Compare commits

..

1 Commits

Author SHA1 Message Date
Jenkins
bfc9d92c77 adding individual libraries 2025-09-16 09:29:55 +00:00
190 changed files with 4904 additions and 21018 deletions

View File

@@ -128,9 +128,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.28.6'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -155,7 +152,6 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/rocm/lib/cmake/hip
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DHALF_INCLUDE_DIR=$(Agent.BuildDirectory)/rocm/include
@@ -196,9 +192,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.28.6'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -224,7 +217,6 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/rocm/lib/cmake/hip
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DHALF_INCLUDE_DIR=$(Agent.BuildDirectory)/rocm/include

View File

@@ -79,7 +79,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- task: Bash@3
displayName: Add lit to PATH
inputs:

View File

@@ -131,7 +131,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -212,7 +212,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -37,7 +37,6 @@ parameters:
- libdrm-dev
- libelf-dev
- libnuma-dev
- libsimde-dev
- ninja-build
- pkg-config
- name: rocmDependencies

View File

@@ -1,29 +1,10 @@
parameters:
- name: componentName
type: string
default: amdsmi
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -50,7 +31,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}
- job: amdsmi_build_${{ job.os }}
pool:
${{ if eq(job.os, 'ubuntu2404') }}:
vmImage: 'ubuntu-24.04'
@@ -74,7 +55,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
@@ -85,54 +65,50 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
os: ${{ job.os }}
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}
componentName: ${{ parameters.componentName }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
# aptPackages: ${{ parameters.aptPackages }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
parameters:
runRocminfo: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)'
testExecutable: 'sudo ./rocm/share/amd_smi/tests/amdsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: amdsmi_test_${{ job.os }}_${{ job.target }}
dependsOn: amdsmi_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
parameters:
runRocminfo: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: amdsmi
testDir: '$(Agent.BuildDirectory)'
testExecutable: 'sudo ./rocm/share/amd_smi/tests/amdsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -1,174 +0,0 @@
parameters:
- name: componentName
type: string
default: aqlprofile
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- python3-pip
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- name: rocmTestDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- rocprofiler-register
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
consolidateBuildAndInstall: true
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/aqlprofile/cmake_modules
-DAQLPROFILE_BUILD_TESTS=ON
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/rocm/share/hsa-amd-aqlprofile/
testExecutable: ./run_tests.sh
testParameters: ''
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -77,7 +77,6 @@ parameters:
- clr
- hipBLAS-common
- llvm-project
- rocm-cmake
- rocminfo
- rocm_smi_lib
- rocprofiler-register
@@ -145,7 +144,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -40,7 +40,6 @@ parameters:
- gfortran
- libgfortran5
- libopenblas-dev
- liblapack-dev
- name: pipModules
type: object
default:
@@ -54,7 +53,6 @@ parameters:
- hipSPARSE
- llvm-project
- rocBLAS
- rocm-cmake
- rocm_smi_lib
- rocminfo
- rocprofiler-register
@@ -68,7 +66,6 @@ parameters:
- llvm-project
- hipBLAS-common
- hipBLASLt
- rocm-cmake
- rocBLAS
- rocminfo
- rocprofiler-register
@@ -112,7 +109,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -128,13 +125,10 @@ jobs:
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# NOTE: content between `---` is for transition support between old/new build systems
# and should be removed once transition is complete.
# -----------------------------
# Build and install gtest and lapack
# $(Pipeline.Workspace)/deps is a temporary folder for the build process
# $(Pipeline.Workspace)/s/deps is part of the hipSPARSELt repo
- script: mkdir -p $(Pipeline.Workspace)/deps
- script: mkdir $(Pipeline.Workspace)/deps
displayName: Create temp folder for external dependencies
# hipSPARSELt already has a CMake script for external deps, so we can just run that
# https://github.com/ROCm/hipSPARSELt/blob/develop/deps/CMakeLists.txt
@@ -150,35 +144,22 @@ jobs:
- script: sudo make install
displayName: Install hipSPARSELt external dependencies
workingDirectory: $(Pipeline.Workspace)/deps
# -----------------------------
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
# NOTE: the following options are old build only
# and can be removed after full transition to new build
# -DAMDGPU_TARGETS=${{ job.target }}
# -DCMAKE_Fortran_COMPILER=f95
# -DTensile_LOGIC=
# -DTensile_CPU_THREADS=
# -DTensile_LIBRARY_FORMAT=msgpack
# -DROCM_PATH=$(Agent.BuildDirectory)/rocm
# -DBUILD_CLIENTS_TESTS=ON
# -DBUILD_USE_LOCAL_TENSILE=OFF
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm"
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_Fortran_COMPILER=f95
-DAMDGPU_TARGETS=${{ job.target }}
-DTensile_LOGIC=
-DTensile_CPU_THREADS=
-DTensile_LIBRARY_FORMAT=msgpack
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm"
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DBUILD_CLIENTS_TESTS=ON
-DBUILD_USE_LOCAL_TENSILE=OFF
-DHIPSPARSELT_ENABLE_FETCH=ON
-GNinja
${{ if ne(parameters.sparseCheckoutDir, '') }}:
cmakeSourceDir: $(Build.SourcesDirectory)/projects/hipsparselt

View File

@@ -1,29 +1,10 @@
parameters:
- name: componentName
type: string
default: hipTensor
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -70,7 +51,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
- job: hipTensor_build_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -85,21 +66,17 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/llvm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_BUILD_TYPE=Release
-DHIPTENSOR_BUILD_TESTS=ON
@@ -107,12 +84,9 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -120,47 +94,44 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
timeoutInMinutes: 90
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/hiptensor'
testParameters: '-E ".*-extended" --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: hipTensor_test_${{ job.target }}
timeoutInMinutes: 90
dependsOn: hipTensor_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: hipTensor
testDir: '$(Agent.BuildDirectory)/rocm/bin/hiptensor'
testParameters: '-E ".*-extended" --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -71,7 +71,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -39,9 +39,6 @@ parameters:
- python3
- python3-dev
- python3-pip
- libgtest-dev
- libboost-filesystem-dev
- libboost-program-options-dev
- name: pipModules
type: object
default:
@@ -110,12 +107,8 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
@@ -132,7 +125,7 @@ jobs:
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DORIGAMI_BUILD_SHARED_LIBS=ON
-DORIGAMI_ENABLE_PYTHON=ON
@@ -213,15 +206,7 @@ jobs:
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './origami-tests'
testParameters: '--yaml origami-tests.yaml --gtest_output=xml:./test_output.xml --gtest_color=yes'
- script: |
set -e
export PYTHONPATH=$(Agent.BuildDirectory)/s/build/python:$PYTHONPATH
echo "--- Running origami_test.py ---"

View File

@@ -1,35 +1,10 @@
parameters:
- name: componentName
type: string
default: rccl
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: systemsRepo
type: string
default: systems_repo
- name: systemsSparseCheckoutDir
type: string
default: 'projects/rocprofiler-sdk'
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -82,52 +57,37 @@ parameters:
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- name: downstreamComponentMatrix
type: object
default:
- rocprofiler-sdk:
name: rocprofiler-sdk
sparseCheckoutDir: ''
skipUnifiedBuild: 'false'
buildDependsOn:
- rccl_build
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 120
- job: rccl_build_${{ job.target }}
timeoutInMinutes: 90
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: HIP_ROCCLR_HOME
value: $(Build.BinariesDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
submoduleBehaviour: recursive
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
@@ -137,14 +97,10 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
@@ -156,87 +112,58 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
installLatestCMake: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
installLatestCMake: true
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 120
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rccl-UnitTests'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if parameters.triggerDownstreamJobs }}:
- ${{ each component in parameters.downstreamComponentMatrix }}:
- ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
- template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
parameters:
checkoutRepo: ${{ parameters.systemsRepo }}
sparseCheckoutDir: ${{ parameters.systemsSparseCheckoutDir }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}
${{ if parameters.unifiedBuild }}:
buildDependsOn: ${{ component.unifiedBuild.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ component.unifiedBuild.downstreamAggregateNames }}
${{ else }}:
buildDependsOn: ${{ component.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rccl_test_${{ job.target }}
timeoutInMinutes: 120
dependsOn: rccl_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rccl
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rccl-UnitTests'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -1,29 +1,10 @@
parameters:
- name: componentName
type: string
default: rdc
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -52,7 +33,6 @@ parameters:
- clr
- hipBLAS-common
- hipBLASLt
- hipRAND
- llvm-project
- rocBLAS
- rocm-cmake
@@ -63,7 +43,6 @@ parameters:
- rocprofiler
- rocprofiler-register
- rocprofiler-sdk
- rocRAND
- ROCR-Runtime
- name: rocmTestDependencies
type: object
@@ -95,11 +74,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
- job: rdc_build_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -110,22 +85,16 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# Build grpc
- task: Bash@3
displayName: 'git clone grpc'
@@ -135,7 +104,6 @@ jobs:
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
@@ -149,7 +117,6 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DGRPC_ROOT="$(Build.SourcesDirectory)/bin"
@@ -159,12 +126,9 @@ jobs:
-DAMDGPU_TARGETS=${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -172,64 +136,60 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rdc_test_${{ job.target }}
dependsOn: rdc_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin

View File

@@ -70,7 +70,6 @@ parameters:
- hipBLAS-common
- hipBLASLt
- llvm-project
- rocm-cmake
- rocminfo
- rocprofiler-register
- rocm_smi_lib
@@ -155,7 +154,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -210,7 +210,7 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocprim'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }}'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }} -E device_merge_inplace'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:

View File

@@ -1,29 +1,10 @@
parameters:
- name: componentName
type: string
default: rocWMMA
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -85,11 +66,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
- job: rocWMMA_build_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -104,7 +81,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
@@ -126,12 +102,9 @@ jobs:
# gfx1030 not supported in documentation
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -139,45 +112,43 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
timeoutInMinutes: 350
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rocWMMA_test_${{ job.target }}
timeoutInMinutes: 270
dependsOn: rocWMMA_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocWMMA
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -81,7 +81,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocm-cmake
testParameters: '-E "pass-version-parent" --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
testParameters: '-E "pass-version-parent" --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:

View File

@@ -14,41 +14,16 @@ parameters:
type: object
default:
- cmake
- libdw-dev
- libglfw3-dev
- libmsgpack-dev
- libopencv-dev
- libtbb-dev
- libtiff-dev
- libva-amdgpu-dev
- libva2-amdgpu
- mesa-amdgpu-va-drivers
- libavcodec-dev
- libavformat-dev
- libavutil-dev
- ninja-build
- python3-pip
- protobuf-compiler
- libprotoc-dev
- name: pipModules
type: object
default:
- future==1.0.0
- pytz==2022.1
- numpy==1.23
- google==3.0.0
- protobuf==3.12.4
- onnx==1.12.0
- nnef==1.0.7
- name: rocmDependencies
type: object
default:
- AMDMIGraphX
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
- hipBLASLt
@@ -58,36 +33,21 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocm_smi_lib
- rccl
- rocALUTION
- rocBLAS
- rocDecode
- rocFFT
- rocJPEG
- rocPRIM
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- rocRAND
- rocSOLVER
- rocSPARSE
- rocThrust
- rocWMMA
- rpp
- name: rocmTestDependencies
type: object
default:
- AMDMIGraphX
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
- hipBLASLt
@@ -97,29 +57,18 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocm_smi_lib
- rccl
- rocALUTION
- rocBLAS
- rocDecode
- rocFFT
- rocminfo
- rocPRIM
- rocJPEG
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- rocRAND
- rocSOLVER
- rocSPARSE
- rocThrust
- roctracer
- rocWMMA
- rpp
- name: jobMatrix
type: object
@@ -148,11 +97,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -214,10 +158,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -248,6 +188,5 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -43,14 +43,9 @@ parameters:
- ninja-build
- python3-pip
- python3-venv
- googletest
- libgtest-dev
- libgmock-dev
- libboost-filesystem-dev
- name: pipModules
type: object
default:
- msgpack
- joblib
- "packaging>=22.0"
- pytest
@@ -107,7 +102,7 @@ jobs:
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -152,13 +147,6 @@ jobs:
echo "##vso[task.prependpath]$USER_BASE/bin"
echo "##vso[task.setvariable variable=PytestCmakePath]$USER_BASE/share/Pytest/cmake"
displayName: Set cmake configure paths
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: |
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}

View File

@@ -65,13 +65,6 @@ parameters:
- pytest
- pytest-cov
- pytest-xdist
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- rocprofiler-sdk
- name: rocmTestDependencies
type: object
default:
@@ -108,12 +101,10 @@ jobs:
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
- ${{ build }}_${{ job.os }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
@@ -128,14 +119,6 @@ jobs:
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-

View File

@@ -79,27 +79,27 @@ parameters:
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rocprofiler_sdk_build_${{ job.os }}_${{ job.target }}
- job: rocprofiler_sdk_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os}}_${{ job.target }}
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
@@ -107,7 +107,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
@@ -119,7 +118,6 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
@@ -134,7 +132,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DROCPROFILER_BUILD_TESTS=ON
@@ -146,7 +143,6 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
@@ -162,8 +158,8 @@ jobs:
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rocprofiler_sdk_test_${{ job.os }}_${{ job.target }}
dependsOn: rocprofiler_sdk_build_${{ job.os }}_${{ job.target }}
- job: rocprofiler_sdk_test_${{ job.target }}
dependsOn: rocprofiler_sdk_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -181,7 +177,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
@@ -193,7 +188,6 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
@@ -208,7 +202,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DROCPROFILER_BUILD_TESTS=ON
@@ -220,8 +213,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: $(Agent.BuildDirectory)/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -226,11 +226,8 @@ jobs:
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeSourceDir: $(Agent.BuildDirectory)/s/projects/rocprofiler-systems
# build flags reference: https://rocm.docs.amd.com/projects/omnitrace/en/latest/install/install.html
extraBuildFlags: >-
-DCMAKE_INSTALL_PREFIX=$(Agent.BuildDirectory)/rocprofiler-systems
-DROCPROFSYS_USE_PYTHON=ON
-DROCPROFSYS_BUILD_TESTING=ON
-DROCPROFSYS_BUILD_DYNINST=ON
-DROCPROFSYS_BUILD_LIBUNWIND=ON
@@ -248,13 +245,11 @@ jobs:
displayName: Set up rocprofiler-systems env
inputs:
targetType: inline
script: source $(Agent.BuildDirectory)/rocprofiler-systems/share/rocprofiler-systems/setup-env.sh
workingDirectory: $(Agent.BuildDirectory)/rocprofiler-systems/share/rocprofiler-systems
script: source share/rocprofiler-systems/setup-env.sh
workingDirectory: build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/s/build/tests/
testParameters: '--output-on-failure'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: ${{ job.target }}

View File

@@ -1,63 +0,0 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: cli11Version
type: string
default: ''
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt}
- { os: almalinux8, packageManager: dnf}
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: cli11_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: Bash@3
displayName: Clone cli11 ${{ parameters.cli11Version }}
inputs:
targetType: inline
script: git clone https://github.com/CLIUtils/CLI11.git -b ${{ parameters.cli11Version }}
workingDirectory: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
cmakeBuildDir: $(Agent.BuildDirectory)/CLI11/build
cmakeSourceDir: $(Agent.BuildDirectory)/CLI11
useAmdclang: false
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}

View File

@@ -1,66 +0,0 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: yamlcppVersion
type: string
default: ''
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt}
- { os: almalinux8, packageManager: dnf}
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: yamlcpp_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: Bash@3
displayName: Clone yaml-cpp ${{ parameters.yamlcppVersion }}
inputs:
targetType: inline
script: git clone https://github.com/jbeder/yaml-cpp.git -b ${{ parameters.yamlcppVersion }}
workingDirectory: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
cmakeBuildDir: $(Agent.BuildDirectory)/yaml-cpp/build
cmakeSourceDir: $(Agent.BuildDirectory)/yaml-cpp
useAmdclang: false
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DYAML_CPP_BUILD_TOOLS=OFF
-DYAML_BUILD_SHARED_LIBS=OFF
-DYAML_CPP_INSTALL=ON
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}

View File

@@ -1,23 +0,0 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: cli11Version
type: string
default: "main"
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_DEPENDENCIES_PATH }}/cli11.yml
parameters:
cli11Version: ${{ parameters.cli11Version }}

View File

@@ -1,24 +0,0 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: yamlcppVersion
type: string
default: "0.8.0"
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_DEPENDENCIES_PATH }}/yamlcpp.yml
parameters:
yamlcppVersion: ${{ parameters.yamlcppVersion }}

View File

@@ -1,15 +1,10 @@
parameters:
- name: cmakeVersion
type: string
default: '3.31.0'
steps:
- task: Bash@3
displayName: Install CMake ${{ parameters.cmakeVersion }}
displayName: Install CMake 3.31
inputs:
targetType: inline
script: |
CMAKE_VERSION=${{ parameters.cmakeVersion }}
CMAKE_VERSION=3.31.0
CMAKE_ROOT="$(Pipeline.Workspace)/cmake"
echo "Downloading CMake $CMAKE_VERSION..."

View File

@@ -63,7 +63,6 @@ parameters:
libopenblas-dev: openblas-devel
libopenmpi-dev: openmpi-devel
libpci-dev: libpciaccess-devel
libsimde-dev: simde-devel
libssl-dev: openssl-devel
# note: libstdc++-devel is in the base packages list
libsystemd-dev: systemd-devel

View File

@@ -35,8 +35,8 @@ parameters:
developBranch: develop
hasGpuTarget: true
amdsmi:
pipelineId: 376
developBranch: develop
pipelineId: 99
developBranch: amd-staging
hasGpuTarget: false
aomp-extras:
pipelineId: 111
@@ -46,10 +46,6 @@ parameters:
pipelineId: 115
developBranch: aomp-dev
hasGpuTarget: false
aqlprofile:
pipelineId: 365
developBranch: develop
hasGpuTarget: false
clr:
pipelineId: 335
developBranch: develop
@@ -115,7 +111,7 @@ parameters:
developBranch: develop
hasGpuTarget: true
hipTensor:
pipelineId: 374
pipelineId: 105
developBranch: develop
hasGpuTarget: true
llvm-project:
@@ -130,17 +126,13 @@ parameters:
pipelineId: 80
developBranch: develop
hasGpuTarget: true
origami:
pipelineId: 364
developBranch: develop
hasGpuTarget: true
rccl:
pipelineId: 107
developBranch: develop
hasGpuTarget: true
rdc:
pipelineId: 360
developBranch: develop
pipelineId: 100
developBranch: amd-staging
hasGpuTarget: false
rocAL:
pipelineId: 151
@@ -227,8 +219,8 @@ parameters:
developBranch: develop
hasGpuTarget: true
rocprofiler-systems:
pipelineId: 345
developBranch: develop
pipelineId: 255
developBranch: amd-staging
hasGpuTarget: true
rocPyDecode:
pipelineId: 239
@@ -263,7 +255,7 @@ parameters:
developBranch: develop
hasGpuTarget: true
rocWMMA:
pipelineId: 370
pipelineId: 109
developBranch: develop
hasGpuTarget: true
rpp:

View File

@@ -13,7 +13,7 @@ parameters:
default: ctest
- name: testParameters
type: string
default: --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml
default: --output-on-failure --force-new-ctest-process --output-junit test_output.xml
- name: extraTestParameters
type: string
default: ''

1
.gitignore vendored
View File

@@ -1,7 +1,6 @@
.venv
.vscode
build
__pycache__
# documentation artifacts
_build/

View File

@@ -27,7 +27,6 @@ ASICs
ASan
ASAN
ASm
Async
ATI
atomicRMW
AddressSanitizer
@@ -35,7 +34,6 @@ AlexNet
Andrej
Arb
Autocast
autograd
BARs
BatchNorm
BLAS
@@ -45,7 +43,6 @@ Blit
Blockwise
Bluefield
Bootloader
Broadcom
CAS
CCD
CDNA
@@ -65,7 +62,6 @@ CPU
CPUs
Cron
CSC
CSDATA
CSE
CSV
CSn
@@ -75,11 +71,9 @@ CU
CUDA
CUs
CXX
CX
Cavium
CentOS
ChatGPT
Cholesky
CoRR
Codespaces
Commitizen
@@ -87,13 +81,10 @@ CommonMark
Concretized
Conda
ConnectX
CountOnes
CuPy
customizable
da
Dashboarding
Dataloading
dataflows
DBRX
DDR
DF
@@ -106,7 +97,6 @@ DIMM
DKMS
DL
DMA
DOMContentLoaded
DNN
DNNL
DPM
@@ -125,8 +115,6 @@ Dependabot
Deprecations
DevCap
DirectX
Disaggregated
disaggregated
Dockerfile
Dockerized
Doxygen
@@ -135,13 +123,9 @@ ELMo
ENDPGM
EPYC
ESXi
EP
EoS
etcd
fas
FBGEMM
FiLM
FIFOs
FFT
FFTs
FFmpeg
@@ -154,19 +138,15 @@ Filesystem
FindDb
Flang
FlashAttention
FlashInfers
FlashInfer
FluxBenchmark
Fortran
Fuyu
GALB
GAT
GATNE
GCC
GCD
GCDs
GCN
GCNN
GDB
GDDR
GDR
@@ -185,19 +165,15 @@ Glibc
GLXT
Gloo
GMI
GNN
GNNs
GPG
GPR
GPT
GPU
GPU's
GPUDirect
GPUs
GraphBolt
Graphbolt
GraphSage
GRBM
GRE
GenAI
GenZ
GitHub
@@ -224,9 +200,7 @@ Haswell
Higgs
href
Hyperparameters
HybridEngine
Huggingface
IB
ICD
ICT
ICV
@@ -235,11 +209,8 @@ IDEs
IFWI
IMDb
IncDec
instrSize
interpolators
IOMMU
IOP
IOPS
IOPM
IOV
IRQ
@@ -256,7 +227,6 @@ Intersphinx
Intra
Ioffe
JAX's
JAXLIB
Jinja
JSON
Jupyter
@@ -277,16 +247,12 @@ LLM
LLMs
LLVM
LM
logsumexp
LRU
LSAN
LSan
LTS
LSTMs
LteAll
LanguageCrossEntropy
LoRA
MECO
MEM
MERCHANTABILITY
MFMA
@@ -305,7 +271,6 @@ MNIST
MPI
MPT
MSVC
mul
MVAPICH
MVFFR
Makefile
@@ -313,7 +278,6 @@ Makefiles
Matplotlib
Matrox
MaxText
MBT
Megablocks
Megatrends
Megatron
@@ -323,15 +287,11 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MLA
MosaicML
MoEs
Mooncake
Mpops
Multicore
Multithreaded
mx
MXFP
MyEnvironment
MyST
NANOO
@@ -367,7 +327,6 @@ OFED
OMM
OMP
OMPI
OOM
OMPT
OMPX
ONNX
@@ -390,11 +349,9 @@ PCC
PCI
PCIe
PEFT
perf
PEQT
PIL
PILImage
PJRT
POR
PRNG
PRs
@@ -414,7 +371,6 @@ Profiler's
PyPi
Pytest
PyTorch
QPS
Qcycles
Qwen
RAII
@@ -476,9 +432,7 @@ SKU
SKUs
SLES
SLURM
Slurm
SMEM
SMFMA
SMI
SMT
SPI
@@ -490,24 +444,18 @@ SWE
SerDes
ShareGPT
Shlens
simd
Skylake
Softmax
Spack
SplitK
Supermicro
Szegedy
TagRAM
TCA
TCC
TCCs
TCI
TCIU
TCP
TCR
TVM
THREADGROUPS
threadgroups
TensorRT
TensorFloat
TF
@@ -551,7 +499,6 @@ UltraChat
Uncached
Unittests
Unhandled
unwindowed
VALU
VBIOS
VCN
@@ -568,13 +515,11 @@ Vanhoucke
Vulkan
WGP
WGPs
WR
WX
WikiText
Wojna
Workgroups
Writebacks
xcc
XCD
XCDs
XGBoost
@@ -595,7 +540,6 @@ ZenDNN
accuracies
activations
addr
addEventListener
ade
ai
alloc
@@ -611,7 +555,6 @@ autogenerated
autotune
avx
awk
az
backend
backends
bb
@@ -629,7 +572,6 @@ boson
bosons
br
BrainFloat
btn
buildable
bursty
bzip
@@ -641,21 +583,18 @@ centric
changelog
checkpointing
chiplet
classList
cmake
cmd
coalescable
codename
collater
comgr
compat
completers
composable
concretization
config
configs
conformant
const
constructible
convolutional
convolves
@@ -690,14 +629,12 @@ denoised
denoises
denormalize
dequantization
dequantized
dequantizes
deserializers
detections
dev
devicelibs
devsel
dgl
dimensionality
disambiguates
distro
@@ -721,7 +658,6 @@ exascale
executables
ffmpeg
filesystem
forEach
fortran
fp
framebuffer
@@ -730,14 +666,12 @@ galb
gcc
gdb
gemm
getAttribute
gfortran
gfx
githooks
github
globals
gnupg
gpu
grayscale
gx
gzip
@@ -792,7 +726,6 @@ invariants
invocating
ipo
jax
json
kdb
kfd
kv
@@ -806,7 +739,6 @@ linalg
linearized
linter
linux
llm
llvm
lm
localscratch
@@ -815,7 +747,6 @@ lossy
macOS
matchers
maxtext
megablocks
megatron
microarchitecture
migraphx
@@ -844,7 +775,6 @@ opencv
openmp
openssl
optimizers
ol
os
oversubscription
pageable
@@ -857,7 +787,6 @@ passthrough
pe
perfcounter
performant
piecewise
perl
pragma
pre
@@ -893,8 +822,6 @@ recommenders
quantile
quantizer
quasirandom
querySelector
querySelectorAll
queueing
qwen
radeon
@@ -913,8 +840,6 @@ req
resampling
rescaling
reusability
rhel
rl
RLHF
roadmap
roc
@@ -959,23 +884,19 @@ scalability
scalable
scipy
seealso
selectedTag
sendmsg
seqs
serializers
setAttribute
sglang
shader
sharding
sigmoid
sles
sm
smi
softmax
spack
spmm
src
stanford
stochastically
strided
subcommand
@@ -992,10 +913,8 @@ symlink
symlinks
sys
tabindex
targetContainer
td
tensorfloat
tf
th
tokenization
tokenize
@@ -1004,12 +923,10 @@ tokenizer
tokenizes
toolchain
toolchains
topk
toolset
toolsets
torchtitan
torchvision
tp
tqdm
tracebacks
txt
@@ -1032,7 +949,6 @@ USM
UTCL
UTIL
utils
UX
vL
variational
vdi

