jupyter-core==5.7.2
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
# nbclient
|
||||
# nbformat
|
||||
markdown-it-py==3.0.0
|
||||
# via
|
||||
# mdit-py-plugins
|
||||
# myst-parser
|
||||
markupsafe==3.0.2
|
||||
# via jinja2
|
||||
matplotlib-inline==0.1.7
|
||||
# via
|
||||
# ipykernel
|
||||
# ipython
|
||||
mdit-py-plugins==0.4.2
|
||||
# via myst-parser
|
||||
mdurl==0.1.2
|
||||
# via markdown-it-py
|
||||
myst-parser==4.0.0
|
||||
myst-nb==1.2.0
|
||||
# via rocm-docs-core
|
||||
myst-parser==4.0.0
|
||||
# via myst-nb
|
||||
nbclient==0.10.2
|
||||
# via
|
||||
# jupyter-cache
|
||||
# myst-nb
|
||||
nbformat==5.10.4
|
||||
# via
|
||||
# jupyter-cache
|
||||
# myst-nb
|
||||
# nbclient
|
||||
nest-asyncio==1.6.0
|
||||
# via ipykernel
|
||||
packaging==24.2
|
||||
# via sphinx
|
||||
# via
|
||||
# ipykernel
|
||||
# sphinx
|
||||
parso==0.8.4
|
||||
# via jedi
|
||||
pexpect==4.9.0
|
||||
# via ipython
|
||||
platformdirs==4.3.6
|
||||
# via jupyter-core
|
||||
prompt-toolkit==3.0.50
|
||||
# via ipython
|
||||
psutil==6.1.1
|
||||
# via ipykernel
|
||||
ptyprocess==0.7.0
|
||||
# via pexpect
|
||||
pure-eval==0.2.3
|
||||
# via stack-data
|
||||
pycparser==2.22
|
||||
# via cffi
|
||||
pydata-sphinx-theme==0.16.0
|
||||
pydata-sphinx-theme==0.16.1
|
||||
# via
|
||||
# rocm-docs-core
|
||||
# sphinx-book-theme
|
||||
pygithub==2.5.0
|
||||
# via rocm-docs-core
|
||||
pygments==2.18.0
|
||||
pygments==2.19.1
|
||||
# via
|
||||
# accessible-pygments
|
||||
# ipython
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
pyjwt[crypto]==2.10.0
|
||||
pyjwt[crypto]==2.10.1
|
||||
# via pygithub
|
||||
pynacl==1.5.0
|
||||
# via pygithub
|
||||
python-dateutil==2.9.0.post0
|
||||
# via jupyter-client
|
||||
pyyaml==6.0.2
|
||||
# via
|
||||
# jupyter-cache
|
||||
# myst-nb
|
||||
# myst-parser
|
||||
# rocm-docs-core
|
||||
# sphinx-external-toc
|
||||
pyzmq==26.2.1
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
referencing==0.36.2
|
||||
# via
|
||||
# jsonschema
|
||||
# jsonschema-specifications
|
||||
requests==2.32.3
|
||||
# via
|
||||
# pygithub
|
||||
# sphinx
|
||||
rocm-docs-core==1.13.0
|
||||
rocm-docs-core==1.15.0
|
||||
# via -r requirements.in
|
||||
smmap==5.0.1
|
||||
rpds-py==0.22.3
|
||||
# via
|
||||
# jsonschema
|
||||
# referencing
|
||||
six==1.17.0
|
||||
# via python-dateutil
|
||||
smmap==5.0.2
|
||||
# via gitdb
|
||||
snowballstemmer==2.2.0
|
||||
# via sphinx
|
||||
@@ -101,6 +204,7 @@ soupsieve==2.6
|
||||
sphinx==8.1.3
|
||||
# via
|
||||
# breathe
|
||||
# myst-nb
|
||||
# myst-parser
|
||||
# pydata-sphinx-theme
|
||||
# rocm-docs-core
|
||||
@@ -119,7 +223,7 @@ sphinx-design==0.6.1
|
||||
# via rocm-docs-core
|
||||
sphinx-external-toc==1.0.1
|
||||
# via rocm-docs-core
|
||||
sphinx-notfound-page==1.0.4
|
||||
sphinx-notfound-page==1.1.0
|
||||
# via rocm-docs-core
|
||||
sphinx-reredirects==0.1.5
|
||||
# via -r requirements.in
|
||||
@@ -137,15 +241,44 @@ sphinxcontrib-qthelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-serializinghtml==2.0.0
|
||||
# via sphinx
|
||||
tomli==2.1.0
|
||||
sqlalchemy==2.0.38
|
||||
# via jupyter-cache
|
||||
stack-data==0.6.3
|
||||
# via ipython
|
||||
tabulate==0.9.0
|
||||
# via jupyter-cache
|
||||
tomli==2.2.1
|
||||
# via sphinx
|
||||
tornado==6.4.2
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
traitlets==5.14.3
|
||||
# via
|
||||
# comm
|
||||
# ipykernel
|
||||
# ipython
|
||||
# jupyter-client
|
||||
# jupyter-core
|
||||
# matplotlib-inline
|
||||
# nbclient
|
||||
# nbformat
|
||||
typing-extensions==4.12.2
|
||||
# via
|
||||
# beautifulsoup4
|
||||
# ipython
|
||||
# myst-nb
|
||||
# pydata-sphinx-theme
|
||||
# pygithub
|
||||
urllib3==2.2.3
|
||||
# referencing
|
||||
# sqlalchemy
|
||||
urllib3==2.3.0
|
||||
# via
|
||||
# pygithub
|
||||
# requests
|
||||
wrapt==1.17.0
|
||||
wcwidth==0.2.13
|
||||
# via prompt-toolkit
|
||||
wrapt==1.17.2
|
||||
# via deprecated
|
||||
zipp==3.21.0
|
||||
# via importlib-metadata
|
||||
|
||||
Reference in New Issue
Block a user