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,33 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-7.1.1"
<default revision="refs/tags/rocm-7.0.0"
remote="rocm-org"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCm-->
<project name="ROCK-Kernel-Driver" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="aqlprofile" />
<project name="rdc" />
<project name="rocm_bandwidth_test" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-examples" />
<project name="rocminfo" />
<project name="rocprofiler" />
<project name="rocprofiler-register" />
<project name="rocprofiler-sdk" />
<project name="rocprofiler-compute" />
<project name="rocprofiler-systems" />
<project name="roctracer" />
<!--HIP Projects-->
<project name="hip" />
<project name="hip-tests" />
<project name="HIPIFY" />
<project name="clr" />
<project name="hipother" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="half" />
<project name="llvm-project" />
@@ -38,16 +54,21 @@
hipFFT hipRAND hipSPARSE hipSPARSELt
MIOpen rocBLAS rocFFT rocPRIM rocRAND
rocSPARSE rocThrust Tensile -->
<project groups="mathlibs" name="rocm-libraries" />
<!-- The following components have been migrated to rocm-systems:
aqlprofile clr hip hip-tests hipother
rdc rocm-core rocm_smi_lib rocminfo rocprofiler-compute
rocprofiler-register rocprofiler-sdk rocprofiler-systems
rocprofiler rocr-runtime roctracer -->
<project groups="mathlibs" name="rocm-systems" />
<project groups="mathlibs" name="rocm-libraries">
<linkfile src="projects/hipcub" dest="hipCUB"/>
<linkfile src="projects/rocprim" dest="rocPRIM"/>
<linkfile src="projects/hiprand" dest="hipRAND"/>
<linkfile src="projects/rocrand" dest="rocRAND"/>
<linkfile src="projects/rocthrust" dest="rocThrust"/>
<linkfile src="projects/hipblas-common" dest="hipBLAS-common"/>
<linkfile src="projects/hipblaslt" dest="hipBLASLt"/>
<linkfile src="projects/rocblas" dest="rocBLAS"/>
<linkfile src="projects/hipsparselt" dest="hipSPARSELt"/>
<linkfile src="projects/rocsparse" dest="rocSPARSE"/>
</project>
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocSHMEM" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />
<project groups="mathlibs" name="rpp" />

View File

@@ -25,69 +25,69 @@ additional licenses. Please review individual repositories for more information.
<!-- spellcheck-disable -->
| Component | License |
|:---------------------|:-------------------------|
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/LICENSE.md) |
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/LICENSE.txt) |
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/amd-staging/LICENSE) |
| [aomp](https://github.com/ROCm/aomp/) | [Apache 2.0](https://github.com/ROCm/aomp/blob/aomp-dev/LICENSE) |
| [aomp-extras](https://github.com/ROCm/aomp-extras/) | [MIT](https://github.com/ROCm/aomp-extras/blob/aomp-dev/LICENSE) |
| [AQLprofile](https://github.com/ROCm/rocm-systems/tree/develop/projects/aqlprofile/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/aqlprofile/LICENSE.md) |
| [AQLprofile] | [MIT](https://github.com/ROCm/aqlprofile/blob/amd-staging/LICENSE.md) |
| [Code Object Manager (Comgr)](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/comgr) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/comgr/LICENSE.txt) |
| [Composable Kernel](https://github.com/ROCm/composable_kernel) | [MIT](https://github.com/ROCm/composable_kernel/blob/develop/LICENSE) |
| [half](https://github.com/ROCm/half/) | [MIT](https://github.com/ROCm/half/blob/rocm/LICENSE.txt) |
| [HIP](https://github.com/ROCm/rocm-systems/tree/develop/projects/hip/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/hip/LICENSE.md) |
| [hipamd](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr/hipamd/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/hipamd/LICENSE.md) |
| [hipBLAS](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipblas/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipblas/LICENSE.md) |
| [hipBLASLt](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipblaslt/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipblaslt/LICENSE.md) |
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/amd-staging/LICENSE.txt) |
| [hipamd](https://github.com/ROCm/clr/tree/amd-staging/hipamd) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/hipamd/LICENSE.txt) |
| [hipBLAS](https://github.com/ROCm/hipBLAS/) | [MIT](https://github.com/ROCm/hipBLAS/blob/develop/LICENSE.md) |
| [hipBLASLt](https://github.com/ROCm/hipBLASLt/) | [MIT](https://github.com/ROCm/hipBLASLt/blob/develop/LICENSE.md) |
| [HIPCC](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc) | [MIT](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/hipcc/LICENSE.txt) |
| [hipCUB](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipcub/) | [Custom](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipcub/LICENSE.txt) |
| [hipFFT](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipfft/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipfft/LICENSE.md) |
| [hipCUB](https://github.com/ROCm/hipCUB/) | [Custom](https://github.com/ROCm/hipCUB/blob/develop/LICENSE.txt) |
| [hipFFT](https://github.com/ROCm/hipFFT/) | [MIT](https://github.com/ROCm/hipFFT/blob/develop/LICENSE.md) |
| [hipfort](https://github.com/ROCm/hipfort/) | [MIT](https://github.com/ROCm/hipfort/blob/develop/LICENSE) |
| [HIPIFY](https://github.com/ROCm/HIPIFY/) | [MIT](https://github.com/ROCm/HIPIFY/blob/amd-staging/LICENSE.txt) |
| [hipRAND](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hiprand/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hiprand/LICENSE.md) |
| [hipSOLVER](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsolver/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsolver/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsparse/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsparse/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsparselt/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsparselt/LICENSE.md) |
| [hipTensor](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hiptensor/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hiptensor/LICENSE) |
| [hipRAND](https://github.com/ROCm/hipRAND/) | [MIT](https://github.com/ROCm/hipRAND/blob/develop/LICENSE.txt) |
| [hipSOLVER](https://github.com/ROCm/hipSOLVER/) | [MIT](https://github.com/ROCm/hipSOLVER/blob/develop/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCm/hipSPARSE/) | [MIT](https://github.com/ROCm/hipSPARSE/blob/develop/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCm/hipSPARSELt/) | [MIT](https://github.com/ROCm/hipSPARSELt/blob/develop/LICENSE.md) |
| [hipTensor](https://github.com/ROCm/hipTensor) | [MIT](https://github.com/ROCm/hipTensor/blob/develop/LICENSE) |
| [llvm-project](https://github.com/ROCm/llvm-project/) | [Apache](https://github.com/ROCm/llvm-project/blob/amd-staging/LICENSE.TXT) |
| [llvm-project/flang](https://github.com/ROCm/llvm-project/tree/amd-staging/flang) | [Apache 2.0](https://github.com/ROCm/llvm-project/blob/amd-staging/flang/LICENSE.TXT) |
| [MIGraphX](https://github.com/ROCm/AMDMIGraphX/) | [MIT](https://github.com/ROCm/AMDMIGraphX/blob/develop/LICENSE) |
| [MIOpen](https://github.com/ROCm/rocm-libraries/tree/develop/projects/miopen/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/miopen/LICENSE.md) |
| [MIOpen](https://github.com/ROCm/MIOpen/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/miopen/LICENSE.md) |
| [MIVisionX](https://github.com/ROCm/MIVisionX/) | [MIT](https://github.com/ROCm/MIVisionX/blob/develop/LICENSE.txt) |
| [rocAL](https://github.com/ROCm/rocAL) | [MIT](https://github.com/ROCm/rocAL/blob/develop/LICENSE.txt) |
| [rocALUTION](https://github.com/ROCm/rocALUTION/) | [MIT](https://github.com/ROCm/rocALUTION/blob/develop/LICENSE.md) |
| [rocBLAS](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocblas/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocblas/LICENSE.md) |
| [rocBLAS](https://github.com/ROCm/rocBLAS/) | [MIT](https://github.com/ROCm/rocBLAS/blob/develop/LICENSE.md) |
| [ROCdbgapi](https://github.com/ROCm/ROCdbgapi/) | [MIT](https://github.com/ROCm/ROCdbgapi/blob/amd-staging/LICENSE.txt) |
| [rocDecode](https://github.com/ROCm/rocDecode) | [MIT](https://github.com/ROCm/rocDecode/blob/develop/LICENSE) |
| [rocFFT](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocfft/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocfft/LICENSE.md) |
| [rocFFT](https://github.com/ROCm/rocFFT/) | [MIT](https://github.com/ROCm/rocFFT/blob/develop/LICENSE.md) |
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-staging/COPYING3) |
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocminfo/License.txt) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocm-core/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocm-core/LICENSE.md) |
| [ROCm Compute Profiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-compute/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-compute/LICENSE.md) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rocm-systems/tree/develop/projects/rdc/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rdc/LICENSE.md) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
| [ROCm Compute Profiler](https://github.com/ROCm/rocprofiler-compute) | [MIT](https://github.com/ROCm/rocprofiler-compute/blob/amd-staging/LICENSE) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/amd-staging/LICENSE.md) |
| [ROCm-Device-Libs](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/device-libs) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/device-libs/LICENSE.TXT) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr/opencl/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/opencl/LICENSE.md) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/amd-staging/opencl) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/opencl/LICENSE.txt) |
| [ROCm Performance Primitives (RPP)](https://github.com/ROCm/rpp) | [MIT](https://github.com/ROCm/rpp/blob/develop/LICENSE) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocm-smi-lib/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocm-smi-lib/LICENSE.md) |
| [ROCm Systems Profiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-systems/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/LICENSE.md) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/amd-staging/LICENSE.md) |
| [ROCm Systems Profiler](https://github.com/ROCm/rocprofiler-systems) | [MIT](https://github.com/ROCm/rocprofiler-systems/blob/amd-staging/LICENSE.md) |
| [ROCm Validation Suite](https://github.com/ROCm/ROCmValidationSuite/) | [MIT](https://github.com/ROCm/ROCmValidationSuite/blob/master/LICENSE) |
| [rocPRIM](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocprim/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocprim/LICENSE.md) |
| [ROCProfiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler/LICENSE.md) |
| [ROCprofiler-SDK](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-sdk/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-sdk/LICENSE.md) |
| [rocPRIM](https://github.com/ROCm/rocPRIM/) | [MIT](https://github.com/ROCm/rocPRIM/blob/develop/LICENSE.txt) |
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-staging/LICENSE.md) |
| [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) | [MIT](https://github.com/ROCm/rocprofiler-sdk/blob/amd-mainline/LICENSE) |
| [rocPyDecode](https://github.com/ROCm/rocPyDecode) | [MIT](https://github.com/ROCm/rocPyDecode/blob/develop/LICENSE.txt) |
| [rocRAND](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocrand/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocrand/LICENSE.md) |
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocr-runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocr-runtime/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [rocSHMEM](https://github.com/ROCm/rocSHMEM/) | [MIT](https://github.com/ROCm/rocSHMEM/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocsolver/) | [BSD-2-Clause](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocsolver/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocsparse/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocsparse/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocthrust/) | [Apache 2.0](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocthrust/LICENSE) |
| [ROCTracer](https://github.com/ROCm/rocm-systems/tree/develop/projects/roctracer/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/roctracer/LICENSE.md) |
| [rocWMMA](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocwmma/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocwmma/LICENSE.md) |
| [Tensile](https://github.com/ROCm/rocm-libraries/tree/develop/shared/tensile/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/shared/tensile/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |
| [ROCTracer](https://github.com/ROCm/roctracer/) | [MIT](https://github.com/ROCm/roctracer/blob/amd-master/LICENSE) |
| [rocWMMA](https://github.com/ROCm/rocWMMA/) | [MIT](https://github.com/ROCm/rocWMMA/blob/develop/LICENSE.md) |
| [Tensile](https://github.com/ROCm/Tensile/) | [MIT](https://github.com/ROCm/Tensile/blob/develop/LICENSE.md) |
| [TransferBench](https://github.com/ROCm/TransferBench) | [MIT](https://github.com/ROCm/TransferBench/blob/develop/LICENSE.md) |
Open sourced ROCm components are released via public GitHub

View File

@@ -1,137 +1,133 @@
ROCm Version,7.1.1,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility-past-60]_,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 10.1, 10.0, 9.7, 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP7,SLES 15 SP7,SLES 15 SP7,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8",Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,,,
,"Debian 13, 12","Debian 13, 12","Debian 13, 12",Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,,,,,,,,,,,
,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,,,,,,,,,,,,
,Rocky Linux 9,Rocky Linux 9,Rocky Linux 9,Rocky Linux 9,,,,,,,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,CDNA4,CDNA4,,,,,,,,,,,,,,,,,,
,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility-past-60]_,gfx950,gfx950,gfx950,gfx950,,,,,,,,,,,,,,,,,,
,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,,,,,,,,,,,,,,,
,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,,,,,,,,,,,,,,,
,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942, gfx942, gfx942, gfx942, gfx942, gfx942, gfx942
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.9, 2.8, 2.7","2.8, 2.7, 2.6","2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.20.0, 2.19.1, 2.18.1","2.20.0, 2.19.1, 2.18.1","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.7.1,0.7.1,0.6.0,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_,N/A,N/A,N/A,2.4.0,2.4.0,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_,N/A,N/A,N/A,b6652,b6356,b6356,b6356,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,v0.2.5,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.22.0,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.4.0,>=1.4.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.17.0,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
Thrust,2.8.5,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.8.5,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,,,,
DRIVER & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.1, 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x","30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x","30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.14.0,2.14.0,2.13.0,2.13.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.5.1,3.5.1,3.5.0,3.5.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,1.4.0,1.4.0,1.0.0,1.0.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,1.2.0,1.2.0,1.1.0,1.1.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.7.0,0.7.0,0.6.0,0.6.0,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,2.1.0,2.1.0,2.0.0,2.0.0,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.27.7,2.27.7,2.26.6,2.26.6,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.1.0,3.1.0,3.0.2,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,1.1.0,1.1.0,1.0.0,1.0.0,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.21,1.0.21,1.0.20,1.0.20,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.7.1,0.7.1,0.7.0,0.7.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,3.1.0,3.1.0,3.0.0,3.0.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,3.1.0,3.1.0,3.0.0,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,4.1.0,4.1.0,4.0.1,4.0.1,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.5,0.2.5,0.2.4,0.2.4,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,4.0.1,4.0.1,4.0.0,4.0.0,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,5.1.0,5.1.0,5.0.2,5.0.0,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.35,1.0.35,1.0.34,1.0.34,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.31.0,3.31.0,3.30.1,3.30.0,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,4.1.0,4.1.0,4.0.2,4.0.2,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,2.0.0,2.0.0,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.44.0,4.44.0,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,2.0.0,2.0.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,4.1.0,4.1.0,4.0.1,4.0.0,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.0,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,26.1.0,26.1.0,26.0.2,26.0.0,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,1.2.0,1.2.0,1.1.0,1.1.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.8.0,7.8.0,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,2.6.0,2.6.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.3.0,3.3.0,3.2.3,3.2.3,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.2.0,1.2.0,1.1.1,1.1.0,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70101,2.0.70100,2.0.70002,2.0.70000,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,1.0.0,1.0.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.70101,4.1.70100,4.1.70002,4.1.70000,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,20.0.0,20.0.0,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.4,0.77.4,0.77.3,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,16.3.0,16.3.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.1.0,2.1.0,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.18.0,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat]_,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,N/A,N/A,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.2,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
Thrust,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 7.1.1 6.4.3 7.1.0 6.4.2 7.0.2 6.4.1 7.0.1/7.0.0 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility-past-60]_ :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 10.1, 10.0, 9.7, 9.6, 9.4 RHEL 9.6, 9.4 RHEL 10.0, 9.6, 9.4 RHEL 9.6, 9.4 RHEL 10.0, 9.6, 9.4 RHEL 9.6, 9.5, 9.4 RHEL 9.6, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP7 SLES 15 SP7, SP6 SLES 15 SP7 SLES 15 SP7, SP6 SLES 15 SP7 SLES 15 SP6 SLES 15 SP7 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 10, 9, 8 Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 10, 9, 8 Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 10, 9, 8 Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 13, 12 Debian 12 Debian 12 [#single-node-past-60]_ Debian 13, 12 Debian 12 Debian 12 [#single-node-past-60]_ Debian 13, 12 Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#mi300x-past-60]_
12 Rocky Linux 9 .. _architecture-support-compatibility-matrix-past-60: Rocky Linux 9 Rocky Linux 9 Rocky Linux 9
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` .. _architecture-support-compatibility-matrix-past-60: CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA4 CDNA2 CDNA4 CDNA2 CDNA4 CDNA2 CDNA4 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA3 CDNA3 CDNA CDNA3 CDNA3 CDNA CDNA3 CDNA3 CDNA CDNA3 CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA CDNA3 CDNA
16 CDNA2 CDNA2 RDNA4 CDNA2 CDNA2 RDNA4 CDNA2 CDNA2 RDNA4 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
17 CDNA CDNA RDNA3 CDNA CDNA RDNA3 CDNA CDNA RDNA3 CDNA CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3 CDNA RDNA3
18 RDNA4 RDNA4 RDNA2 RDNA4 RDNA4 RDNA2 RDNA4 RDNA4 RDNA2 RDNA4 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
19 RDNA3 RDNA3 .. _gpu-support-compatibility-matrix-past-60: RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
20 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` RDNA2 RDNA2 gfx1201 [#RDNA-OS-past-60]_ RDNA2 RDNA2 gfx1201 [#RDNA-OS-past-60]_ RDNA2 RDNA2 gfx1201 [#RDNA-OS-past-60]_ RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
21 .. _gpu-support-compatibility-matrix-past-60: gfx1200 [#RDNA-OS-past-60]_ gfx1200 [#RDNA-OS-past-60]_ gfx1200 [#RDNA-OS-past-60]_
22 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility-past-60]_ gfx950 gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx950 gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx950 gfx1101 [#RDNA-OS-past-60]_ gfx950
23 gfx1201 gfx1201 gfx1100 gfx1201 gfx1201 gfx1100 gfx1201 gfx1201 gfx1100 gfx1201 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
24 gfx1200 gfx1200 gfx1030 gfx1200 gfx1200 gfx1030 gfx1200 gfx1200 gfx1030 gfx1200 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
25 gfx1101 gfx1101 gfx942 gfx1101 gfx1101 gfx942 gfx1101 gfx1101 gfx942 gfx1101 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
26 gfx1100 gfx1100 gfx90a gfx1100 gfx1100 gfx90a gfx1100 gfx1100 gfx90a gfx1100 gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a gfx1100 gfx90a
27 gfx1030 gfx1030 gfx908 gfx1030 gfx1030 gfx908 gfx1030 gfx1030 gfx908 gfx1030 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908 gfx1030 gfx908
28 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942
29 FRAMEWORK SUPPORT gfx90a gfx90a .. _framework-support-compatibility-matrix-past-60: gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
30 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` gfx908 gfx908 2.6, 2.5, 2.4, 2.3 gfx908 gfx908 2.6, 2.5, 2.4, 2.3 gfx908 gfx908 2.6, 2.5, 2.4, 2.3 gfx908 gfx908 2.6, 2.5, 2.4, 2.3 gfx908 2.4, 2.3, 2.2, 1.13 gfx908 2.4, 2.3, 2.2, 1.13 gfx908 2.4, 2.3, 2.2, 1.13 gfx908 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 gfx908 2.3, 2.2, 2.1, 2.0, 1.13 gfx908 2.3, 2.2, 2.1, 2.0, 1.13 gfx908 2.3, 2.2, 2.1, 2.0, 1.13 gfx908 2.3, 2.2, 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13 gfx908 2.1, 2.0, 1.13
31 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
32 FRAMEWORK SUPPORT :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` .. _framework-support-compatibility-matrix-past-60: 0.4.35 0.4.35 0.4.35 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
33 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_ 2.9, 2.8, 2.7 2.6, 2.5, 2.4, 2.3 N/A 2.8, 2.7, 2.6 2.6, 2.5, 2.4, 2.3 N/A 2.8, 2.7, 2.6 2.6, 2.5, 2.4, 2.3 N/A 2.7, 2.6, 2.5 2.6, 2.5, 2.4, 2.3 N/A 2.4, 2.3, 2.2, 1.13 N/A 2.4, 2.3, 2.2, 1.13 N/A 2.4, 2.3, 2.2, 1.13 N/A 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 N/A 2.3, 2.2, 2.1, 2.0, 1.13 N/A 2.3, 2.2, 2.1, 2.0, 1.13 N/A 2.3, 2.2, 2.1, 2.0, 1.13 N/A 2.3, 2.2, 2.1, 2.0, 1.13 0.3.0.post0 2.1, 2.0, 1.13 N/A 2.1, 2.0, 1.13 N/A 2.1, 2.0, 1.13 N/A 2.1, 2.0, 1.13 N/A 2.1, 2.0, 1.13 N/A
34 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat]_ 2.20.0, 2.19.1, 2.18.1 2.18.1, 2.17.1, 2.16.2 N/A 2.20.0, 2.19.1, 2.18.1 2.18.1, 2.17.1, 2.16.2 N/A 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.18.1, 2.17.1, 2.16.2 N/A 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.18.1, 2.17.1, 2.16.2 N/A 2.17.0, 2.16.2, 2.15.1 N/A 2.17.0, 2.16.2, 2.15.1 N/A 2.17.0, 2.16.2, 2.15.1 N/A 2.17.0, 2.16.2, 2.15.1 85f95ae 2.16.1, 2.15.1, 2.14.1 N/A 2.16.1, 2.15.1, 2.14.1 N/A 2.16.1, 2.15.1, 2.14.1 N/A 2.16.1, 2.15.1, 2.14.1 N/A 2.15.0, 2.14.0, 2.13.1 N/A 2.15.0, 2.14.0, 2.13.1 N/A 2.15.0, 2.14.0, 2.13.1 N/A 2.15.0, 2.14.0, 2.13.1 N/A 2.14.0, 2.13.1, 2.12.1 N/A
35 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_ 0.7.1 0.4.35 N/A 0.7.1 0.4.35 N/A 0.6.0 0.4.35 N/A 0.6.0 0.4.35 2.4.0 0.4.31 N/A 0.4.31 N/A 0.4.31 N/A 0.4.31 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26 N/A 0.4.26
36 :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_ :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat]_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.7.0 N/A N/A N/A 0.3.0.post0 N/A N/A N/A N/A N/A N/A
37 :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_ :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.8.0b1 N/A 85f95ae N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
38 :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_ :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat]_ N/A 2.4.0 N/A N/A N/A N/A N/A 2.48.0.post0 2.4.0 2.4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
39 :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_ :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_ N/A N/A N/A N/A N/A N/A N/A N/A b5997 N/A N/A N/A 0.7.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
40 :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_ `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ N/A N/A 1.2 N/A N/A 1.2 N/A N/A 1.2 N/A N/A 1.2 N/A 1.17.3 1.8.0b1 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.14.1 N/A 1.14.1
41 :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_ N/A N/A N/A N/A N/A 2.48.0.post0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
42 :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_ N/A b6356 N/A b6356 N/A b6356 b6652 b5997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
43 :doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_ THIRD PARTY COMMS N/A N/A .. _thirdpartycomms-support-compatibility-matrix-past-60: N/A N/A N/A v0.2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
44 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ `UCC <https://github.com/ROCm/ucc>`_ 1.22.0 1.20.0 >=1.3.0 1.22.0 1.20.0 >=1.3.0 1.22.0 1.20.0 >=1.3.0 1.22.0 1.20.0 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.17.3 >=1.3.0 1.14.1 >=1.2.0 1.14.1 >=1.2.0
45 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
46
47 THIRD PARTY COMMS THIRD PARTY ALGORITHM .. _thirdpartycomms-support-compatibility-matrix-past-60: .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
48 `UCC <https://github.com/ROCm/ucc>`_ Thrust >=1.4.0 >=1.3.0 2.5.0 >=1.4.0 >=1.3.0 2.5.0 >=1.4.0 >=1.3.0 2.5.0 >=1.4.0 >=1.3.0 2.5.0 >=1.3.0 2.3.2 >=1.3.0 2.3.2 >=1.3.0 2.3.2 >=1.3.0 2.3.2 >=1.3.0 2.2.0 >=1.3.0 2.2.0 >=1.3.0 2.2.0 >=1.3.0 2.2.0 >=1.3.0 2.1.0 >=1.3.0 2.1.0 >=1.3.0 2.1.0 >=1.3.0 2.1.0 >=1.2.0 2.0.1 >=1.2.0 2.0.1
49 `UCX <https://github.com/ROCm/ucx>`_ CUB >=1.17.0 >=1.15.0 2.5.0 >=1.17.0 >=1.15.0 2.5.0 >=1.17.0 >=1.15.0 2.5.0 >=1.17.0 >=1.15.0 2.5.0 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.14.1 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.0.1 >=1.14.1 2.0.1
50
51 THIRD PARTY ALGORITHM KMD & USER SPACE [#kfd_support-past-60]_ .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
52 Thrust :doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 2.8.5 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.8.5 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.6.0 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.6.0 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.0.1 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 2.0.1 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
53 CUB 2.8.5 2.5.0 2.8.5 2.5.0 2.6.0 2.5.0 2.6.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
54 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
55 DRIVER & USER SPACE [#kfd_support-past-60]_ :doc:`Composable Kernel <composable_kernel:index>` .. _kfd-userspace-support-compatibility-matrix-past-60: 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
56 :doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` :doc:`MIGraphX <amdmigraphx:index>` 30.20.1, 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.12.0 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.12.0 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.12.0 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.12.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.11.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.11.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.11.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.11.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.10.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.10.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.10.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.10.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.9.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.9.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.9.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.9.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 2.8.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 2.8.0
57 :doc:`MIOpen <miopen:index>` 3.4.0 3.4.0 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
58 ML & COMPUTER VISION :doc:`MIVisionX <mivisionx:index>` .. _mllibs-support-compatibility-matrix-past-60: 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
59 :doc:`Composable Kernel <composable_kernel:index>` :doc:`rocAL <rocal:index>` 1.1.0 1.1.0 2.2.0 1.1.0 1.1.0 2.2.0 1.1.0 1.1.0 2.2.0 1.1.0 1.1.0 2.2.0 1.1.0 2.1.0 1.1.0 2.1.0 1.1.0 2.1.0 1.1.0 2.1.0 1.1.0 2.0.0 1.1.0 2.0.0 1.1.0 2.0.0 1.1.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0
60 :doc:`MIGraphX <amdmigraphx:index>` :doc:`rocDecode <rocdecode:index>` 2.14.0 2.12.0 0.10.0 2.14.0 2.12.0 0.10.0 2.13.0 2.12.0 0.10.0 2.13.0 2.12.0 0.10.0 2.11.0 0.8.0 2.11.0 0.8.0 2.11.0 0.8.0 2.11.0 0.8.0 2.10.0 0.6.0 2.10.0 0.6.0 2.10.0 0.6.0 2.10.0 0.6.0 2.9.0 0.6.0 2.9.0 0.6.0 2.9.0 0.5.0 2.9.0 0.5.0 2.8.0 N/A 2.8.0 N/A
61 :doc:`MIOpen <miopen:index>` :doc:`rocJPEG <rocjpeg:index>` 3.5.1 3.4.0 0.8.0 3.5.1 3.4.0 0.8.0 3.5.0 3.4.0 0.8.0 3.5.0 3.4.0 0.8.0 3.3.0 0.6.0 3.3.0 0.6.0 3.3.0 0.6.0 3.3.0 0.6.0 3.2.0 N/A 3.2.0 N/A 3.2.0 N/A 3.2.0 N/A 3.1.0 N/A 3.1.0 N/A 3.1.0 N/A 3.1.0 N/A 3.0.0 N/A 3.0.0 N/A
62 :doc:`MIVisionX <mivisionx:index>` :doc:`rocPyDecode <rocpydecode:index>` 3.4.0 3.2.0 0.3.1 3.4.0 3.2.0 0.3.1 3.3.0 3.2.0 0.3.1 3.3.0 3.2.0 0.3.1 3.1.0 0.2.0 3.1.0 0.2.0 3.1.0 0.2.0 3.1.0 0.2.0 3.0.0 0.1.0 3.0.0 0.1.0 3.0.0 0.1.0 3.0.0 0.1.0 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A
63 :doc:`rocAL <rocal:index>` :doc:`RPP <rpp:index>` 2.4.0 2.2.0 1.9.10 2.4.0 2.2.0 1.9.10 2.3.0 2.2.0 1.9.10 2.3.0 2.2.0 1.9.10 2.1.0 1.9.1 2.1.0 1.9.1 2.1.0 1.9.1 2.1.0 1.9.1 2.0.0 1.8.0 2.0.0 1.8.0 2.0.0 1.8.0 1.0.0 1.8.0 1.0.0 1.5.0 1.0.0 1.5.0 1.0.0 1.5.0 1.0.0 1.5.0 1.0.0 1.4.0 1.0.0 1.4.0
64 :doc:`rocDecode <rocdecode:index>` 1.4.0 0.10.0 1.4.0 0.10.0 1.0.0 0.10.0 1.0.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
65 :doc:`rocJPEG <rocjpeg:index>` COMMUNICATION 1.2.0 0.8.0 .. _commlibs-support-compatibility-matrix-past-60: 1.2.0 0.8.0 1.1.0 0.8.0 1.1.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
66 :doc:`rocPyDecode <rocpydecode:index>` :doc:`RCCL <rccl:index>` 0.7.0 0.3.1 2.22.3 0.7.0 0.3.1 2.22.3 0.6.0 0.3.1 2.22.3 0.6.0 0.3.1 2.22.3 0.2.0 2.21.5 0.2.0 2.21.5 0.2.0 2.21.5 0.2.0 2.21.5 0.1.0 2.20.5 0.1.0 2.20.5 0.1.0 2.20.5 0.1.0 2.20.5 N/A 2.18.6 N/A 2.18.6 N/A 2.18.6 N/A 2.18.6 N/A 2.18.3 N/A 2.18.3
67 :doc:`RPP <rpp:index>` :doc:`rocSHMEM <rocshmem:index>` 2.1.0 1.9.10 2.0.1 2.1.0 1.9.10 2.0.1 2.0.0 1.9.10 2.0.0 2.0.0 1.9.10 2.0.0 1.9.1 N/A 1.9.1 N/A 1.9.1 N/A 1.9.1 N/A 1.8.0 N/A 1.8.0 N/A 1.8.0 N/A 1.8.0 N/A 1.5.0 N/A 1.5.0 N/A 1.5.0 N/A 1.5.0 N/A 1.4.0 N/A 1.4.0 N/A
68
69 COMMUNICATION MATH LIBS .. _commlibs-support-compatibility-matrix-past-60: .. _mathlibs-support-compatibility-matrix-past-60:
70 :doc:`RCCL <rccl:index>` `half <https://github.com/ROCm/half>`_ 2.27.7 2.22.3 1.12.0 2.27.7 2.22.3 1.12.0 2.26.6 2.22.3 1.12.0 2.26.6 2.22.3 1.12.0 2.21.5 1.12.0 2.21.5 1.12.0 2.21.5 1.12.0 2.21.5 1.12.0 2.20.5 1.12.0 2.20.5 1.12.0 2.20.5 1.12.0 2.20.5 1.12.0 2.18.6 1.12.0 2.18.6 1.12.0 2.18.6 1.12.0 2.18.6 1.12.0 2.18.3 1.12.0 2.18.3 1.12.0
71 :doc:`rocSHMEM <rocshmem:index>` :doc:`hipBLAS <hipblas:index>` 3.0.0 2.0.1 2.4.0 3.0.0 2.0.1 2.4.0 3.0.0 2.0.0 2.4.0 3.0.0 2.0.0 2.4.0 N/A 2.3.0 N/A 2.3.0 N/A 2.3.0 N/A 2.3.0 N/A 2.2.0 N/A 2.2.0 N/A 2.2.0 N/A 2.2.0 N/A 2.1.0 N/A 2.1.0 N/A 2.1.0 N/A 2.1.0 N/A 2.0.0 N/A 2.0.0
72 :doc:`hipBLASLt <hipblaslt:index>` 0.12.1 0.12.1 0.12.1 0.12.0 0.10.0 0.10.0 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
73 MATH LIBS :doc:`hipFFT <hipfft:index>` .. _mathlibs-support-compatibility-matrix-past-60: 1.0.18 1.0.18 1.0.18 1.0.18 1.0.17 1.0.17 1.0.17 1.0.17 1.0.16 1.0.15 1.0.15 1.0.14 1.0.14 1.0.14 1.0.14 1.0.14 1.0.13 1.0.13
74 `half <https://github.com/ROCm/half>`_ :doc:`hipfort <hipfort:index>` 1.12.0 1.12.0 0.6.0 1.12.0 1.12.0 0.6.0 1.12.0 1.12.0 0.6.0 1.12.0 1.12.0 0.6.0 1.12.0 0.5.1 1.12.0 0.5.1 1.12.0 0.5.0 1.12.0 0.5.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0 1.12.0 0.4.0
75 :doc:`hipBLAS <hipblas:index>` :doc:`hipRAND <hiprand:index>` 3.1.0 2.4.0 2.12.0 3.1.0 2.4.0 2.12.0 3.0.2 2.4.0 2.12.0 3.0.0 2.4.0 2.12.0 2.3.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.0 2.2.0 2.11.1 2.2.0 2.11.0 2.2.0 2.11.0 2.2.0 2.11.0 2.1.0 2.10.16 2.1.0 2.10.16 2.1.0 2.10.16 2.1.0 2.10.16 2.0.0 2.10.16 2.0.0 2.10.16
76 :doc:`hipBLASLt <hipblaslt:index>` :doc:`hipSOLVER <hipsolver:index>` 1.1.0 0.12.1 2.4.0 1.1.0 0.12.1 2.4.0 1.0.0 0.12.1 2.4.0 1.0.0 0.12.0 2.4.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.7.0 2.1.1 0.7.0 2.1.1 0.7.0 2.1.1 0.7.0 2.1.0 0.6.0 2.0.0 0.6.0 2.0.0
77 :doc:`hipFFT <hipfft:index>` :doc:`hipSPARSE <hipsparse:index>` 1.0.21 1.0.18 3.2.0 1.0.21 1.0.18 3.2.0 1.0.20 1.0.18 3.2.0 1.0.20 1.0.18 3.2.0 1.0.17 3.1.2 1.0.17 3.1.2 1.0.17 3.1.2 1.0.17 3.1.2 1.0.16 3.1.1 1.0.15 3.1.1 1.0.15 3.1.1 1.0.14 3.1.1 1.0.14 3.0.1 1.0.14 3.0.1 1.0.14 3.0.1 1.0.14 3.0.1 1.0.13 3.0.0 1.0.13 3.0.0
78 :doc:`hipfort <hipfort:index>` :doc:`hipSPARSELt <hipsparselt:index>` 0.7.1 0.6.0 0.2.3 0.7.1 0.6.0 0.2.3 0.7.0 0.6.0 0.2.3 0.7.0 0.6.0 0.2.3 0.5.1 0.2.2 0.5.1 0.2.2 0.5.0 0.2.2 0.5.0 0.2.2 0.4.0 0.2.1 0.4.0 0.2.1 0.4.0 0.2.1 0.4.0 0.2.1 0.4.0 0.2.0 0.4.0 0.2.0 0.4.0 0.1.0 0.4.0 0.1.0 0.4.0 0.1.0 0.4.0 0.1.0
79 :doc:`hipRAND <hiprand:index>` :doc:`rocALUTION <rocalution:index>` 3.1.0 2.12.0 3.2.3 3.1.0 2.12.0 3.2.3 3.0.0 2.12.0 3.2.3 3.0.0 2.12.0 3.2.2 2.11.1 3.2.1 2.11.1 3.2.1 2.11.1 3.2.1 2.11.0 3.2.1 2.11.1 3.2.1 2.11.0 3.2.0 2.11.0 3.2.0 2.11.0 3.2.0 2.10.16 3.1.1 2.10.16 3.1.1 2.10.16 3.1.1 2.10.16 3.1.1 2.10.16 3.0.3 2.10.16 3.0.3
80 :doc:`hipSOLVER <hipsolver:index>` :doc:`rocBLAS <rocblas:index>` 3.1.0 2.4.0 4.4.1 3.1.0 2.4.0 4.4.1 3.0.0 2.4.0 4.4.0 3.0.0 2.4.0 4.4.0 2.3.0 4.3.0 2.3.0 4.3.0 2.3.0 4.3.0 2.3.0 4.3.0 2.2.0 4.2.4 2.2.0 4.2.1 2.2.0 4.2.1 2.2.0 4.2.0 2.1.1 4.1.2 2.1.1 4.1.2 2.1.1 4.1.0 2.1.0 4.1.0 2.0.0 4.0.0 2.0.0 4.0.0
81 :doc:`hipSPARSE <hipsparse:index>` :doc:`rocFFT <rocfft:index>` 4.1.0 3.2.0 1.0.32 4.1.0 3.2.0 1.0.32 4.0.1 3.2.0 1.0.32 4.0.1 3.2.0 1.0.32 3.1.2 1.0.31 3.1.2 1.0.31 3.1.2 1.0.31 3.1.2 1.0.31 3.1.1 1.0.30 3.1.1 1.0.29 3.1.1 1.0.29 3.1.1 1.0.28 3.0.1 1.0.27 3.0.1 1.0.27 3.0.1 1.0.27 3.0.1 1.0.26 3.0.0 1.0.25 3.0.0 1.0.23
82 :doc:`hipSPARSELt <hipsparselt:index>` :doc:`rocRAND <rocrand:index>` 0.2.5 0.2.3 3.3.0 0.2.5 0.2.3 3.3.0 0.2.4 0.2.3 3.3.0 0.2.4 0.2.3 3.3.0 0.2.2 3.2.0 0.2.2 3.2.0 0.2.2 3.2.0 0.2.2 3.2.0 0.2.1 3.1.1 0.2.1 3.1.0 0.2.1 3.1.0 0.2.1 3.1.0 0.2.0 3.0.1 0.2.0 3.0.1 0.1.0 3.0.1 0.1.0 3.0.1 0.1.0 3.0.0 0.1.0 2.10.17
83 :doc:`rocALUTION <rocalution:index>` :doc:`rocSOLVER <rocsolver:index>` 4.0.1 3.2.3 3.28.2 4.0.1 3.2.3 3.28.2 4.0.0 3.2.3 3.28.0 4.0.0 3.2.2 3.28.0 3.2.1 3.27.0 3.2.1 3.27.0 3.2.1 3.27.0 3.2.1 3.27.0 3.2.1 3.26.2 3.2.0 3.26.0 3.2.0 3.26.0 3.2.0 3.26.0 3.1.1 3.25.0 3.1.1 3.25.0 3.1.1 3.25.0 3.1.1 3.25.0 3.0.3 3.24.0 3.0.3 3.24.0
84 :doc:`rocBLAS <rocblas:index>` :doc:`rocSPARSE <rocsparse:index>` 5.1.0 4.4.1 3.4.0 5.1.0 4.4.1 3.4.0 5.0.2 4.4.0 3.4.0 5.0.0 4.4.0 3.4.0 4.3.0 3.3.0 4.3.0 3.3.0 4.3.0 3.3.0 4.3.0 3.3.0 4.2.4 3.2.1 4.2.1 3.2.0 4.2.1 3.2.0 4.2.0 3.2.0 4.1.2 3.1.2 4.1.2 3.1.2 4.1.0 3.1.2 4.1.0 3.1.2 4.0.0 3.0.2 4.0.0 3.0.2
85 :doc:`rocFFT <rocfft:index>` :doc:`rocWMMA <rocwmma:index>` 1.0.35 1.0.32 1.7.0 1.0.35 1.0.32 1.7.0 1.0.34 1.0.32 1.7.0 1.0.34 1.0.32 1.7.0 1.0.31 1.6.0 1.0.31 1.6.0 1.0.31 1.6.0 1.0.31 1.6.0 1.0.30 1.5.0 1.0.29 1.5.0 1.0.29 1.5.0 1.0.28 1.5.0 1.0.27 1.4.0 1.0.27 1.4.0 1.0.27 1.4.0 1.0.26 1.4.0 1.0.25 1.3.0 1.0.23 1.3.0
86 :doc:`rocRAND <rocrand:index>` :doc:`Tensile <tensile:src/index>` 4.1.0 3.3.0 4.43.0 4.1.0 3.3.0 4.43.0 4.0.0 3.3.0 4.43.0 4.0.0 3.3.0 4.43.0 3.2.0 4.42.0 3.2.0 4.42.0 3.2.0 4.42.0 3.2.0 4.42.0 3.1.1 4.41.0 3.1.0 4.41.0 3.1.0 4.41.0 3.1.0 4.41.0 3.0.1 4.40.0 3.0.1 4.40.0 3.0.1 4.40.0 3.0.1 4.40.0 3.0.0 4.39.0 2.10.17 4.39.0
87 :doc:`rocSOLVER <rocsolver:index>` 3.31.0 3.28.2 3.31.0 3.28.2 3.30.1 3.28.0 3.30.0 3.28.0 3.27.0 3.27.0 3.27.0 3.27.0 3.26.2 3.26.0 3.26.0 3.26.0 3.25.0 3.25.0 3.25.0 3.25.0 3.24.0 3.24.0
88 :doc:`rocSPARSE <rocsparse:index>` PRIMITIVES 4.1.0 3.4.0 .. _primitivelibs-support-compatibility-matrix-past-60: 4.1.0 3.4.0 4.0.2 3.4.0 4.0.2 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
89 :doc:`rocWMMA <rocwmma:index>` :doc:`hipCUB <hipcub:index>` 2.0.0 1.7.0 3.4.0 2.0.0 1.7.0 3.4.0 2.0.0 1.7.0 3.4.0 2.0.0 1.7.0 3.4.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.5.0 3.2.1 1.5.0 3.2.0 1.5.0 3.2.0 1.5.0 3.2.0 1.4.0 3.1.0 1.4.0 3.1.0 1.4.0 3.1.0 1.4.0 3.1.0 1.3.0 3.0.0 1.3.0 3.0.0
90 :doc:`Tensile <tensile:src/index>` :doc:`hipTensor <hiptensor:index>` 4.44.0 4.43.0 1.5.0 4.44.0 4.43.0 1.5.0 4.44.0 4.43.0 1.5.0 4.44.0 4.43.0 1.5.0 4.42.0 1.4.0 4.42.0 1.4.0 4.42.0 1.4.0 4.42.0 1.4.0 4.41.0 1.3.0 4.41.0 1.3.0 4.41.0 1.3.0 4.41.0 1.3.0 4.40.0 1.2.0 4.40.0 1.2.0 4.40.0 1.2.0 4.40.0 1.2.0 4.39.0 1.1.0 4.39.0 1.1.0
91 :doc:`rocPRIM <rocprim:index>` 3.4.1 3.4.1 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
92 PRIMITIVES :doc:`rocThrust <rocthrust:index>` .. _primitivelibs-support-compatibility-matrix-past-60: 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
93 :doc:`hipCUB <hipcub:index>` 4.1.0 3.4.0 4.1.0 3.4.0 4.0.0 3.4.0 4.0.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
94 :doc:`hipTensor <hiptensor:index>` SUPPORT LIBS 2.0.0 1.5.0 2.0.0 1.5.0 2.0.0 1.5.0 2.0.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
95 :doc:`rocPRIM <rocprim:index>` `hipother <https://github.com/ROCm/hipother>`_ 4.1.0 3.4.1 6.4.43483 4.1.0 3.4.1 6.4.43483 4.0.1 3.4.0 6.4.43483 4.0.0 3.4.0 6.4.43482 3.3.0 6.3.42134 3.3.0 6.3.42134 3.3.0 6.3.42133 3.3.0 6.3.42131 3.2.2 6.2.41134 3.2.0 6.2.41134 3.2.0 6.2.41134 3.2.0 6.2.41133 3.1.0 6.1.40093 3.1.0 6.1.40093 3.1.0 6.1.40092 3.1.0 6.1.40091 3.0.0 6.1.32831 3.0.0 6.1.32830
96 :doc:`rocThrust <rocthrust:index>` `rocm-core <https://github.com/ROCm/rocm-core>`_ 4.1.0 3.3.0 6.4.3 4.1.0 3.3.0 6.4.2 4.0.0 3.3.0 6.4.1 4.0.0 3.3.0 6.4.0 3.3.0 6.3.3 3.3.0 6.3.2 3.3.0 6.3.1 3.3.0 6.3.0 3.1.1 6.2.4 3.1.0 6.2.2 3.1.0 6.2.1 3.0.1 6.2.0 3.0.1 6.1.5 3.0.1 6.1.2 3.0.1 6.1.1 3.0.1 6.1.0 3.0.0 6.0.2 3.0.0 6.0.0
97 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
98 SUPPORT LIBS
99 `hipother <https://github.com/ROCm/hipother>`_ SYSTEM MGMT TOOLS 7.1.52802 6.4.43483 .. _tools-support-compatibility-matrix-past-60: 7.1.25424 6.4.43483 7.0.51831 6.4.43483 7.0.51830 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
100 `rocm-core <https://github.com/ROCm/rocm-core>`_ :doc:`AMD SMI <amdsmi:index>` 7.1.0 6.4.3 25.5.1 7.1.0 6.4.2 25.5.1 7.0.2 6.4.1 25.4.2 7.0.1/7.0.0 6.4.0 25.3.0 6.3.3 24.7.1 6.3.2 24.7.1 6.3.1 24.7.1 6.3.0 24.7.1 6.2.4 24.6.3 6.2.2 24.6.3 6.2.1 24.6.3 6.2.0 24.6.2 6.1.5 24.5.1 6.1.2 24.5.1 6.1.1 24.5.1 6.1.0 24.4.1 6.0.2 23.4.2 6.0.0 23.4.2
101 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ :doc:`ROCm Data Center Tool <rdc:index>` N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ 0.3.0 N/A [#ROCT-rocr-past-60]_ 0.3.0 20240607.5.7 0.3.0 20240607.5.7 0.3.0 20240607.4.05 0.3.0 20240607.1.4246 0.3.0 20240125.5.08 0.3.0 20240125.5.08 0.3.0 20240125.5.08 0.3.0 20240125.3.30 0.3.0 20231016.2.245 0.3.0 20231016.2.245 0.3.0
102 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
103 SYSTEM MGMT TOOLS :doc:`ROCm SMI <rocm_smi_lib:index>` .. _tools-support-compatibility-matrix-past-60: 7.7.0 7.5.0 7.5.0 7.5.0 7.4.0 7.4.0 7.4.0 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
104 :doc:`AMD SMI <amdsmi:index>` :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 26.1.0 25.5.1 1.1.0 26.1.0 25.5.1 1.1.0 26.0.2 25.4.2 1.1.0 26.0.0 25.3.0 1.1.0 24.7.1 1.1.0 24.7.1 1.1.0 24.7.1 1.1.0 24.7.1 1.1.0 24.6.3 1.0.60204 24.6.3 1.0.60202 24.6.3 1.0.60201 24.6.2 1.0.60200 24.5.1 1.0.60105 24.5.1 1.0.60102 24.5.1 1.0.60101 24.4.1 1.0.60100 23.4.2 1.0.60002 23.4.2 1.0.60000
105 :doc:`ROCm Data Center Tool <rdc:index>` 1.2.0 0.3.0 1.2.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
106 :doc:`rocminfo <rocminfo:index>` PERFORMANCE TOOLS 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
107 :doc:`ROCm SMI <rocm_smi_lib:index>` :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 7.8.0 7.7.0 1.4.0 7.8.0 7.5.0 1.4.0 7.8.0 7.5.0 1.4.0 7.8.0 7.5.0 1.4.0 7.4.0 1.4.0 7.4.0 1.4.0 7.4.0 1.4.0 7.4.0 1.4.0 7.3.0 1.4.0 7.3.0 1.4.0 7.3.0 1.4.0 7.3.0 1.4.0 7.2.0 1.4.0 7.2.0 1.4.0 7.0.0 1.4.0 7.0.0 1.4.0 6.0.2 1.4.0 6.0.0 1.4.0
108 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 1.2.0 1.1.0 3.1.1 1.2.0 1.1.0 3.1.1 1.2.0 1.1.0 3.1.0 1.2.0 1.1.0 3.1.0 1.1.0 3.0.0 1.1.0 3.0.0 1.1.0 3.0.0 1.1.0 3.0.0 1.0.60204 2.0.1 1.0.60202 2.0.1 1.0.60201 2.0.1 1.0.60200 2.0.1 1.0.60105 N/A 1.0.60102 N/A 1.0.60101 N/A 1.0.60100 N/A 1.0.60002 N/A 1.0.60000 N/A
109 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.0.2 1.0.2 1.0.1 1.0.0 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A N/A
110 PERFORMANCE TOOLS :doc:`ROCProfiler <rocprofiler:index>` 2.0.60403 2.0.60402 2.0.60401 2.0.60400 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60105 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
111 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 2.6.0 1.4.0 0.6.0 2.6.0 1.4.0 0.6.0 2.6.0 1.4.0 0.6.0 2.6.0 1.4.0 0.6.0 1.4.0 0.5.0 1.4.0 0.5.0 1.4.0 0.5.0 1.4.0 0.5.0 1.4.0 0.4.0 1.4.0 0.4.0 1.4.0 0.4.0 1.4.0 0.4.0 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A
112 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` :doc:`ROCTracer <roctracer:index>` 3.3.0 3.1.1 4.1.60403 3.3.0 3.1.1 4.1.60402 3.2.3 3.1.0 4.1.60401 3.2.3 3.1.0 4.1.60400 3.0.0 4.1.60303 3.0.0 4.1.60302 3.0.0 4.1.60301 3.0.0 4.1.60300 2.0.1 4.1.60204 2.0.1 4.1.60202 2.0.1 4.1.60201 2.0.1 4.1.60200 N/A 4.1.60105 N/A 4.1.60102 N/A 4.1.60101 N/A 4.1.60100 N/A 4.1.60002 N/A 4.1.60000
113 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.2.0 1.0.2 1.2.0 1.0.2 1.1.1 1.0.1 1.1.0 1.0.0 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A N/A
114 :doc:`ROCProfiler <rocprofiler:index>` DEVELOPMENT TOOLS 2.0.70101 2.0.60403 2.0.70100 2.0.60402 2.0.70002 2.0.60401 2.0.70000 2.0.60400 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60105 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
115 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` :doc:`HIPIFY <hipify:index>` 1.0.0 0.6.0 19.0.0 1.0.0 0.6.0 19.0.0 1.0.0 0.6.0 19.0.0 1.0.0 0.6.0 19.0.0 0.5.0 18.0.0.25012 0.5.0 18.0.0.25012 0.5.0 18.0.0.24491 0.5.0 18.0.0.24455 0.4.0 18.0.0.24392 0.4.0 18.0.0.24355 0.4.0 18.0.0.24355 0.4.0 18.0.0.24232 N/A 17.0.0.24193 N/A 17.0.0.24193 N/A 17.0.0.24154 N/A 17.0.0.24103 N/A 17.0.0.24012 N/A 17.0.0.23483
116 :doc:`ROCTracer <roctracer:index>` :doc:`ROCm CMake <rocmcmakebuildtools:index>` 4.1.70101 4.1.60403 0.14.0 4.1.70100 4.1.60402 0.14.0 4.1.70002 4.1.60401 0.14.0 4.1.70000 4.1.60400 0.14.0 4.1.60303 0.14.0 4.1.60302 0.14.0 4.1.60301 0.14.0 4.1.60300 0.14.0 4.1.60204 0.13.0 4.1.60202 0.13.0 4.1.60201 0.13.0 4.1.60200 0.13.0 4.1.60105 0.12.0 4.1.60102 0.12.0 4.1.60101 0.12.0 4.1.60100 0.12.0 4.1.60002 0.11.0 4.1.60000 0.11.0
117 :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.2 0.77.2 0.77.2 0.77.2 0.77.0 0.77.0 0.77.0 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
118 DEVELOPMENT TOOLS :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
119 :doc:`HIPIFY <hipify:index>` `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 20.0.0 19.0.0 0.4.0 20.0.0 19.0.0 0.4.0 20.0.0 19.0.0 0.4.0 20.0.0 19.0.0 0.4.0 18.0.0.25012 0.4.0 18.0.0.25012 0.4.0 18.0.0.24491 0.4.0 18.0.0.24455 0.4.0 18.0.0.24392 0.4.0 18.0.0.24355 0.4.0 18.0.0.24355 0.4.0 18.0.0.24232 0.4.0 17.0.0.24193 0.3.0 17.0.0.24193 0.3.0 17.0.0.24154 0.3.0 17.0.0.24103 0.3.0 17.0.0.24012 N/A 17.0.0.23483 N/A
120 :doc:`ROCm CMake <rocmcmakebuildtools:index>` :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 0.14.0 0.14.0 2.0.4 0.14.0 0.14.0 2.0.4 0.14.0 0.14.0 2.0.4 0.14.0 0.14.0 2.0.4 0.14.0 2.0.3 0.14.0 2.0.3 0.14.0 2.0.3 0.14.0 2.0.3 0.13.0 2.0.3 0.13.0 2.0.3 0.13.0 2.0.3 0.13.0 2.0.3 0.12.0 2.0.3 0.12.0 2.0.3 0.12.0 2.0.3 0.12.0 2.0.3 0.11.0 2.0.3 0.11.0 2.0.3
121 :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.4 0.77.2 0.77.4 0.77.2 0.77.4 0.77.2 0.77.3 0.77.2 0.77.0 0.77.0 0.77.0 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
122 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` COMPILERS 16.3.0 15.2.0 .. _compilers-support-compatibility-matrix-past-60: 16.3.0 15.2.0 16.3.0 15.2.0 16.3.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
123 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ `clang-ocl <https://github.com/ROCm/clang-ocl>`_ 0.5.0 0.4.0 N/A 0.5.0 0.4.0 N/A 0.5.0 0.4.0 N/A 0.5.0 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.4.0 N/A 0.3.0 0.5.0 0.3.0 0.5.0 0.3.0 0.5.0 0.3.0 0.5.0 N/A 0.5.0 N/A 0.5.0
124 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` :doc:`hipCC <hipcc:index>` 2.1.0 2.0.4 1.1.1 2.1.0 2.0.4 1.1.1 2.1.0 2.0.4 1.1.1 2.1.0 2.0.4 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.1.1 2.0.3 1.0.0 2.0.3 1.0.0 2.0.3 1.0.0 2.0.3 1.0.0 2.0.3 1.0.0 2.0.3 1.0.0
125 `Flang <https://github.com/ROCm/flang>`_ 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
126 COMPILERS :doc:`llvm-project <llvm-project:index>` .. _compilers-support-compatibility-matrix-past-60: 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
127 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ N/A N/A 19.0.0.25224 N/A N/A 19.0.0.25224 N/A N/A 19.0.0.25184 N/A N/A 19.0.0.25133 N/A 18.0.0.25012 N/A 18.0.0.25012 N/A 18.0.0.24491 N/A 18.0.0.24491 N/A 18.0.0.24392 N/A 18.0.0.24355 N/A 18.0.0.24355 N/A 18.0.0.24232 0.5.0 17.0.0.24193 0.5.0 17.0.0.24193 0.5.0 17.0.0.24154 0.5.0 17.0.0.24103 0.5.0 17.0.0.24012 0.5.0 17.0.0.23483
128 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
129 `Flang <https://github.com/ROCm/flang>`_ RUNTIMES 20.0.025444 19.0.0.25224 .. _runtime-support-compatibility-matrix-past-60: 20.0.025425 19.0.0.25224 20.0.0.25385 19.0.0.25184 20.0.0.25314 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
130 :doc:`llvm-project <llvm-project:index>` :doc:`AMD CLR <hip:understand/amd_clr>` 20.0.025444 19.0.0.25224 6.4.43484 20.0.025425 19.0.0.25224 6.4.43484 20.0.0.25385 19.0.0.25184 6.4.43483 20.0.0.25314 19.0.0.25133 6.4.43482 18.0.0.25012 6.3.42134 18.0.0.25012 6.3.42134 18.0.0.24491 6.3.42133 18.0.0.24491 6.3.42131 18.0.0.24392 6.2.41134 18.0.0.24355 6.2.41134 18.0.0.24355 6.2.41134 18.0.0.24232 6.2.41133 17.0.0.24193 6.1.40093 17.0.0.24193 6.1.40093 17.0.0.24154 6.1.40092 17.0.0.24103 6.1.40091 17.0.0.24012 6.1.32831 17.0.0.23483 6.1.32830
131 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ :doc:`HIP <hip:index>` 20.0.025444 19.0.0.25224 6.4.43484 20.0.025425 19.0.0.25224 6.4.43484 20.0.0.25385 19.0.0.25184 6.4.43483 20.0.0.25314 19.0.0.25133 6.4.43482 18.0.0.25012 6.3.42134 18.0.0.25012 6.3.42134 18.0.0.24491 6.3.42133 18.0.0.24491 6.3.42131 18.0.0.24392 6.2.41134 18.0.0.24355 6.2.41134 18.0.0.24355 6.2.41134 18.0.0.24232 6.2.41133 17.0.0.24193 6.1.40093 17.0.0.24193 6.1.40093 17.0.0.24154 6.1.40092 17.0.0.24103 6.1.40091 17.0.0.24012 6.1.32831 17.0.0.23483 6.1.32830
132 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
133 RUNTIMES :doc:`ROCr Runtime <rocr-runtime:index>` .. _runtime-support-compatibility-matrix-past-60: 1.15.0 1.15.0 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0
:doc:`AMD CLR <hip:understand/amd_clr>` 7.1.52802 6.4.43484 7.1.25424 6.4.43484 7.0.51831 6.4.43483 7.0.51830 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
:doc:`HIP <hip:index>` 7.1.52802 6.4.43484 7.1.25424 6.4.43484 7.0.51831 6.4.43483 7.0.51830 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>` 1.18.0 1.15.0 1.18.0 1.15.0 1.18.0 1.15.0 1.18.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -10,9 +10,10 @@ Use this matrix to view the ROCm compatibility and system requirements across su
You can also refer to the :ref:`past versions of ROCm compatibility matrix<past-rocm-compatibility-matrix>`.
GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon GPUs or Ryzen APUs for graphics
workloads, see the :doc:`Use ROCm on Radeon and Ryzen <radeon:index>` to verify
Accelerators and GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon or Radeon Pro GPUs for graphics
workloads, see the `Use ROCm on Radeon GPU documentation
<https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility.html>`_ to verify
compatibility and system requirements.
.. |br| raw:: html
@@ -22,31 +23,28 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "7.1.1", "7.1.0", "6.4.0"
:header: "ROCm Version", "6.4.3", "6.4.2", "6.3.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility]_,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 10.1, 10.0, 9.7, |br| 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 9.5, 9.4"
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP7,SLES 15 SP7,SLES 15 SP6
,"Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 9, 8"
,"Debian 13, 12","Debian 13, 12",Debian 12
,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0
,Rocky Linux 9,Rocky Linux 9,
,"SLES 15 SP7, SP6","SLES 15 SP7, SP6","SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_","Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,
,CDNA3,CDNA3,CDNA3
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA
,RDNA4,RDNA4,
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility]_,gfx950,gfx950,
,gfx1201,gfx1201,
,gfx1200,gfx1200,
,gfx1101,gfx1101,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1201 [#RDNA-OS]_,gfx1201 [#RDNA-OS]_,
,gfx1200 [#RDNA-OS]_,gfx1200 [#RDNA-OS]_,
,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,
,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942
@@ -54,116 +52,116 @@ compatibility and system requirements.
,gfx908,gfx908,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.9, 2.8, 2.7","2.8, 2.7, 2.6","2.6, 2.5, 2.4, 2.3"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.20.0, 2.19.1, 2.18.1","2.20.0, 2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.7.1,0.7.1,0.4.35
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,2.4.0
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,N/A,b5997
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.20.0
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.31
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,85f95ae
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,0.7.0
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.17.3
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.8.5,2.8.5,2.5.0
CUB,2.8.5,2.8.5,2.5.0
Thrust,2.5.0,2.5.0,2.3.2
CUB,2.5.0,2.5.0,2.3.2
,,,
DRIVER & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.1, 30.20.0 [#mi325x_KVM]_, |br| 30.10.2, 30.10.1 [#driver_patch]_, |br| 30.10, 6.4.x","30.20.0 [#mi325x_KVM]_, 30.10.2, |br| 30.10.1 [#driver_patch]_, 30.10, 6.4.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.14.0,2.14.0,2.12.0
:doc:`MIOpen <miopen:index>`,3.5.1,3.5.1,3.4.0
:doc:`MIVisionX <mivisionx:index>`,3.4.0,3.4.0,3.2.0
:doc:`rocAL <rocal:index>`,2.4.0,2.4.0,2.2.0
:doc:`rocDecode <rocdecode:index>`,1.4.0,1.4.0,0.10.0
:doc:`rocJPEG <rocjpeg:index>`,1.2.0,1.2.0,0.8.0
:doc:`rocPyDecode <rocpydecode:index>`,0.7.0,0.7.0,0.3.1
:doc:`RPP <rpp:index>`,2.1.0,2.1.0,1.9.10
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.11.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.3.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.1.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.1.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.8.0
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.6.0
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.2.0
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.1
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.27.7,2.27.7,2.22.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,2.0.0
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5
:doc:`rocSHMEM <rocshmem:index>`,2.0.1,2.0.1,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.1.0,3.1.0,2.4.0
:doc:`hipBLASLt <hipblaslt:index>`,1.1.0,1.1.0,0.12.0
:doc:`hipFFT <hipfft:index>`,1.0.21,1.0.21,1.0.18
:doc:`hipfort <hipfort:index>`,0.7.1,0.7.1,0.6.0
:doc:`hipRAND <hiprand:index>`,3.1.0,3.1.0,2.12.0
:doc:`hipSOLVER <hipsolver:index>`,3.1.0,3.1.0,2.4.0
:doc:`hipSPARSE <hipsparse:index>`,4.1.0,4.1.0,3.2.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.5,0.2.5,0.2.3
:doc:`rocALUTION <rocalution:index>`,4.0.1,4.0.1,3.2.2
:doc:`rocBLAS <rocblas:index>`,5.1.0,5.1.0,4.4.0
:doc:`rocFFT <rocfft:index>`,1.0.35,1.0.35,1.0.32
:doc:`rocRAND <rocrand:index>`,4.1.0,4.1.0,3.3.0
:doc:`rocSOLVER <rocsolver:index>`,3.31.0,3.31.0,3.28.0
:doc:`rocSPARSE <rocsparse:index>`,4.1.0,4.1.0,3.4.0
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,1.7.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.43.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.1,0.10.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.17
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.5.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.1.2
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.2
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.3,3.2.1
:doc:`rocBLAS <rocblas:index>`,4.4.1,4.4.1,4.3.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.31
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocSOLVER <rocsolver:index>`,3.28.2,3.28.2,3.27.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.3.0
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.6.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.42.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,4.1.0,4.1.0,3.4.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,1.5.0
:doc:`rocPRIM <rocprim:index>`,4.1.0,4.1.0,3.4.0
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.1.0,3.3.0
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.3.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.4.0
:doc:`rocPRIM <rocprim:index>`,3.4.1,3.4.1,3.3.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,7.1.52802,7.1.25424,6.4.43482
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.0,7.1.0,6.4.0
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43483,6.3.42131
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.3,6.4.2,6.3.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
:doc:`AMD SMI <amdsmi:index>`,26.1.0,26.1.0,25.3.0
:doc:`ROCm Data Center Tool <rdc:index>`,1.2.0,1.2.0,0.3.0
:doc:`AMD SMI <amdsmi:index>`,25.5.1,25.5.1,24.7.1
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.5.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.1.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.7.0,7.5.0,7.4.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0
,,,
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.3.0,3.3.0,3.1.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.2.0,1.2.0,1.0.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70101,2.0.70100,2.0.60400
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,0.6.0
:doc:`ROCTracer <roctracer:index>`,4.1.70101,4.1.70100,4.1.60400
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.1,3.1.1,3.0.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.2,1.0.2,0.1.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60403,2.0.60402,2.0.60300
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.5.0
:doc:`ROCTracer <roctracer:index>`,4.1.60403,4.1.60402,4.1.60300
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,19.0.0
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,18.0.0.24455
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.4,0.77.2
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.0.4
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.3
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,20.0.025444,20.0.025425,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.025444,20.0.025425,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025444,20.0.025425,19.0.0.25133
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25224,19.0.0.25224,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,19.0.0.25224,19.0.0.25224,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25224,19.0.0.25224,18.0.0.24491
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.52802,7.1.25424,6.4.43482
:doc:`HIP <hip:index>`,7.1.52802,7.1.25424,6.4.43482
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43484,6.4.43484,6.3.42131
:doc:`HIP <hip:index>`,6.4.43484,6.4.43484,6.3.42131
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.14.0
.. rubric:: Footnotes
.. [#os-compatibility] Some operating systems are supported on limited GPUs. For detailed information, see the latest :ref:`supported_distributions`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-operating-systems>`_, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-operating-systems>`_, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-operating-systems>`_.
.. [#gpu-compatibility] Some GPUs have limited operating system support. For detailed information, see the latest :ref:`supported_GPUs`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-gpus>`_, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-gpus>`_, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-gpus>`_.
.. [#dgl_compat] DGL is supported only on ROCm 7.0.0, ROCm 6.4.3 and ROCm 6.4.0.
.. [#llama-cpp_compat] llama.cpp is supported only on ROCm 7.0.0 and ROCm 6.4.x.
.. [#mi325x_KVM] For AMD Instinct MI325X KVM SR-IOV users, do not use AMD GPU Driver (amdgpu) 30.20.0.
.. [#driver_patch] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#7700XT-OS] Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. _OS-kernel-versions:
Operating systems, kernel and Glibc versions
@@ -176,36 +174,28 @@ Use this lookup table to confirm which operating system and kernel versions are
:widths: 40, 20, 30, 20
:stub-columns: 1
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 24.04.3, "6.8 [GA], 6.14 [HWE]", 2.39
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 24.04.2, "6.8 GA, 6.11 HWE", 2.39
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 24.04.2, "6.8 [GA], 6.11 [HWE]", 2.39
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 GA, 6.8 HWE", 2.35
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 [GA], 6.8 [HWE]", 2.35
,,
`Red Hat Enterprise Linux (RHEL 10) <https://access.redhat.com/articles/3078#RHEL9>`_, 10.1, 6.12.0-124, 2.39
,10.0, 6.12.0-55, 2.39
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.7, 5.14.0-611, 2.34
,9.6, 5.14.0-570, 2.34
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14+, 2.34
,9.5, 5.14+, 2.34
,9.4, 5.14.0-427, 2.34
,9.4, 5.14+, 2.34
,9.3, 5.14+, 2.34
,,
`Red Hat Enterprise Linux (RHEL 8) <https://access.redhat.com/articles/3078#RHEL8>`_, 8.10, 4.18.0-553, 2.28
`Red Hat Enterprise Linux (RHEL 8) <https://access.redhat.com/articles/3078#RHEL8>`_, 8.10, 4.18.0+, 2.28
,8.9, 4.18.0, 2.28
,,
`SUSE Linux Enterprise Server (SLES) <https://www.suse.com/support/kb/doc/?id=000019587#SLE15SP4>`_, 15 SP7, 6.40-150700.51, 2.38
`SUSE Linux Enterprise Server (SLES) <https://www.suse.com/support/kb/doc/?id=000019587#SLE15SP4>`_, 15 SP7, 6.11.0+, 2.38
,15 SP6, "6.5.0+, 6.4.0", 2.38
,15 SP5, 5.14.21, 2.31
,,
`Rocky Linux <https://wiki.rockylinux.org/rocky/version/>`_, 9, 5.14.0-570, 2.34
,,
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 10, 6.12.0 (UEK), 2.39
,9, 6.12.0 (UEK), 2.34
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 9, 5.15.0 (UEK), 2.35
,8, 5.15.0 (UEK), 2.28
,,
`Debian <https://www.debian.org/download>`_,13, 6.12, 2.35
,12, 6.1.0, 2.36
`Debian <https://www.debian.org/download>`_,12, 6.1, 2.36
,,
`Azure Linux <https://techcommunity.microsoft.com/blog/linuxandopensourceblog/azure-linux-3-0-now-in-preview-on-azure-kubernetes-service-v1-31/4287229>`_,3.0, 6.6.92, 2.38
`Azure Linux <https://techcommunity.microsoft.com/blog/linuxandopensourceblog/azure-linux-3-0-now-in-preview-on-azure-kubernetes-service-v1-31/4287229>`_,3.0, 6.6.60, 2.38
,,
.. note::
@@ -238,19 +228,26 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#os-compatibility-past-60] Some operating systems are supported on limited GPUs. For detailed information, see :ref:`supported_distributions` and select the required ROCm version for version specific support.
.. [#gpu-compatibility-past-60] Some GPUs have limited operating system support. For detailed information, see :ref:`supported_GPUs` and select the required ROCm version for version specific support.
.. [#tf-mi350-past-60] TensorFlow 2.17.1 is not supported on AMD Instinct MI350 Series GPUs. Use TensorFlow 2.19.1 or 2.18.1 with MI350 Series GPUs instead.
.. [#verl_compat-past-60] verl is supported only on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat-past-60] Stanford Megatron-LM is supported only on ROCm 6.3.0.
.. [#dgl_compat-past-60] DGL is supported only on ROCm 7.0.0, ROCm 6.4.3 and ROCm 6.4.0.
.. [#megablocks_compat-past-60] Megablocks is supported only on ROCm 6.3.0.
.. [#taichi_compat-past-60] Taichi is supported only on ROCm 6.3.2.
.. [#ray_compat-past-60] Ray is supported only on ROCm 6.4.1.
.. [#llama-cpp_compat-past-60] llama.cpp is supported only on ROCm 7.0.0 and 6.4.x.
.. [#flashinfer_compat-past-60] FlashInfer is supported only on ROCm 6.4.1.
.. [#mi325x_KVM-past-60] For AMD Instinct MI325X KVM SR-IOV users, do not use AMD GPU Driver (amdgpu) 30.20.0.
.. [#driver_patch-past-60] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#7700XT-OS-past-60] Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_620-past-60] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_612-past-60] **For ROCm 6.1.2** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_611-past-60] **For ROCm 6.1.1** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#verl_compat] verl is only supported on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat] Stanford Megatron-LM is only supported on ROCm 6.3.0.
.. [#dgl_compat] DGL is only supported on ROCm 6.4.0.
.. [#megablocks_compat] Megablocks is only supported on ROCm 6.3.0.
.. [#taichi_compat] Taichi is only supported on ROCm 6.3.2.
.. [#ray_compat] Ray is only supported on ROCm 6.4.1.
.. [#llama-cpp_compat] llama.cpp is only supported on ROCm 6.4.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Deep Graph Library (DGL) compatibility
:keywords: GPU, CPU, deep graph library, DGL, deep learning, framework compatibility
:keywords: GPU, DGL compatibility
.. version-set:: rocm_version latest
@@ -10,42 +10,24 @@
DGL compatibility
********************************************************************************
Deep Graph Library (`DGL <https://www.dgl.ai/>`__) is an easy-to-use, high-performance, and scalable
Deep Graph Library `(DGL) <https://www.dgl.ai/>`_ is an easy-to-use, high-performance and scalable
Python package for deep learning on graphs. DGL is framework agnostic, meaning
that if a deep graph model is a component in an end-to-end application, the rest of
if a deep graph model is a component in an end-to-end application, the rest of
the logic is implemented using PyTorch.
DGL provides a high-performance graph object that can reside on either CPUs or GPUs.
It bundles structural data features for better control and provides a variety of functions
for computing with graph objects, including efficient and customizable message passing
primitives for Graph Neural Networks.
* ROCm support for DGL is hosted in the `https://github.com/ROCm/dgl <https://github.com/ROCm/dgl>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/dmlc/dgl <https://github.com/dmlc/dgl>`_ upstream repository.
* Use the prebuilt :ref:`Docker images <dgl-docker-compat>` with DGL, PyTorch, and ROCm preinstalled.
* See the :doc:`ROCm DGL installation guide <rocm-install-on-linux:install/3rd-party/dgl-install>`
to install and get started.
Support overview
================================================================================
- The ROCm-supported version of DGL is maintained in the official `https://github.com/ROCm/dgl
<https://github.com/ROCm/dgl>`__ repository, which differs from the
`https://github.com/dmlc/dgl <https://github.com/dmlc/dgl>`__ upstream repository.
- To get started and install DGL on ROCm, use the prebuilt :ref:`Docker images <dgl-docker-compat>`,
which include ROCm, DGL, and all required dependencies.
- See the :doc:`ROCm DGL installation guide <rocm-install-on-linux:install/3rd-party/dgl-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://www.dgl.ai/pages/start.html>`__
for additional context.
Version support
--------------------------------------------------------------------------------
DGL is supported on `ROCm 7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__,
`ROCm 6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__, and `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__.
Supported devices
--------------------------------------------------------------------------------
================================================================================
- **Officially Supported**: TF32 with AMD Instinct MI300X (through hipblaslt)
- **Partially Supported**: TF32 with AMD Instinct MI250X
**Officially Supported**: AMD Instinct™ MI300X, MI250X
.. _dgl-recommendations:
@@ -53,42 +35,23 @@ Use cases and recommendations
================================================================================
DGL can be used for Graph Learning, and building popular graph models like
GAT, GCN, and GraphSage. Using these models, a variety of use cases are supported:
GAT, GCN and GraphSage. Using these we can support a variety of use-cases such as:
- Recommender systems
- Network Optimization and Analysis
- 1D (Temporal) and 2D (Image) Classification
- Drug Discovery
For use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for DGL examples and best practices to optimize your workloads on AMD GPUs.
Multiple use cases of DGL have been tested and verified.
However, a recommended example follows a drug discovery pipeline using the ``SE3Transformer``.
Refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_,
where you can search for DGL examples and best practices to optimize your training workflows on AMD GPUs.
* Although multiple use cases of DGL have been tested and verified, a few have been
outlined in the `DGL in the Real World: Running GNNs on Real Use Cases
<https://rocm.blogs.amd.com/artificial-intelligence/dgl_blog2/README.html>`__ blog
post, which walks through four real-world graph neural network (GNN) workloads
implemented with the Deep Graph Library on ROCm. It covers tasks ranging from
heterogeneous e-commerce graphs and multiplex networks (GATNE) to molecular graph
regression (GNN-FiLM) and EEG-based neurological diagnosis (EEG-GCNN). For each use
case, the authors detail: the dataset and task, how DGL is used, and their experience
porting to ROCm. It is shown that DGL codebases often run without modification, with
seamless integration of graph operations, message passing, sampling, and convolution.
Coverage includes:
* The `Graph Neural Networks (GNNs) at Scale: DGL with ROCm on AMD Hardware
<https://rocm.blogs.amd.com/artificial-intelligence/why-graph-neural/README.html>`__
blog post introduces the Deep Graph Library (DGL) and its enablement on the AMD ROCm platform,
bringing high-performance graph neural network (GNN) training to AMD GPUs. DGL bridges
the gap between dense tensor frameworks and the irregular nature of graph data through a
graph-first, message-passing abstraction. Its design ensures scalability, flexibility, and
interoperability across frameworks like PyTorch and TensorFlow. AMDs ROCm integration
enables DGL to run efficiently on HIP-based GPUs, supported by prebuilt Docker containers
and open-source repositories. This marks a major step in AMD's mission to advance open,
scalable AI ecosystems beyond traditional architectures.
- Single-GPU training/inference
- Multi-GPU training
You can pre-process datasets and begin training on AMD GPUs through:
* Single-GPU training/inference
* Multi-GPU training
.. _dgl-docker-compat:
@@ -99,17 +62,16 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes `DGL images <https://hub.docker.com/r/rocm/dgl/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest available DGL version from the official Docker Hub.
AMD validates and publishes `DGL images <https://hub.docker.com/r/rocm/dgl>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
Click the |docker-icon| to view the image on Docker Hub.
.. list-table::
.. list-table:: DGL Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
* - Docker
- DGL
- PyTorch
- Ubuntu
@@ -117,195 +79,130 @@ Click the |docker-icon| to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu24.04_py3.12_pytorch_2.8.0/images/sha256-943698ddf54c22a7bcad2e5b4ff467752e29e4ba6d0c926789ae7b242cbd92dd"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-8ce2c3bcfaa137ab94a75f9e2ea711894748980f57417739138402a542dd5564"><i class="fab fa-docker fa-lg"></i></a>
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.8.0 <https://github.com/pytorch/pytorch/releases/tag/v2.8.0>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu24.04_py3.12_pytorch_2.6.0/images/sha256-b2ec286a035eb7d0a6aab069561914d21a3cac462281e9c024501ba5ccedfbf7"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-cf1683283b8eeda867b690229c8091c5bbf1edb9f52e8fb3da437c49a612ebe4"><i class="fab fa-docker fa-lg"></i></a>
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu22.04_py3.10_pytorch_2.7.1/images/sha256-d27aee16df922ccf0bcd9107bfcb6d20d34235445d456c637e33ca6f19d11a51"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-4834f178c3614e2d09e89e32041db8984c456d45dfd20286e377ca8635686554"><i class="fab fa-docker fa-lg"></i></a>
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.7.1 <https://github.com/pytorch/pytorch/releases/tag/v2.7.1>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm6.4.3_ubuntu24.04_py3.12_pytorch_2.6.0/images/sha256-f3ba6a3c9ec9f6c1cde28449dc9780e0c4c16c4140f4b23f158565fbfd422d6b"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-8ce2c3bcfaa137ab94a75f9e2ea711894748980f57417739138402a542dd5564"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-cf1683283b8eeda867b690229c8091c5bbf1edb9f52e8fb3da437c49a612ebe4"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.4.1 <https://github.com/pytorch/pytorch/releases/tag/v2.4.1>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-4834f178c3614e2d09e89e32041db8984c456d45dfd20286e377ca8635686554"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-88740a2c8ab4084b42b10c3c6ba984cab33dd3a044f479c6d7618e2b2cb05e69"><i class="fab fa-docker fa-lg"></i></a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.4.1 <https://github.com/pytorch/pytorch/releases/tag/v2.4.1>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-88740a2c8ab4084b42b10c3c6ba984cab33dd3a044f479c6d7618e2b2cb05e69"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.3.0 <https://github.com/pytorch/pytorch/releases/tag/v2.3.0>`__
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Key ROCm libraries for DGL
================================================================================
DGL on ROCm depends on specific libraries that affect its features and performance.
Using the DGL Docker container or building it with the provided Docker file or a ROCm base image is recommended.
Using the DGL Docker container or building it with the provided docker file or a ROCm base image is recommended.
If you prefer to build it yourself, ensure the following dependencies are installed:
.. list-table::
:header-rows: 1
* - ROCm library
- ROCm 7.0.0 Version
- ROCm 6.4.x Version
- Version
- Purpose
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- 1.1.0
- :version-ref:`"Composable Kernel" rocm_version`
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 3.0.0
- 2.4.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 1.0.0
- 0.12.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 4.0.0
- 3.4.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.20
- 1.0.18
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 3.0.0
- 2.12.0
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 3.0.0
- 2.4.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 4.0.1
- 3.2.0
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.4
- 0.2.3
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 2.0.0
- 1.5.0
- :version-ref:`hipTensor rocm_version`
- Optimizes for high-performance tensor operations, such as contractions.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.5.0
- 3.4.0
- :version-ref:`MIOpen rocm_version`
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.13.0
- 2.12.0
- :version-ref:`MIGraphX rocm_version`
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.3.0
- 3.2.0
- :version-ref:`MIVisionX rocm_version`
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 3.3.0
- 2.2.0
- :version-ref:`rocAL rocm_version`
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.26.6
- 2.22.3
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 1.0.0
- 0.10.0
- :version-ref:`rocDecode rocm_version`
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 1.1.0
- 0.8.0
- :version-ref:`rocJPEG rocm_version`
- Provides hardware-accelerated JPEG image decoding and encoding.
* - `RPP <https://github.com/ROCm/RPP>`_
- 2.0.0
- 1.9.10
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 4.0.0
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 2.0.0
- 1.7.0
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
@@ -314,14 +211,14 @@ If you prefer to build it yourself, ensure the following dependencies are instal
Supported features
================================================================================
Many functions and methods available upstream are also supported in DGL on ROCm.
Many functions and methods available in DGL Upstream are also supported in DGL ROCm.
Instead of listing them all, support is grouped into the following categories to provide a general overview.
* DGL Base
* DGL Backend
* DGL Data
* DGL Dataloading
* DGL Graph
* DGL DGLGraph
* DGL Function
* DGL Ops
* DGL Sampling
@@ -333,29 +230,26 @@ Instead of listing them all, support is grouped into the following categories to
* DGL NN
* DGL Optim
* DGL Sparse
* GraphBolt
Unsupported features
================================================================================
* TF32 Support (only supported for PyTorch 2.7 and above)
* Kineto/ROCTracer integration
* Graphbolt
* Partial TF32 Support (MI250x only)
* Kineto/ ROCTracer integration
Unsupported functions
================================================================================
* ``bfs``
* ``more_nnz``
* ``format``
* ``multiprocess_sparse_adam_state_dict``
* ``record_stream_ndarray``
* ``half_spmm``
* ``segment_mm``
* ``gather_mm_idx_b``
* ``pgexplainer``
* ``sample_labors_prob``
* ``sample_labors_noprob``
* ``sparse_admin``
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/dgl-history` to find documentation for previous releases
of the ``ROCm/dgl`` Docker image.

View File

@@ -1,108 +0,0 @@
:orphan:
.. meta::
:description: FlashInfer compatibility
:keywords: GPU, LLM, FlashInfer, deep learning, framework compatibility
.. version-set:: rocm_version latest
********************************************************************************
FlashInfer compatibility
********************************************************************************
`FlashInfer <https://docs.flashinfer.ai/index.html>`__ is a library and kernel generator
for Large Language Models (LLMs) that provides a high-performance implementation of graphics
processing units (GPUs) kernels. FlashInfer focuses on LLM serving and inference, as well
as advanced performance across diverse scenarios.
FlashInfer features highly efficient attention kernels, load-balanced scheduling, and memory-optimized
techniques, while supporting customized attention variants. Its compatible with ``torch.compile``, and
offers high-performance LLM-specific operators, with easy integration through PyTorch, and C++ APIs.
.. note::
The ROCm port of FlashInfer is under active development, and some features are not yet available.
For the latest feature compatibility matrix, refer to the ``README`` of the
`https://github.com/ROCm/flashinfer <https://github.com/ROCm/flashinfer>`__ repository.
Support overview
================================================================================
- The ROCm-supported version of FlashInfer is maintained in the official `https://github.com/ROCm/flashinfer
<https://github.com/ROCm/flashinfer>`__ repository, which differs from the
`https://github.com/flashinfer-ai/flashinfer <https://github.com/flashinfer-ai/flashinfer>`__
upstream repository.
- To get started and install FlashInfer on ROCm, use the prebuilt :ref:`Docker images <flashinfer-docker-compat>`,
which include ROCm, FlashInfer, and all required dependencies.
- See the :doc:`ROCm FlashInfer installation guide <rocm-install-on-linux:install/3rd-party/flashinfer-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://docs.flashinfer.ai/installation.html>`__
for additional context.
Version support
--------------------------------------------------------------------------------
FlashInfer is supported on `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__.
Supported devices
--------------------------------------------------------------------------------
**Officially Supported**: AMD Instinct™ MI300X
.. _flashinfer-recommendations:
Use cases and recommendations
================================================================================
This release of FlashInfer on ROCm provides the decode functionality for LLM inferencing.
In the decode phase, tokens are generated sequentially, with the model predicting each new
token based on the previously generated tokens and the input context.
FlashInfer on ROCm brings over upstream features such as load balancing, sparse and dense
attention optimizations, and batching support, enabling efficient execution on AMD Instinct™ MI300X GPUs.
Because large LLMs often require substantial KV caches or long context windows, FlashInfer on ROCm
also implements cascade attention from upstream to reduce memory usage.
For currently supported use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for examples and best practices to optimize your workloads on AMD GPUs.
.. _flashinfer-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `FlashInfer images <https://hub.docker.com/r/rocm/flashinfer/tags>`__
with ROCm backends on Docker Hub. The following Docker image tag and associated
inventories represent the latest available FlashInfer version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- FlashInfer
- PyTorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/flashinfer/flashinfer-0.2.5_rocm6.4_ubuntu24.04_py3.12_pytorch2.7/images/sha256-558914838821c88c557fb6d42cfbc1bdb67d79d19759f37c764a9ee801f93313"><i class="fab fa-docker fa-lg"></i> rocm/flashinfer</a>
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- `v0.2.5 <https://github.com/flashinfer-ai/flashinfer/releases/tag/v0.2.5>`__
- `2.7.1 <https://github.com/ROCm/pytorch/releases/tag/v2.7.1>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3129/>`__

View File

@@ -2,7 +2,7 @@
.. meta::
:description: JAX compatibility
:keywords: GPU, JAX, deep learning, framework compatibility
:keywords: GPU, JAX compatibility
.. version-set:: rocm_version latest
@@ -10,58 +10,42 @@
JAX compatibility
*******************************************************************************
`JAX <https://docs.jax.dev/en/latest/notebooks/thinking_in_jax.html>`__ is a library
for array-oriented numerical computation (similar to NumPy), with automatic differentiation
and just-in-time (JIT) compilation to enable high-performance machine learning research.
JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
JAX provides an API that combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale. JAX uses composable transformations of Python and NumPy through
JIT compilation, automatic vectorization, and parallelization.
JAX uses composable transformations of Python and NumPy through just-in-time
(JIT) compilation, automatic vectorization, and parallelization. To learn about
JAX, including profiling and optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
Support overview
================================================================================
ROCm support for JAX is upstreamed, and users can build the official source code
with ROCm support:
- The ROCm-supported version of JAX is maintained in the official `https://github.com/ROCm/rocm-jax
<https://github.com/ROCm/rocm-jax>`__ repository, which differs from the
`https://github.com/jax-ml/jax <https://github.com/jax-ml/jax>`__ upstream repository.
- ROCm JAX release:
- To get started and install JAX on ROCm, use the prebuilt :ref:`Docker images <jax-docker-compat>`,
which include ROCm, JAX, and all required dependencies.
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>`
with ROCm and JAX preinstalled.
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
for installation and setup instructions.
- ROCm JAX repository: `ROCm/jax <https://github.com/ROCm/jax>`_
- You can also consult the upstream `Installation guide <https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`__
for additional context.
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
to get started.
Version support
--------------------------------------------------------------------------------
- Official JAX release:
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax/tags>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community/tags>`_
follow upstream JAX releases and use the latest available ROCm version.
- Official JAX repository: `jax-ml/jax <https://github.com/jax-ml/jax>`_
JAX Plugin-PJRT with JAX/JAXLIB compatibility
================================================================================
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in
the JAX documentation.
Portable JIT Runtime (PJRT) is an open, stable interface for device runtime and
compiler. The following table details the ROCm version compatibility matrix
between JAX PluginPJRT and JAX/JAXLIB.
.. note::
.. list-table::
:header-rows: 1
* - JAX Plugin-PJRT
- JAX/JAXLIB
- ROCm
* - 0.7.1
- 0.7.1
- 7.1.1, 7.1.0
* - 0.6.0
- 0.6.2, 0.6.0
- 7.0.2, 7.0.1, 7.0.0
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
Use cases and recommendations
================================================================================
@@ -87,7 +71,7 @@ Use cases and recommendations
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discusses techniques for parallelizing the
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
@@ -95,7 +79,7 @@ Use cases and recommendations
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
GPU using ROCm. The page is aimed at helping users achieve optimal
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
@@ -106,15 +90,75 @@ For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.b
Docker image compatibility
================================================================================
AMD validates and publishes `JAX images <https://hub.docker.com/r/rocm/jax/tags>`__
with ROCm backends on Docker Hub.
.. |docker-icon| raw:: html
For ``jax-community`` images, see `rocm/jax-community
<https://hub.docker.com/r/rocm/jax-community/tags>`__ on Docker Hub.
<i class="fab fa-docker"></i>
To find the right image tag, see the :ref:`JAX on ROCm installation
documentation <rocm-install-on-linux:jax-docker-support>` for a list of
available ``rocm/jax`` images.
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.12/images/sha256-8918fa806a172c1a10eb2f57131eb31b5d7c8fa1656b8729fe7d3d736112de83"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.10/images/sha256-a394be13c67b7fc602216abee51233afd4b6cb7adaa57ca97e688fba82f9ad79"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.12.8/images/sha256-25dfaa0183e274bd0a3554a309af3249c6f16a1793226cb5373f418e39d3146a"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.11.11/images/sha256-ff9baeca9067d13e6c279c911e5a9e5beed0817d24fafd424367cc3d5bd381d7"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.11 <https://www.python.org/downloads/release/python-31111/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.10.16/images/sha256-8bab484be1713655f74da51a191ed824bb9d03db1104fd63530a1ac3c37cf7b1"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
.. _key_rocm_libraries:
@@ -250,7 +294,7 @@ The ROCm supported data types in JAX are collected in the following table.
.. note::
JAX data type support is affected by the :ref:`key_rocm_libraries` and it's
JAX data type support is effected by the :ref:`key_rocm_libraries` and it's
collected on :doc:`ROCm data types and precision support <rocm:reference/precision-support>`
page.
@@ -266,54 +310,5 @@ For a complete and up-to-date list of JAX public modules (for example, ``jax.num
Since version 0.1.56, JAX has full support for ROCm, and the
:ref:`Known issues and important notes <jax_comp_known_issues>` section
contains details about limitations specific to the ROCm backend. The list of
JAX API modules are maintained by the JAX project and is subject to change.
JAX API modules is maintained by the JAX project and is subject to change.
Refer to the official Jax documentation for the most up-to-date information.
Key features and enhancements for ROCm 7.0
===============================================================================
- Upgraded XLA backend: Integrates a newer XLA version, enabling better
optimizations, broader operator support, and potential performance gains.
- RNN support: Native RNN support (including LSTMs via ``jax.experimental.rnn``)
now available on ROCm, aiding sequence model development.
- Comprehensive linear algebra capabilities: Offers robust ``jax.linalg``
operations, essential for scientific and machine learning tasks.
- Expanded AMD GPU architecture support: Provides ongoing support for gfx1101
GPUs and introduces support for gfx950 and gfx12xx GPUs.
- Mixed FP8 precision support: Enables ``lax.dot_general`` operations with mixed FP8
types, offering pathways for memory and compute efficiency.
- Streamlined PyPi packaging: Provides reliable PyPi wheels for JAX on ROCm,
simplifying the installation process.
- Pallas experimental kernel development: Continued Pallas framework
enhancements for custom GPU kernels, including new intrinsics (specific
kernel behaviors under review).
- Improved build system and CI: Enhanced ROCm build system and CI for greater
reliability and maintainability.
- Enhanced distributed computing setup: Improved JAX setup in multi-GPU
distributed environments.
.. _jax_comp_known_issues:
Known issues and notes for ROCm 7.0
===============================================================================
- ``nn.dot_product_attention``: Certain configurations of ``jax.nn.dot_product_attention``
may cause segmentation faults, though the majority of use cases work correctly.
- SVD with dynamic shapes: SVD on inputs with dynamic/symbolic shapes might result in an error.
SVD with static shapes is unaffected.
- QR decomposition with symbolic shapes: QR decomposition operations may fail when using
symbolic/dynamic shapes in shape polymorphic contexts.
- Pallas kernels: Specific advanced Pallas kernels may exhibit variations in
numerical output or resource usage. These are actively reviewed as part of
Pallas's experimental development.

View File

@@ -1,8 +1,8 @@
:orphan:
.. meta::
:description: llama.cpp compatibility
:keywords: GPU, GGML, llama.cpp, deep learning, framework compatibility
:description: llama.cpp deep learning framework compatibility
:keywords: GPU, GGML, llama.cpp compatibility
.. version-set:: rocm_version latest
@@ -16,36 +16,37 @@ for Large Language Model (LLM) inference that runs on both central processing un
a simple, dependency-free setup.
The framework supports multiple quantization options, from 1.5-bit to 8-bit integers,
to accelerate inference and reduce memory usage. Originally built as a CPU-first library,
to speed up inference and reduce memory usage. Originally built as a CPU-first library,
llama.cpp is easy to integrate with other programming environments and is widely
adopted across diverse platforms, including consumer devices.
Support overview
================================================================================
ROCm support for llama.cpp is upstreamed, and you can build the official source code
with ROCm support:
- The ROCm-supported version of llama.cpp is maintained in the official `https://github.com/ROCm/llama.cpp
<https://github.com/ROCm/llama.cpp>`__ repository, which differs from the
`https://github.com/ggml-org/llama.cpp <https://github.com/ggml-org/llama.cpp>`__ upstream repository.
- ROCm support for llama.cpp is hosted in the official `https://github.com/ROCm/llama.cpp
<https://github.com/ROCm/llama.cpp>`_ repository.
- To get started and install llama.cpp on ROCm, use the prebuilt :ref:`Docker images <llama-cpp-docker-compat>`,
which include ROCm, llama.cpp, and all required dependencies.
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ggml-org/llama.cpp <https://github.com/ggml-org/llama.cpp>`_ upstream repository.
- To install llama.cpp, use the prebuilt :ref:`Docker image <llama-cpp-docker-compat>`,
which includes ROCm, llama.cpp, and all required dependencies.
- See the :doc:`ROCm llama.cpp installation guide <rocm-install-on-linux:install/3rd-party/llama-cpp-install>`
for installation and setup instructions.
to install and get started.
- You can also consult the upstream `Installation guide <https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md>`__
for additional context.
- See the `Installation guide <https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#hip>`__
in the upstream llama.cpp documentation.
Version support
--------------------------------------------------------------------------------
.. note::
llama.cpp is supported on `ROCm 7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__ and
`ROCm 6.4.x <https://repo.radeon.com/rocm/apt/6.4/>`__.
llama.cpp is supported on ROCm 6.4.0.
Supported devices
--------------------------------------------------------------------------------
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
**Officially Supported**: AMD Instinct™ MI325X, MI300X, MI210
Use cases and recommendations
================================================================================
@@ -69,7 +70,7 @@ llama.cpp is also used in a range of real-world applications, including:
For more use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for llama.cpp examples and best practices to optimize your workloads on AMD GPUs.
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__,
blog post outlines how the open-source llama.cpp framework enables efficient LLM inference—including interactive inference with ``llama-cli``,
server deployment with ``llama-server``, GGUF model preparation and quantization, performance benchmarking, and optimizations tailored for
AMD Instinct GPUs within the ROCm ecosystem.
@@ -83,9 +84,9 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes `llama.cpp images <https://hub.docker.com/r/rocm/llama.cpp/tags>`__
AMD validates and publishes `ROCm llama.cpp Docker images <https://hub.docker.com/r/rocm/llama.cpp>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest available llama.cpp versions from the official Docker Hub.
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. important::
@@ -104,115 +105,8 @@ Click |docker-icon| to view the image on Docker Hub.
- Server Docker
- Light Docker
- llama.cpp
- ROCm
- Ubuntu
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_full/images/sha256-a94f0c7a598cc6504ff9e8371c016d7a2f93e69bf54a36c870f9522567201f10g"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_server/images/sha256-be175932c3c96e882dfbc7e20e0e834f58c89c2925f48b222837ee929dfc47ee"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_light/images/sha256-d8ba0c70603da502c879b1f8010b439c8e7fa9f6cbdac8bbbbbba97cb41ebc9e"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6652 <https://github.com/ROCm/llama.cpp/tree/release/b6652>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_full/images/sha256-37582168984f25dce636cc7288298e06d94472ea35f65346b3541e6422b678ee"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_server/images/sha256-7e70578e6c3530c6591cc2c26da24a9ee68a20d318e12241de93c83224f83720"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_light/images/sha256-9a5231acf88b4a229677bc2c636ea3fe78a7a80f558bd80910b919855de93ad5"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6652 <https://github.com/ROCm/llama.cpp/tree/release/b6652>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_full/images/sha256-5960fc850024a8a76451f9eaadd89b7e59981ae9f393b407310c1ddf18892577"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_server/images/sha256-1b79775d9f546065a6aaf9ca426e1dd4ed4de0b8f6ee83687758cc05af6538e6"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_light/images/sha256-8f863c4c2857ae42bebd64e4f1a0a1e7cc3ec4503f243e32b4a4dcad070ec361"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_full/images/sha256-888879b3ee208f9247076d7984524b8d1701ac72611689e89854a1588bec9867"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_server/images/sha256-90e4ff99a66743e33fd00728cd71a768588e5f5ef355aaa196669fe65ac70672"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_light/images/sha256-bd447a049939cb99054f8fbf3f2352870fe906a75e2dc3339c845c08b9c53f9b"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_full/images/sha256-5b3a1bc4889c1fcade434b937fbf9cc1c22ff7dc0317c130339b0c9238bc88c4"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_server/images/sha256-5228ff99d0f627a9032d668f4381b2e80dc1e301adc3e0821f26d8354b175271"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_light/images/sha256-b12723b332a826a89b7252dddf868cbe4d1a869562fc4aa4032f59e1a683b968"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_full/images/sha256-cd6e21a6a73f59b35dd5309b09dd77654a94d783bf13a55c14eb8dbf8e9c2615"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_server/images/sha256-c2b4689ab2c47e6626e8fea22d7a63eb03d47c0fde9f5ef8c9f158d15c423e58"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_light/images/sha256-1acc28f29ed87db9cbda629cb29e1989b8219884afe05f9105522be929e94da4"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_full/images/sha256-2f8ae8a44510d96d52dea6cb398b224f7edeb7802df7ec488c6f63d206b3cdc9"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_server/images/sha256-fece497ff9f4a28b12f645de52766941da8ead8471aa1ea84b61d4b4568e51f2"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_light/images/sha256-3e14352fa6f8c6128b23cf9342531c20dbfb522550b626e09d83b260a1947022"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_full/images/sha256-80763062ef0bec15038c35fd01267f1fc99a5dd171d4b48583cc668b15efad69"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_server/images/sha256-db2a6c957555ed83b819bbc54aea884a93192da0fb512dae63d32e0dc4e8ab8f"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_light/images/sha256-c6dbb07cc655fb079d5216e4b77451cb64a9daa0585d23b6fb8b32cb22021197"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_full/images/sha256-f78f6c81ab2f8e957469415fe2370a1334fe969c381d1fe46050c85effaee9d5"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
@@ -223,52 +117,40 @@ Click |docker-icon| to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_light/images/sha256-cc324e6faeedf0e400011f07b49d2dc41a16bae257b2b7befa0f4e2e97231320"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b5997 <https://github.com/ROCm/llama.cpp/tree/release/b5997>`__
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- 24.04
Key ROCm libraries for llama.cpp
================================================================================
llama.cpp functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers. Ensure you have the required libraries for
your corresponding ROCm version.
feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- ROCm 7.0.0 version
- ROCm 6.4.x version
- Version
- Purpose
- Usage
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`__
- 3.0.0
- 2.4.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations such as matrix multiplication, matrix-vector
products, and tensor contractions. Utilized in both dense and batched
linear algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`__
- 1.0.0
- 0.12.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- By setting the flag ``ROCBLAS_USE_HIPBLASLT``, you can dispatch hipblasLt
kernels where possible.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`__
- 2.0.0
- 1.7.0
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Can be used to enhance the flash attention performance on AMD compute, by enabling
the flag during compile time.
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/llama-cpp-history` to find documentation for previous releases
of the ``ROCm/llama.cpp`` Docker image.
the flag during compile time.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Megablocks compatibility
:keywords: GPU, megablocks, deep learning, framework compatibility
:keywords: GPU, megablocks, compatibility
.. version-set:: rocm_version latest
@@ -10,42 +10,28 @@
Megablocks compatibility
********************************************************************************
`Megablocks <https://github.com/databricks/megablocks>`__ is a lightweight library
for mixture-of-experts `(MoE) <https://huggingface.co/blog/moe>`__ training.
Megablocks is a light-weight library for mixture-of-experts (MoE) training.
The core of the system is efficient "dropless-MoE" and standard MoE layers.
Megablocks is integrated with `https://github.com/stanford-futuredata/Megatron-LM
<https://github.com/stanford-futuredata/Megatron-LM>`__,
Megablocks is integrated with `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_,
where data and pipeline parallel training of MoEs is supported.
Support overview
================================================================================
* ROCm support for Megablocks is hosted in the official `https://github.com/ROCm/megablocks <https://github.com/ROCm/megablocks>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <megablocks-docker-compat>` with ROCm, PyTorch, and Megablocks preinstalled.
* See the :doc:`ROCm Megablocks installation guide <rocm-install-on-linux:install/3rd-party/megablocks-install>` to install and get started.
- The ROCm-supported version of Megablocks is maintained in the official `https://github.com/ROCm/megablocks
<https://github.com/ROCm/megablocks>`__ repository, which differs from the
`https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`__ upstream repository.
.. note::
- To get started and install Megablocks on ROCm, use the prebuilt :ref:`Docker image <megablocks-docker-compat>`,
which includes ROCm, Megablocks, and all required dependencies.
- See the :doc:`ROCm Megablocks installation guide <rocm-install-on-linux:install/3rd-party/megablocks-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://github.com/databricks/megablocks>`__
for additional context.
Version support
--------------------------------------------------------------------------------
Megablocks is supported on `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`__.
Megablocks is supported on ROCm 6.3.0.
Supported devices
--------------------------------------------------------------------------------
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210X
Supported models and features
--------------------------------------------------------------------------------
================================================================================
This section summarizes the Megablocks features supported by ROCm.
@@ -55,28 +41,20 @@ This section summarizes the Megablocks features supported by ROCm.
* Mixture-of-Experts
* dropless-Mixture-of-Experts
.. _megablocks-recommendations:
Use cases and recommendations
================================================================================
* The `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`__
blog post guides how to leverage the ROCm platform for pre-training using the
Megablocks framework. It introduces a streamlined approach for training Mixture-of-Experts
(MoE) models using the Megablocks library on AMD hardware. Focusing on GPT-2, it
demonstrates how block-sparse computations can enhance scalability and efficiency in MoE
training. The guide provides step-by-step instructions for setting up the environment,
including cloning the repository, building the Docker image, and running the training container.
Additionally, it offers insights into utilizing the ``oscar-1GB.json`` dataset for pre-training
language models. By leveraging Megablocks and the ROCm platform, you can optimize your MoE
training workflows for large-scale transformer models.
The `ROCm Megablocks blog posts <https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`_
guide how to leverage the ROCm platform for pre-training using the Megablocks framework.
It features how to pre-process datasets and how to begin pre-training on AMD GPUs through:
* Single-GPU pre-training
* Multi-GPU pre-training
.. _megablocks-docker-compat:
Docker image compatibility
@@ -86,9 +64,10 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes `Megablocks images <https://hub.docker.com/r/rocm/megablocks/tags>`__
with ROCm backends on Docker Hub. The following Docker image tag and associated
inventories represent the latest available Megablocks version from the official Docker Hub.
AMD validates and publishes `ROCm Megablocks images <https://hub.docker.com/r/rocm/megablocks/tags>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Megatron-LM version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::

View File

@@ -2,7 +2,7 @@
.. meta::
:description: PyTorch compatibility
:keywords: GPU, PyTorch, deep learning, framework compatibility
:keywords: GPU, PyTorch compatibility
.. version-set:: rocm_version latest
@@ -15,42 +15,40 @@ deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`__ and
`RCCL <https://github.com/ROCm/rccl>`__ libraries.
PyTorch provides two high-level features:
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due
to independent compatibility considerations, this results in two distinct
release cycles for PyTorch on ROCm:
- Tensor computation (like NumPy) with strong GPU acceleration
- ROCm PyTorch release:
- Deep neural networks built on a tape-based autograd system (rapid computation
of multiple partial derivatives or gradients)
- Provides the latest version of ROCm but might not necessarily support the
latest stable PyTorch version.
Support overview
================================================================================
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
preinstalled.
ROCm support for PyTorch is upstreamed into the official PyTorch repository.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency:
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`__
- The ROCm-supported version of PyTorch is maintained in the official `https://github.com/ROCm/pytorch
<https://github.com/ROCm/pytorch>`__ repository, which differs from the
`https://github.com/pytorch/pytorch <https://github.com/pytorch/pytorch>`__ upstream repository.
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
to get started.
- To get started and install PyTorch on ROCm, use the prebuilt :ref:`Docker images <pytorch-docker-compat>`,
which include ROCm, PyTorch, and all required dependencies.
- Official PyTorch release:
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
for installation and setup instructions.
- Provides the latest stable version of PyTorch but might not necessarily
support the latest ROCm version.
- You can also consult the upstream `Installation guide <https://pytorch.org/get-started/locally/>`__ or
`Previous versions <https://pytorch.org/get-started/previous-versions/>`__ for additional context.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`__
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`__
to get started.
PyTorch includes tooling that generates HIP source code from the CUDA backend.
This approach allows PyTorch to support ROCm without requiring manual code
modifications. For more information, see :doc:`HIPIFY <hipify:index>`.
Version support
--------------------------------------------------------------------------------
AMD releases official `ROCm PyTorch Docker images <https://hub.docker.com/r/rocm/pytorch/tags>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency.
.. _pytorch-recommendations:
@@ -75,12 +73,12 @@ Use cases and recommendations
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>`
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
GPU using ROCm. This guide helps users achieve optimal performance for
accelerator using ROCm. This guide helps users achieve optimal performance for
deep learning and other high-performance computing tasks on the MI300X
GPU.
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads. It outlines the
describes how PyTorch integrates with ROCm for AI workloads It outlines the
use of PyTorch on the ROCm platform and focuses on efficiently leveraging AMD
GPU hardware for training and inference tasks in AI applications.
@@ -91,12 +89,141 @@ For more use cases and recommendations, see `ROCm PyTorch blog posts <https://ro
Docker image compatibility
================================================================================
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch/tags>`__
with ROCm backends on Docker Hub.
.. |docker-icon| raw:: html
To find the right image tag, see the :ref:`PyTorch on ROCm installation
documentation <rocm-install-on-linux:pytorch-docker-support>` for a list of
available ``rocm/pytorch`` images.
<i class="fab fa-docker"></i>
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-6a287591500b4048a9556c1ecc92bc411fd3d552f6c8233bc399f18eb803e8d6"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-06b967629ba6657709f04169832cd769a11e6b491e8b1394c361d42d7a0c8b43"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-62022414217ef6de33ac5b1341e57db8a48e8573fa2ace12d48aa5edd4b99ef0"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-469a7f74fc149aff31797e011ee41978f6a190adc69fa423b3c6a718a77bd985"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.11 <https://www.python.org/downloads/release/python-31113/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-37f41a1cd94019688669a1b20d33ea74156e0c129ef6b8270076ef214a6a1a2c"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-60824ba83dc1b9d94164925af1f81c0235c105dd555091ec04c57e05177ead1b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-fe944fe083312f901be6891ab4d3ffebf2eaf2cf4f5f0f435ef0b76ec714fabd"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-1d59251c47170c5b8960d1172a4dbe52f5793d8966edd778f168eaf32d56661a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`__
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`__
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
Key ROCm libraries for PyTorch
================================================================================
@@ -239,8 +366,7 @@ feature set available to developers.
Supported modules and data types
================================================================================
The following section outlines the supported data types, modules, and domain
libraries available in PyTorch on ROCm.
The following section outlines the supported data types, modules, and domain libraries available in PyTorch on ROCm.
Supported data types
--------------------------------------------------------------------------------
@@ -339,7 +465,7 @@ with ROCm.
* - Library
- Description
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
- Audio and signal processing library for PyTorch. Provides utilities for
audio I/O, signal and data processing functions, datasets, model
implementations, and application components for audio and speech
@@ -361,7 +487,16 @@ with ROCm.
popular datasets, model architectures, and common image transformations
for computer vision applications.
* - `torchdata <https://meta-pytorch.org/data/beta/index.html#torchdata>`_
* - `torchtext <https://docs.pytorch.org/text/stable/index.html>`_
- Text processing library for PyTorch. Provides data processing utilities
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
* - `torchdata <https://docs.pytorch.org/data/beta/index.html>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
@@ -398,101 +533,3 @@ with ROCm.
dispatching.
**Note:** Only official release exists.
Key features and enhancements for PyTorch 2.9 with ROCm 7.1.1
================================================================================
- Scaled Dot Product Attention (SDPA) upgraded to use AOTriton version 0.11b
- Default hipBLASLt support enabled for gfx908 architecture on ROCm 6.3 and later
- MIOpen now supports channels last memory format for 3D convolutions and batch normalization
- NHWC convolution operations in MIOpen optimized by eliminating unnecessary transpose operations
- Improved tensor.item() performance by removing redundant synchronization
- Enhanced performance for element-wise operations and reduction kernels
- Added support for grouped GEMM operations through fbgemm_gpu generative AI components
- Resolved device error in Inductor when using CUDA graph trees with HIP
- Corrected logsumexp scaling in AOTriton-based SDPA implementation
- Added stream graph capture status validation in memory copy synchronization functions
Key features and enhancements for PyTorch 2.8 with ROCm 7.1
================================================================================
- MIOpen deep learning optimizations: Further optimized NHWC BatchNorm feature.
- Added float8 support for the DeepSpeed extension, allowing for decreased
memory footprint and increased throughput in training and inference workloads.
- ``torch.nn.functional.scaled_dot_product_attention`` now calling optimized
flash attention kernel automatically.
Key features and enhancements for PyTorch 2.7/2.8 with ROCm 7.0
================================================================================
- Enhanced TunableOp framework: Introduces ``tensorfloat32`` support for
TunableOp operations, improved offline tuning for ScaledGEMM operations,
submatrix offline tuning capabilities, and better logging for BLAS operations
without bias vectors.
- Expanded GPU architecture support: Provides optimized support for newer GPU
architectures, including gfx1200 and gfx1201 with preferred hipBLASLt backend
selection, along with improvements for gfx950 and gfx1100 Series GPUs.
- Advanced Triton Integration: AOTriton 0.10b introduces official support for
gfx950 and gfx1201, along with experimental support for gfx1101, gfx1151,
gfx1150, and gfx1200.
- Improved element-wise kernel performance: Delivers enhanced vectorized
element-wise kernels with better support for heterogeneous tensor types and
optimized input vectorization for tensors with mixed data types.
- MIOpen deep learning optimizations: Enables NHWC BatchNorm by default on
ROCm 7.0+, provides ``maxpool`` forward and backward performance improvements
targeting ResNet scenarios, and includes updated launch configurations for
better performance.
- Enhanced memory and tensor operations: Features fixes for in-place ``aten``
sum operations with specialized templated kernels, improved 3D tensor
performance with NHWC format, and better handling of memory-bound matrix
multiplication operations.
- Robust testing and quality improvements: Includes comprehensive test suite
updates with improved tolerance handling for Navi3x architectures, generalized
ROCm-specific test conditions, and enhanced unit test coverage for Flash
Attention and Memory Efficient operations.
- Composable Kernel (CK) updates: Features updated CK submodule integration with
the latest optimizations and performance improvements for core mathematical
operations.
- Development and debugging enhancements: Includes improved source handling for
dynamic compilation, better error handling for atomic operations, and enhanced
state checking for trace operations.
- Integrate APEX fused layer normalization, which can have positive impact on
text-to-video models.
- Integrate APEX distributed fused LAMB and distributed fused ADAM, which can
have positive impact on BERT-L and Llama2-SFT.
- FlashAttention v3 has been integrated for AMD GPUs.
- `Pytorch C++ extensions <https://pytorch.org/tutorials/advanced/cpp_extension.html>`_
provide a mechanism for compiling custom operations that can be used during
network training or inference. For AMD platforms, ``amdclang++`` has been
validated as the supported compiler for building these extensions.
Known issues and notes for PyTorch 2.7/2.8 with ROCm 7.0 and ROCm 7.1
================================================================================
- The ``matmul.allow_fp16_reduced_precision_reduction`` and
``matmul.allow_bf16_reduced_precision_reduction`` options under
``torch.backends.cuda`` are not supported. As a result,
reduced-precision reductions using FP16 or BF16 accumulation types are not
available.

View File

@@ -1,8 +1,8 @@
:orphan:
.. meta::
:description: Ray compatibility
:keywords: GPU, Ray, deep learning, framework compatibility
:description: Ray deep learning framework compatibility
:keywords: GPU, Ray compatibility
.. version-set:: rocm_version latest
@@ -19,36 +19,37 @@ simplifying machine learning computations.
Ray is a general-purpose framework that runs many types of workloads efficiently.
Any Python application can be scaled with Ray, without extra infrastructure.
Support overview
================================================================================
ROCm support for Ray is upstreamed, and you can build the official source code
with ROCm support:
- The ROCm-supported version of Ray is maintained in the official `https://github.com/ROCm/ray
<https://github.com/ROCm/ray>`__ repository, which differs from the
`https://github.com/ray-project/ray <https://github.com/ray-project/ray>`__ upstream repository.
- ROCm support for Ray is hosted in the official `https://github.com/ROCm/ray
<https://github.com/ROCm/ray>`_ repository.
- To get started and install Ray on ROCm, use the prebuilt :ref:`Docker image <ray-docker-compat>`,
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ray-project/ray <https://github.com/ray-project/ray>`_ upstream repository.
- To install Ray, use the prebuilt :ref:`Docker image <ray-docker-compat>`
which includes ROCm, Ray, and all required dependencies.
- The Docker image provided is based on the upstream Ray `Daily Release (Nightly) wheels
<https://docs.ray.io/en/latest/ray-overview/installation.html#daily-releases-nightlies>`__
- See the :doc:`ROCm Ray installation guide <rocm-install-on-linux:install/3rd-party/ray-install>`
for instructions to get started.
- See the `Installation section <https://docs.ray.io/en/latest/ray-overview/installation.html>`_
in the upstream Ray documentation.
- The Docker image provided is based on the upstream Ray `Daily Release (Nightly) wheels <https://docs.ray.io/en/latest/ray-overview/installation.html#daily-releases-nightlies>`__
corresponding to commit `005c372 <https://github.com/ray-project/ray/commit/005c372262e050d5745f475e22e64305fa07f8b8>`__.
- See the :doc:`ROCm Ray installation guide <rocm-install-on-linux:install/3rd-party/ray-install>`
for installation and setup instructions.
.. note::
- You can also consult the upstream `Installation guide <https://docs.ray.io/en/latest/ray-overview/installation.html>`__
for additional context.
Version support
--------------------------------------------------------------------------------
Ray is supported on `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__.
Ray is supported on ROCm 6.4.1.
Supported devices
--------------------------------------------------------------------------------
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
Use cases and recommendations
================================================================================
@@ -87,15 +88,15 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm Ray Docker images <https://hub.docker.com/r/rocm/ray/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest Ray version from the official Docker Hub.
Click the |docker-icon| icon to view the image on Docker Hub.
associated inventories represent the latest Ray version from the official Docker Hub and are validated for
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- Ray
- Pytorch
- Ubuntu
@@ -104,7 +105,6 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/ray/ray-2.48.0.post0_rocm6.4.1_ubuntu24.04_py3.12_pytorch2.6.0/images/sha256-0d166fe6bdced38338c78eedfb96eff92655fb797da3478a62dd636365133cc0"><i class="fab fa-docker fa-lg"></i> rocm/ray</a>
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__.
- `2.48.0.post0 <https://github.com/ROCm/ray/tree/release/2.48.0.post0>`_
- 2.6.0+git684f6f2
- 24.04

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Stanford Megatron-LM compatibility
:keywords: Stanford, Megatron-LM, deep learning, framework compatibility
:keywords: Stanford, Megatron-LM, compatibility
.. version-set:: rocm_version latest
@@ -10,50 +10,34 @@
Stanford Megatron-LM compatibility
********************************************************************************
Stanford Megatron-LM is a large-scale language model training framework developed
by NVIDIA at `https://github.com/NVIDIA/Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_.
It is designed to train massive transformer-based language models efficiently by model
and data parallelism.
Stanford Megatron-LM is a large-scale language model training framework developed by NVIDIA `https://github.com/NVIDIA/Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_. It is
designed to train massive transformer-based language models efficiently by model and data parallelism.
It provides efficient tensor, pipeline, and sequence-based model parallelism for
pre-training transformer-based language models such as GPT (Decoder Only), BERT
(Encoder Only), and T5 (Encoder-Decoder).
* ROCm support for Stanford Megatron-LM is hosted in the official `https://github.com/ROCm/Stanford-Megatron-LM <https://github.com/ROCm/Stanford-Megatron-LM>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <megatron-lm-docker-compat>` with ROCm, PyTorch, and Megatron-LM preinstalled.
* See the :doc:`ROCm Stanford Megatron-LM installation guide <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>` to install and get started.
Support overview
.. note::
Stanford Megatron-LM is supported on ROCm 6.3.0.
Supported Devices
================================================================================
- The ROCm-supported version of Stanford Megatron-LM is maintained in the official `https://github.com/ROCm/Stanford-Megatron-LM
<https://github.com/ROCm/Stanford-Megatron-LM>`__ repository, which differs from the
`https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`__ upstream repository.
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210X
- To get started and install Stanford Megatron-LM on ROCm, use the prebuilt :ref:`Docker image <megatron-lm-docker-compat>`,
which includes ROCm, Stanford Megatron-LM, and all required dependencies.
- See the :doc:`ROCm Stanford Megatron-LM installation guide <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://github.com/NVIDIA/Megatron-LM>`__
for additional context.
Version support
--------------------------------------------------------------------------------
Stanford Megatron-LM is supported on `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`__.
Supported devices
--------------------------------------------------------------------------------
- **Officially Supported**: AMD Instinct™ MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct™ MI250X, MI210
Supported models and features
--------------------------------------------------------------------------------
================================================================================
This section details models & features that are supported by the ROCm version on Stanford Megatron-LM.
Models:
* BERT
* Bert
* GPT
* T5
* ICT
@@ -70,24 +54,13 @@ Features:
Use cases and recommendations
================================================================================
The following blog post mentions Megablocks, but you can run Stanford Megatron-LM with the same steps to pre-process datasets on AMD GPUs:
See the `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs blog <https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`_ post
to leverage the ROCm platform for pre-training by using the Stanford Megatron-LM framework of pre-processing datasets on AMD GPUs.
Coverage includes:
* The `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`__
blog post guides how to leverage the ROCm platform for pre-training using the
Megablocks framework. It introduces a streamlined approach for training Mixture-of-Experts
(MoE) models using the Megablocks library on AMD hardware. Focusing on GPT-2, it
demonstrates how block-sparse computations can enhance scalability and efficiency in MoE
training. The guide provides step-by-step instructions for setting up the environment,
including cloning the repository, building the Docker image, and running the training container.
Additionally, it offers insights into utilizing the ``oscar-1GB.json`` dataset for pre-training
language models. By leveraging Megablocks and the ROCm platform, you can optimize your MoE
training workflows for large-scale transformer models.
* Single-GPU pre-training
* Multi-GPU pre-training
It features how to pre-process datasets and how to begin pre-training on AMD GPUs through:
* Single-GPU pre-training
* Multi-GPU pre-training
.. _megatron-lm-docker-compat:
@@ -98,9 +71,10 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes `Stanford Megatron-LM images <https://hub.docker.com/r/rocm/stanford-megatron-lm/tags>`_
AMD validates and publishes `Stanford Megatron-LM images <https://hub.docker.com/r/rocm/megatron-lm>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Stanford Megatron-LM version from the official Docker Hub.
inventories represent the latest Megatron-LM version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
@@ -108,7 +82,6 @@ Click |docker-icon| to view the image on Docker Hub.
:class: docker-image-compatibility
* - Docker image
- ROCm
- Stanford Megatron-LM
- PyTorch
- Ubuntu
@@ -118,7 +91,6 @@ Click |docker-icon| to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/stanford-megatron-lm/stanford-megatron-lm85f95ae_rocm6.3.0_ubuntu24.04_py3.12_pytorch2.4.0/images/sha256-070556f078be10888a1421a2cb4f48c29f28b02bfeddae02588d1f7fc02a96a6"><i class="fab fa-docker fa-lg"></i></a>
- `6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_
- `85f95ae <https://github.com/stanford-futuredata/Megatron-LM/commit/85f95aef3b648075fe6f291c86714fdcbd9cd1f5>`_
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Taichi compatibility
:keywords: GPU, Taichi, deep learning, framework compatibility
:keywords: GPU, Taichi compatibility
.. version-set:: rocm_version latest
@@ -19,52 +19,28 @@ Taichi is widely used across various domains, including real-time physical simul
numerical computing, augmented reality, artificial intelligence, computer vision, robotics,
visual effects in film and gaming, and general-purpose computing.
Support overview
================================================================================
* ROCm support for Taichi is hosted in the official `https://github.com/ROCm/taichi <https://github.com/ROCm/taichi>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/taichi-dev <https://github.com/taichi-dev>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <taichi-docker-compat>` with ROCm, PyTorch, and Taichi preinstalled.
* See the :doc:`ROCm Taichi installation guide <rocm-install-on-linux:install/3rd-party/taichi-install>` to install and get started.
- The ROCm-supported version of Taichi is maintained in the official `https://github.com/ROCm/taichi
<https://github.com/ROCm/taichi>`__ repository, which differs from the
`https://github.com/taichi-dev/taichi <https://github.com/taichi-dev/taichi>`__ upstream repository.
.. note::
- To get started and install Taichi on ROCm, use the prebuilt :ref:`Docker image <taichi-docker-compat>`,
which includes ROCm, Taichi, and all required dependencies.
Taichi is supported on ROCm 6.3.2.
- See the :doc:`ROCm Taichi installation guide <rocm-install-on-linux:install/3rd-party/taichi-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://github.com/taichi-dev/taichi>`__
for additional context.
Version support
--------------------------------------------------------------------------------
Taichi is supported on `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`__.
Supported devices
--------------------------------------------------------------------------------
- **Officially Supported**: AMD Instinct™ MI250X, MI210X (with the exception of Taichis GPU rendering system, CGUI)
- **Upcoming Support**: AMD Instinct™ MI300X
Supported devices and features
===============================================================================
There is support through the ROCm software stack for all Taichi GPU features on AMD Instinct MI250X and MI210X series GPUs with the exception of Taichis GPU rendering system, CGUI.
AMD Instinct MI300X series GPUs will be supported by November.
.. _taichi-recommendations:
Use cases and recommendations
================================================================================
* The `Accelerating Parallel Programming in Python with Taichi Lang on AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/taichi/README.html>`__
blog highlights Taichi as an open-source programming language designed for high-performance
numerical computation, particularly in domains like real-time physical simulation,
artificial intelligence, computer vision, robotics, and visual effects. Taichi
is embedded in Python and uses just-in-time (JIT) compilation frameworks like
LLVM to optimize execution on GPUs and CPUs. The blog emphasizes the versatility
of Taichi in enabling complex simulations and numerical algorithms, making
it ideal for developers working on compute-intensive tasks. Developers are
encouraged to follow recommended coding patterns and utilize Taichi decorators
for performance optimization, with examples available in the `https://github.com/ROCm/taichi_examples
<https://github.com/ROCm/taichi_examples>`_ repository. Prebuilt Docker images
integrating ROCm, PyTorch, and Taichi are provided for simplified installation
and deployment, making it easier to leverage Taichi for advanced computational workloads.
To fully leverage Taichi's performance capabilities in compute-intensive tasks, it is best to adhere to specific coding patterns and utilize Taichi decorators.
A collection of example use cases is available in the `https://github.com/ROCm/taichi_examples <https://github.com/ROCm/taichi_examples>`_ repository,
providing practical insights and foundational knowledge for working with the Taichi programming language.
You can also refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_ to search for Taichi examples and best practices to optimize your workflows on AMD GPUs.
.. _taichi-docker-compat:
@@ -76,8 +52,9 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm Taichi Docker images <https://hub.docker.com/r/rocm/taichi/tags>`_
with ROCm backends on Docker Hub. The following Docker image tag and associated inventories
with ROCm backends on Docker Hub. The following Docker image tags and associated inventories
represent the latest Taichi version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.2 <https://rocm.docs.amd.com/en/docs-6.3.2/about/release-notes.html>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::

View File

@@ -2,7 +2,7 @@
.. meta::
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow, deep learning, framework compatibility
:keywords: GPU, TensorFlow compatibility
.. version-set:: rocm_version latest
@@ -12,46 +12,115 @@ TensorFlow compatibility
`TensorFlow <https://www.tensorflow.org/>`__ is an open-source library for
solving machine learning, deep learning, and AI problems. It can solve many
problems across different sectors and industries, but primarily focuses on
neural network training and inference. It is one of the most popular deep
learning frameworks and is very active in open-source development.
Support overview
================================================================================
- The ROCm-supported version of TensorFlow is maintained in the official `https://github.com/ROCm/tensorflow-upstream
<https://github.com/ROCm/tensorflow-upstream>`__ repository, which differs from the
`https://github.com/tensorflow/tensorflow <https://github.com/tensorflow/tensorflow>`__ upstream repository.
- To get started and install TensorFlow on ROCm, use the prebuilt :ref:`Docker images <tensorflow-docker-compat>`,
which include ROCm, TensorFlow, and all required dependencies.
- See the :doc:`ROCm TensorFlow installation guide <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
for installation and setup instructions.
- You can also consult the `TensorFlow API versions <https://www.tensorflow.org/versions>`__ list
for additional context.
Version support
--------------------------------------------------------------------------------
problems across different sectors and industries but primarily focuses on
neural network training and inference. It is one of the most popular and
in-demand frameworks and is very active in open-source contribution and
development.
The `official TensorFlow repository <http://github.com/tensorflow/tensorflow>`__
includes full ROCm support. AMD maintains a TensorFlow `ROCm repository
<http://github.com/rocm/tensorflow-upstream>`__ in order to quickly add bug
fixes, updates, and support for the latest ROCm versions.
fixes, updates, and support for the latest ROCM versions.
- ROCm TensorFlow release:
- Offers :ref:`Docker images <tensorflow-docker-compat>` with
ROCm and TensorFlow pre-installed.
- ROCm TensorFlow repository: `<https://github.com/ROCm/tensorflow-upstream>`__
- See the :doc:`ROCm TensorFlow installation guide <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
to get started.
- Official TensorFlow release:
- Official TensorFlow repository: `<https://github.com/tensorflow/tensorflow>`__
- See the `TensorFlow API versions <https://www.tensorflow.org/versions>`__ list.
.. note::
The official TensorFlow documentation does not cover ROCm support. Use the
ROCm documentation for installation instructions for Tensorflow on ROCm.
See :doc:`rocm-install-on-linux:install/3rd-party/tensorflow-install`.
.. _tensorflow-docker-compat:
Docker image compatibility
================================================================================
===============================================================================
AMD provides preconfigured Docker images with TensorFlow and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/tensorflow>`__ and are the
recommended way to get started with deep learning with TensorFlow on ROCm.
.. |docker-icon| raw:: html
To find the right image tag, see the :ref:`TensorFlow on ROCm installation
documentation <rocm-install-on-linux:tensorflow-docker-support>` for a list of
available ``rocm/tensorflow`` images.
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`__ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
:header-rows: 1
* - Docker image
- TensorFlow
- Ubuntu
- Python
- TensorBoard
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.18-dev/images/sha256-96754ce2d30f729e19b497279915b5212ba33d5e408e7e5dd3f2304d87e3441e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.18-dev/images/sha256-fa741508d383858e86985a9efac85174529127408102558ae2e3a4ac894eea1e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.17-dev/images/sha256-3a0aef09f2a8833c2b64b85874dd9449ffc2ad257351857338ff5b706c03a418"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.17-dev/images/sha256-bc7341a41ebe7ab261aa100732874507c452421ef733e408ac4f05ed453b0bc5"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.16-dev/images/sha256-4841a8df7c340dab79bf9362dad687797649a00d594e0832eb83ea6880a40d3b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.16-dev/images/sha256-883fa95aba960c58a3e46fceaa18f03ede2c7df89b8e9fd603ab2d47e0852897"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
Critical ROCm libraries for TensorFlow
@@ -136,7 +205,7 @@ The following section maps supported data types and GPU-accelerated TensorFlow
features to their minimum supported ROCm and TensorFlow versions.
Data types
---------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or
argument, and TensorFlow supports a wide range of data types for different use
@@ -254,7 +323,7 @@ are as follows:
- 1.7
Features
---------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This table provides an overview of key features in TensorFlow and their
availability in ROCm.
@@ -346,7 +415,7 @@ availability in ROCm.
- 1.9.2
Distributed library features
-----------------------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Enables developers to scale computations across multiple devices on a single machine or
across multiple machines.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: verl compatibility
:keywords: GPU, verl, deep learning, framework compatibility
:keywords: GPU, verl compatibility
.. version-set:: rocm_version latest
@@ -10,58 +10,24 @@
verl compatibility
*******************************************************************************
Volcano Engine Reinforcement Learning for LLMs (`verl <https://verl.readthedocs.io/en/latest/>`__)
is a reinforcement learning framework designed for large language models (LLMs).
verl offers a scalable, open-source fine-tuning solution by using a hybrid programming model
that makes it easy to define and run complex post-training dataflows efficiently.
Volcano Engine Reinforcement Learning for LLMs (verl) is a reinforcement learning framework designed for large language models (LLMs).
verl offers a scalable, open-source fine-tuning solution optimized for AMD Instinct GPUs with full ROCm support.
Its modular APIs separate computation from data, allowing smooth integration with other frameworks.
It also supports flexible model placement across GPUs for efficient scaling on different cluster sizes.
verl achieves high training and generation throughput by building on existing LLM frameworks.
Its 3D-HybridEngine reduces memory use and communication overhead when switching between training
and inference, improving overall performance.
* See the `verl documentation <https://verl.readthedocs.io/en/latest/>`_ for more information about verl.
* The official verl GitHub repository is `https://github.com/volcengine/verl <https://github.com/volcengine/verl>`_.
* Use the AMD-validated :ref:`Docker images <verl-docker-compat>` with ROCm and verl preinstalled.
* See the :doc:`ROCm verl installation guide <rocm-install-on-linux:install/3rd-party/verl-install>` to install and get started.
Support overview
================================================================================
.. note::
- The ROCm-supported version of verl is maintained in the official `https://github.com/ROCm/verl
<https://github.com/ROCm/verl>`__ repository, which differs from the
`https://github.com/volcengine/verl <https://github.com/volcengine/verl>`__ upstream repository.
- To get started and install verl on ROCm, use the prebuilt :ref:`Docker image <verl-docker-compat>`,
which includes ROCm, verl, and all required dependencies.
- See the :doc:`ROCm verl installation guide <rocm-install-on-linux:install/3rd-party/verl-install>`
for installation and setup instructions.
- You can also consult the upstream `verl documentation <https://verl.readthedocs.io/en/latest/>`__
for additional context.
Version support
--------------------------------------------------------------------------------
verl is supported on `ROCm 6.2.0 <https://repo.radeon.com/rocm/apt/6.2/>`__.
Supported devices
--------------------------------------------------------------------------------
**Officially Supported**: AMD Instinct™ MI300X
verl is supported on ROCm 6.2.0.
.. _verl-recommendations:
Use cases and recommendations
================================================================================
* The benefits of verl in large-scale reinforcement learning from human feedback
(RLHF) are discussed in the `Reinforcement Learning from Human Feedback on AMD
GPUs with verl and ROCm Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`__
blog. The blog post outlines how the Volcano Engine Reinforcement Learning
(verl) framework integrates with the AMD ROCm platform to optimize training on
Instinct™ MI300X GPUs. The guide details the process of building a Docker image,
setting up single-node and multi-node training environments, and highlights
performance benchmarks demonstrating improved throughput and convergence accuracy.
This resource serves as a comprehensive starting point for deploying verl on AMD GPUs,
facilitating efficient RLHF training workflows.
The benefits of verl in large-scale reinforcement learning from human feedback (RLHF) are discussed in the `Reinforcement Learning from Human Feedback on AMD GPUs with verl and ROCm Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`_ blog.
.. _verl-supported_features:
@@ -95,10 +61,8 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `verl Docker images <https://hub.docker.com/r/rocm/verl/tags>`_
with ROCm backends on Docker Hub. The following Docker image tag and associated inventories
represent the latest verl version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
AMD validates and publishes ready-made `ROCm verl Docker images <https://hub.docker.com/r/rocm/verl/tags>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated inventories represent the available verl versions from the official Docker Hub.
.. list-table::
:header-rows: 1

View File

@@ -13,22 +13,21 @@
:gutter: 1
:::{grid-item-card}
**AMD Instinct MI300 Series**
**AMD Instinct MI300 series**
Review hardware aspects of the AMD Instinct™ MI300 Series GPUs and the CDNA™ 3
Review hardware aspects of the AMD Instinct™ MI300 series of GPU accelerators and the CDNA™ 3
architecture.
* [AMD Instinct™ MI300 microarchitecture](./gpu-arch/mi300.md)
* [AMD Instinct MI300/CDNA3 ISA](https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf)
* [MI300 performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
* [MI350 Series performance counters](./gpu-arch/mi350-performance-counters.rst)
* [Performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
:::
:::{grid-item-card}
**AMD Instinct MI200 Series**
**AMD Instinct MI200 series**
Review hardware aspects of the AMD Instinct™ MI200 Series GPUs and the CDNA™ 2
Review hardware aspects of the AMD Instinct™ MI200 series of GPU accelerators and the CDNA™ 2
architecture.
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
@@ -41,7 +40,7 @@ architecture.
:::{grid-item-card}
**AMD Instinct MI100**
Review hardware aspects of the AMD Instinct™ MI100 Series GPUs and the CDNA™ 1
Review hardware aspects of the AMD Instinct™ MI100 series of GPU accelerators and the CDNA™ 1
architecture.
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)

View File

@@ -1,14 +1,14 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI100 Series architecture."
"description lang=en": "Learn about the AMD Instinct MI100 series architecture."
"keywords": "Instinct, MI100, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI100 microarchitecture
The following image shows the node-level architecture of a system that
comprises two AMD EPYC™ processors and (up to) eight AMD Instinct™ GPUs.
comprises two AMD EPYC™ processors and (up to) eight AMD Instinct™ accelerators.
The two EPYC processors are connected to each other with the AMD Infinity™
fabric which provides a high-bandwidth (up to 18 GT/sec) and coherent links such
that each processor can access the available node memory as a single
@@ -18,29 +18,29 @@ available to connect the processors plus one PCIe Gen 4 x16 link per processor
can attach additional I/O devices such as the host adapters for the network
fabric.
![Structure of a single GCD in the AMD Instinct MI100 GPU](../../data/conceptual/gpu-arch/image004.png "Node-level system architecture with two AMD EPYC™ processors and eight AMD Instinct™ GPUs.")
![Structure of a single GCD in the AMD Instinct MI100 accelerator](../../data/conceptual/gpu-arch/image004.png "Node-level system architecture with two AMD EPYC™ processors and eight AMD Instinct™ accelerators.")
In a typical node configuration, each processor can host up to four AMD
Instinct™ GPUs that are attached using PCIe Gen 4 links at 16 GT/sec,
Instinct™ accelerators that are attached using PCIe Gen 4 links at 16 GT/sec,
which corresponds to a peak bidirectional link bandwidth of 32 GB/sec. Each hive
of four GPUs can participate in a fully connected, coherent AMD
Instinct™ fabric that connects the four GPUs using 23 GT/sec AMD
of four accelerators can participate in a fully connected, coherent AMD
Instinct™ fabric that connects the four accelerators using 23 GT/sec AMD
Infinity fabric links that run at a higher frequency than the inter-processor
links. This inter-GPU link can be established in certified server systems if the
GPUs are mounted in neighboring PCIe slots by installing the AMD Infinity
Fabric™ bridge for the AMD Instinct™ GPUs.
Fabric™ bridge for the AMD Instinct™ accelerators.
## Microarchitecture
The microarchitecture of the AMD Instinct GPUs is based on the AMD CDNA
The microarchitecture of the AMD Instinct accelerators is based on the AMD CDNA
architecture, which targets compute applications such as high-performance
computing (HPC) and AI & machine learning (ML) that run on everything from
individual servers to the world's largest exascale supercomputers. The overall
system architecture is designed for extreme scalability and compute performance.
![Structure of the AMD Instinct GPU (MI100 generation)](../../data/conceptual/gpu-arch/image005.png "Structure of the AMD Instinct GPU (MI100 generation)")
![Structure of the AMD Instinct accelerator (MI100 generation)](../../data/conceptual/gpu-arch/image005.png "Structure of the AMD Instinct accelerator (MI100 generation)")
The above image shows the AMD Instinct GPU with its PCIe Gen 4 x16
The above image shows the AMD Instinct accelerator with its PCIe Gen 4 x16
link (16 GT/sec, at the bottom) that connects the GPU to (one of) the host
processor(s). It also shows the three AMD Infinity Fabric ports that provide
high-speed links (23 GT/sec, also at the bottom) to the other GPUs of the local
@@ -48,7 +48,7 @@ hive.
On the left and right of the floor plan, the High Bandwidth Memory (HBM)
attaches via the GPU memory controller. The MI100 generation of the AMD
Instinct GPU offers four stacks of HBM generation 2 (HBM2) for a total
Instinct accelerator offers four stacks of HBM generation 2 (HBM2) for a total
of 32GB with a 4,096bit-wide memory interface. The peak memory bandwidth of the
attached HBM2 is 1.228 TB/sec at a memory clock frequency of 1.2 GHz.
@@ -64,7 +64,7 @@ Therefore, the theoretical maximum FP64 peak performance is 11.5 TFLOPS
![Block diagram of an MI100 compute unit with detailed SIMD view of the AMD CDNA architecture](../../data/conceptual/gpu-arch/image006.png "An MI100 compute unit with detailed SIMD view of the AMD CDNA architecture")
The preceding image shows the block diagram of a single CU of an AMD Instinct™
MI100 GPU and summarizes how instructions flow through the execution
MI100 accelerator and summarizes how instructions flow through the execution
engines. The CU fetches the instructions via a 32KB instruction cache and moves
them forward to execution via a dispatcher. The CU can handle up to ten
wavefronts at a time and feed their instructions into the execution unit. The

View File

@@ -1,13 +1,13 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI250 Series architecture."
"description lang=en": "Learn about the AMD Instinct MI250 series architecture."
"keywords": "Instinct, MI250, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI250 microarchitecture
The microarchitecture of the AMD Instinct MI250 GPU is based on the
The microarchitecture of the AMD Instinct MI250 accelerators is based on the
AMD CDNA 2 architecture that targets compute applications such as HPC,
artificial intelligence (AI), and machine learning (ML) and that run on
everything from individual servers to the worlds largest exascale
@@ -40,7 +40,7 @@ execution units (also called matrix cores), which are geared toward executing
matrix operations like matrix-matrix multiplications. For FP64, the peak
performance of these units amounts to 90.5 TFLOPS.
![Structure of a single GCD in the AMD Instinct MI250 GPU.](../../data/conceptual/gpu-arch/image001.png "Structure of a single GCD in the AMD Instinct MI250 GPU.")
![Structure of a single GCD in the AMD Instinct MI250 accelerator.](../../data/conceptual/gpu-arch/image001.png "Structure of a single GCD in the AMD Instinct MI250 accelerator.")
```{list-table} Peak-performance capabilities of the MI250 OAM for different data types.
:header-rows: 1
@@ -84,9 +84,16 @@ performance of these units amounts to 90.5 TFLOPS.
- 362.1
```
The above table summarizes the aggregated peak performance of the AMD Instinct MI250 Open Compute Platform (OCP) Open Accelerator Modules (OAMs) and its two GCDs for different data types and execution units. The middle column lists the peak performance (number of data elements processed in a single instruction) of a single compute unit if a SIMD (or matrix) instruction is being retired in each clock cycle. The third column lists the theoretical peak performance of the OAM module. The theoretical aggregated peak memory bandwidth of the GPU is 3.2 TB/sec (1.6 TB/sec per GCD).
The above table summarizes the aggregated peak performance of the AMD
Instinct MI250 OCP Open Accelerator Modules (OAM, OCP is short for Open Compute
Platform) and its two GCDs for different data types and execution units. The
middle column lists the peak performance (number of data elements processed in a
single instruction) of a single compute unit if a SIMD (or matrix) instruction
is being retired in each clock cycle. The third column lists the theoretical
peak performance of the OAM module. The theoretical aggregated peak memory
bandwidth of the GPU is 3.2 TB/sec (1.6 TB/sec per GCD).
![Dual-GCD architecture of the AMD Instinct MI250 GPUs](../../data/conceptual/gpu-arch/image002.png "Dual-GCD architecture of the AMD Instinct MI250 GPUs")
![Dual-GCD architecture of the AMD Instinct MI250 accelerators](../../data/conceptual/gpu-arch/image002.png "Dual-GCD architecture of the AMD Instinct MI250 accelerators")
The following image shows the block diagram of an OAM package that consists
of two GCDs, each of which constitutes one GPU device in the system. The two
@@ -98,18 +105,18 @@ between the two GCDs of an OAM, or a bidirectional peak transfer bandwidth of
## Node-level architecture
The following image shows the node-level architecture of a system that is
based on the AMD Instinct MI250 GPU. The MI250 OAMs attach to the host
based on the AMD Instinct MI250 accelerator. The MI250 OAMs attach to the host
system via PCIe Gen 4 x16 links (yellow lines). Each GCD maintains its own PCIe
x16 link to the host part of the system. Depending on the server platform, the
GCD can attach to the AMD EPYC processor directly or via an optional PCIe switch
. Note that some platforms may offer an x8 interface to the GCDs, which reduces
the available host-to-GPU bandwidth.
![Block diagram of AMD Instinct MI250 GPUs with 3rd Generation AMD EPYC processor](../../data/conceptual/gpu-arch/image003.png "Block diagram of AMD Instinct MI250 GPUs with 3rd Generation AMD EPYC processor")
![Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor](../../data/conceptual/gpu-arch/image003.png "Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor")
The preceding image shows the node-level architecture of a system with AMD
EPYC processors in a dual-socket configuration and four AMD Instinct MI250
GPUs. The MI250 OAMs attach to the host processors system via PCIe Gen 4
accelerators. The MI250 OAMs attach to the host processors system via PCIe Gen 4
x16 links (yellow lines). Depending on the system design, a PCIe switch may
exist to make more PCIe lanes available for additional components like network
interfaces and/or storage devices. Each GCD maintains its own PCIe x16 link to

View File

@@ -1,16 +1,16 @@
.. meta::
:description: MI300 and MI200 Series performance counters and metrics
:description: MI300 and MI200 series performance counters and metrics
:keywords: MI300, MI200, performance counters, command processor counters
***************************************************************************************************
MI300 and MI200 Series performance counters and metrics
MI300 and MI200 series performance counters and metrics
***************************************************************************************************
This document lists and describes the hardware performance counters and derived metrics available
for the AMD Instinct™ MI300 and MI200 GPU. You can also access this information using the
:doc:`ROCprofiler-SDK <rocprofiler-sdk:how-to/using-rocprofv3>`.
MI300 and MI200 Series performance counters
MI300 and MI200 series performance counters
===============================================================
Series performance counters include the following categories:
@@ -27,7 +27,7 @@ The following sections provide additional details for each category.
.. note::
Preliminary validation of all MI300 and MI200 Series performance counters is in progress. Those with
Preliminary validation of all MI300 and MI200 series performance counters is in progress. Those with
an asterisk (*) require further evaluation.
.. _command-processor-counters:
@@ -171,7 +171,7 @@ Instruction mix
"``SQ_INSTS_SMEM``", "Instr", "Number of scalar memory instructions issued"
"``SQ_INSTS_SMEM_NORM``", "Instr", "Number of scalar memory instructions normalized to match ``smem_level`` issued"
"``SQ_INSTS_FLAT``", "Instr", "Number of flat instructions issued"
"``SQ_INSTS_FLAT_LDS_ONLY``", "Instr", "**MI200 Series only** Number of FLAT instructions that read/write only from/to LDS issued. Works only if ``EARLY_TA_DONE`` is enabled."
"``SQ_INSTS_FLAT_LDS_ONLY``", "Instr", "**MI200 series only** Number of FLAT instructions that read/write only from/to LDS issued. Works only if ``EARLY_TA_DONE`` is enabled."
"``SQ_INSTS_LDS``", "Instr", "Number of LDS instructions issued **(MI200: includes flat; MI300: does not include flat)**"
"``SQ_INSTS_GDS``", "Instr", "Number of global data share instructions issued"
"``SQ_INSTS_EXP_GDS``", "Instr", "Number of EXP and global data share instructions excluding skipped export instructions issued"
@@ -396,9 +396,9 @@ Texture cache per pipe counters
"``TCP_UTCL1_TRANSLATION_MISS[n]``", "Req", "Number of unified translation cache (L1) translation misses", "0-15"
"``TCP_UTCL1_PERMISSION_MISS[n]``", "Req", "Number of unified translation cache (L1) permission misses", "0-15"
"``TCP_TOTAL_CACHE_ACCESSES[n]``", "Req", "Number of vector L1d cache accesses including hits and misses", "0-15"
"``TCP_TCP_LATENCY[n]``", "Cycles", "**MI200 Series only** Accumulated wave access latency to vL1D over all wavefronts", "0-15"
"``TCP_TCC_READ_REQ_LATENCY[n]``", "Cycles", "**MI200 Series only** Total vL1D to L2 request latency over all wavefronts for reads and atomics with return", "0-15"
"``TCP_TCC_WRITE_REQ_LATENCY[n]``", "Cycles", "**MI200 Series only** Total vL1D to L2 request latency over all wavefronts for writes and atomics without return", "0-15"
"``TCP_TCP_LATENCY[n]``", "Cycles", "**MI200 series only** Accumulated wave access latency to vL1D over all wavefronts", "0-15"
"``TCP_TCC_READ_REQ_LATENCY[n]``", "Cycles", "**MI200 series only** Total vL1D to L2 request latency over all wavefronts for reads and atomics with return", "0-15"
"``TCP_TCC_WRITE_REQ_LATENCY[n]``", "Cycles", "**MI200 series only** Total vL1D to L2 request latency over all wavefronts for writes and atomics without return", "0-15"
"``TCP_TCC_READ_REQ[n]``", "Req", "Number of read requests to L2 cache", "0-15"
"``TCP_TCC_WRITE_REQ[n]``", "Req", "Number of write requests to L2 cache", "0-15"
"``TCP_TCC_ATOMIC_WITH_RET_REQ[n]``", "Req", "Number of atomic requests to L2 cache with return", "0-15"
@@ -560,7 +560,7 @@ Note the following:
``TCC_TAG_STALL[n]``, probes can stall the pipeline at a variety of places. There is no single point that
can accurately measure the total stalls
MI300 and MI200 Series derived metrics list
MI300 and MI200 series derived metrics list
==============================================================
.. csv-table::

View File

@@ -1,21 +1,21 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI300 Series architecture."
"description lang=en": "Learn about the AMD Instinct MI300 series architecture."
"keywords": "Instinct, MI300X, MI300A, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI300 Series microarchitecture
# AMD Instinct™ MI300 series microarchitecture
The AMD Instinct MI300 Series GPUs are based on the AMD CDNA 3
The AMD Instinct MI300 series accelerators are based on the AMD CDNA 3
architecture which was designed to deliver leadership performance for HPC, artificial intelligence (AI), and machine
learning (ML) workloads. The AMD Instinct MI300 Series GPUs are well-suited for extreme scalability and compute performance, running
learning (ML) workloads. The AMD Instinct MI300 series accelerators are well-suited for extreme scalability and compute performance, running
on everything from individual servers to the worlds largest exascale supercomputers.
With the MI300 Series, AMD is introducing the Accelerator Complex Die (XCD), which contains the
With the MI300 series, AMD is introducing the Accelerator Complex Die (XCD), which contains the
GPU computational elements of the processor along with the lower levels of the cache hierarchy.
The following image depicts the structure of a single XCD in the AMD Instinct MI300 GPU Series.
The following image depicts the structure of a single XCD in the AMD Instinct MI300 accelerator series.
```{figure} ../../data/shared/xcd-sys-arch.png
---
@@ -39,7 +39,7 @@ infrastructure) using the AMD Infinity Fabric™ technology as interconnect.
The Matrix Cores inside the CDNA 3 CUs have significant improvements, emphasizing AI and machine
learning, enhancing throughput of existing data types while adding support for new data types.
CDNA 2 Matrix Cores support FP16 and BF16, while offering INT8 for inference. Compared to MI250X
GPUs, CDNA 3 Matrix Cores triple the performance for FP16 and BF16, while providing a
accelerators, CDNA 3 Matrix Cores triple the performance for FP16 and BF16, while providing a
performance gain of 6.8 times for INT8. FP8 has a performance gain of 16 times compared to FP32,
while TF32 has a gain of 4 times compared to FP32.
@@ -105,7 +105,7 @@ name: mi300-arch
alt:
align: center
---
MI300 Series system architecture showing MI300A (left) with 6 XCDs and 3 CCDs, while the MI300X (right) has 8 XCDs.
MI300 series system architecture showing MI300A (left) with 6 XCDs and 3 CCDs, while the MI300X (right) has 8 XCDs.
```
## Node-level architecture
@@ -116,11 +116,11 @@ name: mi300-node
align: center
---
MI300 Series node-level architecture showing 8 fully interconnected MI300X OAM modules connected to (optional) PCIEe switches via retimers and HGX connectors.
MI300 series node-level architecture showing 8 fully interconnected MI300X OAM modules connected to (optional) PCIEe switches via retimers and HGX connectors.
```
The image above shows the node-level architecture of a system with AMD EPYC processors in a
dual-socket configuration and eight AMD Instinct MI300X GPUs. The MI300X OAMs attach to the
dual-socket configuration and eight AMD Instinct MI300X accelerators. The MI300X OAMs attach to the
host system via PCIe Gen 5 x16 links (yellow lines). The GPUs are using seven high-bandwidth,
low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected 8-GPU system.

View File

@@ -1,530 +0,0 @@
.. meta::
:description: MI355 Series performance counters and metrics
:keywords: MI355, MI355X, MI3XX
***********************************
MI350 Series performance counters
***********************************
This topic lists and describes the hardware performance counters and derived metrics available on the AMD Instinct MI350 and MI355 GPUs. These counters are available for profiling using `ROCprofiler-SDK <https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/index.html>`_ and `ROCm Compute Profiler <https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/>`_.
The following sections list the performance counters based on the IP blocks.
Command processor packet processor counters (CPC)
==================================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - CPC_ALWAYS_COUNT
- Always count.
* - CPC_ADC_VALID_CHUNK_NOT_AVAIL
- ADC valid chunk is not available when dispatch walking is in progress in the multi-xcc mode.
* - CPC_ADC_DISPATCH_ALLOC_DONE
- ADC dispatch allocation is done.
* - CPC_ADC_VALID_CHUNK_END
- ADC crawler's valid chunk end in the multi-xcc mode.
* - CPC_SYNC_FIFO_FULL_LEVEL
- SYNC FIFO full last cycles.
* - CPC_SYNC_FIFO_FULL
- SYNC FIFO full times.
* - CPC_GD_BUSY
- ADC busy.
* - CPC_TG_SEND
- ADC thread group send.
* - CPC_WALK_NEXT_CHUNK
- ADC walking next valid chunk in the multi-xcc mode.
* - CPC_STALLED_BY_SE0_SPI
- ADC CSDATA stalled by SE0SPI.
* - CPC_STALLED_BY_SE1_SPI
- ADC CSDATA stalled by SE1SPI.
* - CPC_STALLED_BY_SE2_SPI
- ADC CSDATA stalled by SE2SPI.
* - CPC_STALLED_BY_SE3_SPI
- ADC CSDATA stalled by SE3SPI.
* - CPC_LTE_ALL
- CPC sync counter LteAll. Only Master XCD manages LteAll.
* - CPC_SYNC_WRREQ_FIFO_BUSY
- CPC sync counter request FIFO is not empty.
* - CPC_CANE_BUSY
- CPC CANE bus is busy, which indicates the presence of inflight sync counter requests.
* - CPC_CANE_STALL
- CPC sync counter sending is stalled by CANE.
Shader pipe interpolators (SPI) counters
=========================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - SPI_CS0_WINDOW_VALID
- Clock count enabled by PIPE0 perfcounter_start event.
* - SPI_CS0_BUSY
- Number of clocks with outstanding waves for PIPE0 (SPI or SH).
* - SPI_CS0_NUM_THREADGROUPS
- Number of thread groups launched for PIPE0.
* - SPI_CS0_CRAWLER_STALL
- Number of clocks when PIPE0 event or wave order FIFO is full.
* - SPI_CS0_EVENT_WAVE
- Number of PIPE0 events and waves.
* - SPI_CS0_WAVE
- Number of PIPE0 waves.
* - SPI_CS1_WINDOW_VALID
- Clock count enabled by PIPE1 perfcounter_start event.
* - SPI_CS1_BUSY
- Number of clocks with outstanding waves for PIPE1 (SPI or SH).
* - SPI_CS1_NUM_THREADGROUPS
- Number of thread groups launched for PIPE1.
* - SPI_CS1_CRAWLER_STALL
- Number of clocks when PIPE1 event or wave order FIFO is full.
* - SPI_CS1_EVENT_WAVE
- Number of PIPE1 events and waves.
* - SPI_CS1_WAVE
- Number of PIPE1 waves.
* - SPI_CS2_WINDOW_VALID
- Clock count enabled by PIPE2 perfcounter_start event.
* - SPI_CS2_BUSY
- Number of clocks with outstanding waves for PIPE2 (SPI or SH).
* - SPI_CS2_NUM_THREADGROUPS
- Number of thread groups launched for PIPE2.
* - SPI_CS2_CRAWLER_STALL
- Number of clocks when PIPE2 event or wave order FIFO is full.
* - SPI_CS2_EVENT_WAVE
- Number of PIPE2 events and waves.
* - SPI_CS2_WAVE
- Number of PIPE2 waves.
* - SPI_CS3_WINDOW_VALID
- Clock count enabled by PIPE3 perfcounter_start event.
* - SPI_CS3_BUSY
- Number of clocks with outstanding waves for PIPE3 (SPI or SH).
* - SPI_CS3_NUM_THREADGROUPS
- Number of thread groups launched for PIPE3.
* - SPI_CS3_CRAWLER_STALL
- Number of clocks when PIPE3 event or wave order FIFO is full.
* - SPI_CS3_EVENT_WAVE
- Number of PIPE3 events and waves.
* - SPI_CS3_WAVE
- Number of PIPE3 waves.
* - SPI_CSQ_P0_Q0_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue0.
* - SPI_CSQ_P0_Q1_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue1.
* - SPI_CSQ_P0_Q2_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue2.
* - SPI_CSQ_P0_Q3_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue3.
* - SPI_CSQ_P0_Q4_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue4.
* - SPI_CSQ_P0_Q5_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue5.
* - SPI_CSQ_P0_Q6_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue6.
* - SPI_CSQ_P0_Q7_OCCUPANCY
- Sum of occupancy info for PIPE0 Queue7.
* - SPI_CSQ_P1_Q0_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue0.
* - SPI_CSQ_P1_Q1_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue1.
* - SPI_CSQ_P1_Q2_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue2.
* - SPI_CSQ_P1_Q3_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue3.
* - SPI_CSQ_P1_Q4_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue4.
* - SPI_CSQ_P1_Q5_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue5.
* - SPI_CSQ_P1_Q6_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue6.
* - SPI_CSQ_P1_Q7_OCCUPANCY
- Sum of occupancy info for PIPE1 Queue7.
* - SPI_CSQ_P2_Q0_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue0.
* - SPI_CSQ_P2_Q1_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue1.
* - SPI_CSQ_P2_Q2_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue2.
* - SPI_CSQ_P2_Q3_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue3.
* - SPI_CSQ_P2_Q4_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue4.
* - SPI_CSQ_P2_Q5_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue5.
* - SPI_CSQ_P2_Q6_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue6.
* - SPI_CSQ_P2_Q7_OCCUPANCY
- Sum of occupancy info for PIPE2 Queue7.
* - SPI_CSQ_P3_Q0_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue0.
* - SPI_CSQ_P3_Q1_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue1.
* - SPI_CSQ_P3_Q2_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue2.
* - SPI_CSQ_P3_Q3_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue3.
* - SPI_CSQ_P3_Q4_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue4.
* - SPI_CSQ_P3_Q5_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue5.
* - SPI_CSQ_P3_Q6_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue6.
* - SPI_CSQ_P3_Q7_OCCUPANCY
- Sum of occupancy info for PIPE3 Queue7.
* - SPI_CSQ_P0_OCCUPANCY
- Sum of occupancy info for all PIPE0 queues.
* - SPI_CSQ_P1_OCCUPANCY
- Sum of occupancy info for all PIPE1 queues.
* - SPI_CSQ_P2_OCCUPANCY
- Sum of occupancy info for all PIPE2 queues.
* - SPI_CSQ_P3_OCCUPANCY
- Sum of occupancy info for all PIPE3 queues.
* - SPI_VWC0_VDATA_VALID_WR
- Number of clocks VGPR bus_0 writes VGPRs.
* - SPI_VWC1_VDATA_VALID_WR
- Number of clocks VGPR bus_1 writes VGPRs.
* - SPI_CSC_WAVE_CNT_BUSY
- Number of cycles when there is any wave in the pipe.
Compute unit (SQ) counters
===========================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - SQ_INSTS_VALU_MFMA_F6F4
- Number of VALU V_MFMA_*_F6F4 instructions.
* - SQ_INSTS_VALU_MFMA_MOPS_F6F4
- Number of VALU matrix with the performed math operations (add or mul) divided by 512, assuming a full EXEC mask of F6 or F4 data type.
* - SQ_ACTIVE_INST_VALU2
- Number of quad-cycles when two VALU instructions are issued (per-simd, nondeterministic).
* - SQ_INSTS_LDS_LOAD
- Number of LDS load instructions issued (per-simd, emulated).
* - SQ_INSTS_LDS_STORE
- Number of LDS store instructions issued (per-simd, emulated).
* - SQ_INSTS_LDS_ATOMIC
- Number of LDS atomic instructions issued (per-simd, emulated).
* - SQ_INSTS_LDS_LOAD_BANDWIDTH
- Total number of 64-bytes loaded (instrSize * CountOnes(EXEC))/64 (per-simd, emulated).
* - SQ_INSTS_LDS_STORE_BANDWIDTH
- Total number of 64-bytes written (instrSize * CountOnes(EXEC))/64 (per-simd, emulated).
* - SQ_INSTS_LDS_ATOMIC_BANDWIDTH
- Total number of 64-bytes atomic (instrSize * CountOnes(EXEC))/64 (per-simd, emulated).
* - SQ_INSTS_VALU_FLOPS_FP16
- Counts FLOPS per instruction on float 16 excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_FLOPS_FP32
- Counts FLOPS per instruction on float 32 excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_FLOPS_FP64
- Counts FLOPS per instruction on float 64 excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_FLOPS_FP16_TRANS
- Counts FLOPS per instruction on float 16 trans excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_FLOPS_FP32_TRANS
- Counts FLOPS per instruction on float 32 trans excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_FLOPS_FP64_TRANS
- Counts FLOPS per instruction on float 64 trans excluding MFMA/SMFMA.
* - SQ_INSTS_VALU_IOPS
- Counts OPS per instruction on integer or unsigned or bit data (per-simd, emulated).
* - SQ_LDS_DATA_FIFO_FULL
- Number of cycles LDS data FIFO is full (nondeterministic, unwindowed).
* - SQ_LDS_CMD_FIFO_FULL
- Number of cycles LDS command FIFO is full (nondeterministic, unwindowed).
* - SQ_VMEM_TA_ADDR_FIFO_FULL
- Number of cycles texture requests are stalled due to full address FIFO in TA (nondeterministic, unwindowed).
* - SQ_VMEM_TA_CMD_FIFO_FULL
- Number of cycles texture requests are stalled due to full cmd FIFO in TA (nondeterministic, unwindowed).
* - SQ_VMEM_WR_TA_DATA_FIFO_FULL
- Number of cycles texture writes are stalled due to full data FIFO in TA (nondeterministic, unwindowed).
* - SQC_ICACHE_MISSES_DUPLICATE
- Number of duplicate misses (access to a non-resident, miss pending CL) (per-SQ, per-Bank, nondeterministic).
* - SQC_DCACHE_MISSES_DUPLICATE
- Number of duplicate misses (access to a non-resident, miss pending CL) (per-SQ, per-Bank, nondeterministic).
Texture addressing (TA) unit counters
======================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - TA_BUFFER_READ_LDS_WAVEFRONTS
- Number of buffer read wavefronts for LDS return processed by the TA.
* - TA_FLAT_READ_LDS_WAVEFRONTS
- Number of flat opcode reads for LDS return processed by the TA.
Texture data (TD) unit counters
================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - TD_WRITE_ACKT_WAVEFRONT
- Number of write acknowledgments, sent to SQ and not to SP.
* - TD_TD_SP_TRAFFIC
- Number of times this TD sends data to the SP.
Texture cache per pipe (TCP) counters
======================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - TCP_TCP_TA_ADDR_STALL_CYCLES
- TCP stalls TA addr interface.
* - TCP_TCP_TA_DATA_STALL_CYCLES
- TCP stalls TA data interface. Now windowed.
* - TCP_LFIFO_STALL_CYCLES
- Memory latency FIFOs full stall.
* - TCP_RFIFO_STALL_CYCLES
- Memory Request FIFOs full stall.
* - TCP_TCR_RDRET_STALL
- Write into cache stalled by read return from TCR.
* - TCP_PENDING_STALL_CYCLES
- Stall due to data pending from L2.
* - TCP_UTCL1_SERIALIZATION_STALL
- Total number of stalls caused due to serializing translation requests through the UTCL1.
* - TCP_UTCL1_THRASHING_STALL
- Stall caused by thrashing feature in any probe. Lacks accuracy when the stall signal overlaps between probe0 and probe1, which is worse with MECO of thrashing deadlock. Some probe0 events could miss being counted in with MECO on. This perf count provides a rough thrashing estimate.
* - TCP_UTCL1_TRANSLATION_MISS_UNDER_MISS
- Translation miss_under_miss.
* - TCP_UTCL1_STALL_INFLIGHT_MAX
- Total UTCL1 stalls due to inflight counter saturation.
* - TCP_UTCL1_STALL_LRU_INFLIGHT
- Total UTCL1 stalls due to LRU cache line with inflight traffic.
* - TCP_UTCL1_STALL_MULTI_MISS
- Total UTCL1 stalls due to arbitrated multiple misses.
* - TCP_UTCL1_LFIFO_FULL
- Total UTCL1 and UTCL2 latency, which hides FIFO full cycles.
* - TCP_UTCL1_STALL_LFIFO_NOT_RES
- Total UTCL1 stalls due to UTCL2 latency, which hides FIFO output (not resident).
* - TCP_UTCL1_STALL_UTCL2_REQ_OUT_OF_CREDITS
- Total UTCL1 stalls due to UTCL2_req being out of credits.
* - TCP_CLIENT_UTCL1_INFLIGHT
- The sum of inflight client to UTCL1 requests per cycle.
* - TCP_TAGRAM0_REQ
- Total L2 requests mapping to TagRAM 0 from this TCP to all TCCs.
* - TCP_TAGRAM1_REQ
- Total L2 requests mapping to TagRAM 1 from this TCP to all TCCs.
* - TCP_TAGRAM2_REQ
- Total L2 requests mapping to TagRAM 2 from this TCP to all TCCs.
* - TCP_TAGRAM3_REQ
- Total L2 requests mapping to TagRAM 3 from this TCP to all TCCs.
* - TCP_TCP_LATENCY
- Total TCP wave latency (from the first clock of wave entering to the first clock of wave leaving). Divide by TA_TCP_STATE_READ to find average wave latency.
* - TCP_TCC_READ_REQ_LATENCY
- Total TCP to TCC request latency for reads and atomics with return. Not Windowed.
* - TCP_TCC_WRITE_REQ_LATENCY
- Total TCP to TCC request latency for writes and atomics without return. Not Windowed.
* - TCP_TCC_WRITE_REQ_HOLE_LATENCY
- Total TCP req to TCC hole latency for writes and atomics. Not Windowed.
Texture cache per channel (TCC) counters
=========================================
.. list-table::
:header-rows: 1
* - Hardware counter
- Definition
* - TCC_READ_SECTORS
- Total number of 32B data sectors in read requests.
* - TCC_WRITE_SECTORS
- Total number of 32B data sectors in write requests.
* - TCC_ATOMIC_SECTORS
- Total number of 32B data sectors in atomic requests.
* - TCC_BYPASS_REQ
- Number of bypass requests. This is measured at the tag block.
* - TCC_LATENCY_FIFO_FULL
- Number of cycles when the latency FIFO is full.
* - TCC_SRC_FIFO_FULL
- Number of cycles when the SRC FIFO is assumed to be full as measured at the IB block.
* - TCC_EA0_RDREQ_64B
- Number of 64-byte TCC/EA read requests.
* - TCC_EA0_RDREQ_128B
- Number of 128-byte TCC/EA read requests.
* - TCC_IB_REQ
- Number of requests through the IB. This measures the number of raw requests from graphics clients to this TCC.
* - TCC_IB_STALL
- Number of cycles when the IB output is stalled.
* - TCC_EA0_WRREQ_WRITE_DRAM
- Number of TCC/EA write requests (32-byte or 64-byte) destined for DRAM (MC).
* - TCC_EA0_WRREQ_ATOMIC_DRAM
- Number of TCC/EA atomic requests (32-byte or 64-byte) destined for DRAM (MC).
* - TCC_EA0_RDREQ_DRAM_32B
- Number of 32-byte TCC/EA read requests due to DRAM traffic. One 64-byte request is counted as two and one 128-byte as four.
* - TCC_EA0_RDREQ_GMI_32B
- Number of 32-byte TCC/EA read requests due to GMI traffic. One 64-byte request is counted as two and one 128-byte as four.
* - TCC_EA0_RDREQ_IO_32B
- Number of 32-byte TCC/EA read requests due to IO traffic. One 64-byte request is counted as two and one 128-byte as four.
* - TCC_EA0_WRREQ_WRITE_DRAM_32B
- Number of 32-byte TCC/EA write requests due to DRAM traffic. One 64-byte request is counted as two.
* - TCC_EA0_WRREQ_ATOMIC_DRAM_32B
- Number of 32-byte TCC/EA atomic requests due to DRAM traffic. One 64-byte request is counted as two.
* - TCC_EA0_WRREQ_WRITE_GMI_32B
- Number of 32-byte TCC/EA write requests due to GMI traffic. One 64-byte request is counted as two.
* - TCC_EA0_WRREQ_ATOMIC_GMI_32B
- Number of 32-byte TCC/EA atomic requests due to GMI traffic. One 64-byte request is counted as two.
* - TCC_EA0_WRREQ_WRITE_IO_32B
- Number of 32-byte TCC/EA write requests due to IO traffic. One 64-byte request is counted as two.
* - TCC_EA0_WRREQ_ATOMIC_IO_32B
- Number of 32-byte TCC/EA atomic requests due to IO traffic. One 64-byte request is counted as two.

View File

@@ -34,7 +34,7 @@ Runtime
```{code-block} shell
:caption: Example to expose the 1. device and a device based on UUID.
export ROCR_VISIBLE_DEVICES="0,GPU-4b2c1a9f-8d3e-6f7a-b5c9-2e4d8a1f6c3b"
export ROCR_VISIBLE_DEVICES="0,GPU-DEADBEEFDEADBEEF"
```
### `GPU_DEVICE_ORDINAL`

View File

@@ -8,7 +8,6 @@ import os
import shutil
import sys
from pathlib import Path
from subprocess import run
gh_release_path = os.path.join("..", "RELEASE.md")
gh_changelog_path = os.path.join("..", "CHANGELOG.md")
@@ -81,27 +80,24 @@ latex_elements = {
}
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "rocm.docs.amd.com")
html_context = {"docs_header_version": "7.1.1"}
html_context = {}
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True
# Check if the branch is a docs/ branch
official_branch = run(["git", "rev-parse", "--abbrev-ref", "HEAD"], capture_output=True, text=True).stdout.find("docs/")
# configurations for PDF output by Read the Docs
project = "ROCm Documentation"
project_path = os.path.abspath(".").replace("\\", "/")
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "7.1.1"
release = "7.1.1"
version = "6.4.3"
release = "6.4.3"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-11-26"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-08-07"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -114,15 +110,11 @@ article_pages = [
{"file": "compatibility/ml-compatibility/taichi-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/ray-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/llama-cpp-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/flashinfer-compatibility", "os": ["linux"]},
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/multi-node-setup", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
@@ -135,9 +127,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-primus-migration-guide", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-megatron", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-history", "os": ["linux"]},
@@ -145,13 +135,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -176,8 +162,6 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.0.1-20250702", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250702", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250715", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.10.0-20250812", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/sglang-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
@@ -206,7 +190,7 @@ external_toc_path = "./sphinx/_toc.yml"
# Add the _extensions directory to Python's search path
sys.path.append(str(Path(__file__).parent / 'extension'))
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "remote-content", "version-ref", "csv-to-list-table"]
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref", "csv-to-list-table"]
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
@@ -216,14 +200,10 @@ external_projects_current_project = "rocm"
# external_projects_remote_repository = ""
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
html_context = {"docs_header_version": "7.1.0"}
html_context = {}
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True
html_context["official_branch"] = official_branch
html_context["version"] = version
html_context["release"] = release
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
@@ -242,7 +222,7 @@ suppress_warnings = ["autosectionlabel.*"]
html_context = {
"project_path" : {project_path},
"gpu_type" : [('AMD Instinct GPUs', 'intrinsic'), ('AMD gfx families', 'gfx'), ('NVIDIA families', 'nvidia') ],
"gpu_type" : [('AMD Instinct accelerators', 'intrinsic'), ('AMD gfx families', 'gfx'), ('NVIDIA families', 'nvidia') ],
"atomics_type" : [('HW atomics', 'hw-atomics'), ('CAS emulation', 'cas-atomics')],
"pcie_type" : [('No PCIe atomics', 'nopcie'), ('PCIe atomics', 'pcie')],
"memory_type" : [('Device DRAM', 'device-dram'), ('Migratable Host DRAM', 'migratable-host-dram'), ('Pinned Host DRAM', 'pinned-host-dram')],

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

After

Width:  |  Height:  |  Size: 81 KiB

View File

@@ -1,188 +0,0 @@
dockers:
- pull_tag: rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c
components:
ROCm: 6.4.1
vLLM: 0.10.1 (0.10.1rc2.dev409+g0b6bf6691.rocm641)
PyTorch: 2.7.0+gitf717b2a
hipBLASLt: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 4096
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 16384
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -1,316 +0,0 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
components:
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -1,32 +0,0 @@
dockers:
- pull_tag: lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
docker_hub_url: https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729
components:
ROCm: 7.0.0
SGLang: v0.5.2rc1
pytorch-triton-rocm: 3.4.0+rocm7.0.0.gitf9e5bf54
model_groups:
- group: Dense models
tag: dense-models
models:
- model: Llama 3.1 8B Instruct
model_repo: Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
- model: Llama 3.1 405B FP8 KV
model_repo: Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
- model: Llama 3.3 70B FP8 KV
model_repo: amd-Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
- model: Qwen3 32B
model_repo: Qwen3-32B
url: https://huggingface.co/Qwen/Qwen3-32B
- group: Small experts models
tag: small-experts-models
models:
- model: DeepSeek V3
model_repo: DeepSeek-V3
url: https://huggingface.co/deepseek-ai/DeepSeek-V3
- model: Mixtral 8x7B v0.1
model_repo: Mixtral-8x7B-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

View File

@@ -1,316 +1,188 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.1_20251103/images/sha256-8d60429043d4d00958da46039a1de0d9b82df814d45da482497eef26a6076506
- pull_tag: rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c
components:
ROCm: 7.0.0
vLLM: 0.11.1 (0.11.1rc2.dev141+g38f225c2a.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 38f225c2abeadc04c2cc398814c2f53ea02c3c72
ROCm: 6.4.1
vLLM: 0.10.1 (0.10.1rc2.dev409+g0b6bf6691.rocm641)
PyTorch: 2.7.0+gitf717b2a
hipBLASLt: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 4096
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 16384
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -1,16 +1,47 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.9
- pull_tag: rocm/jax-training:maxtext-v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 7.0.0
JAX: 0.6.2
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+c91bac54
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.x.x
- pull_tag: rocm/jax-training:maxtext-v25.7-jax060
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.6.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.1.0-499ece1c21
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3 8B
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 2 7B
mad_tag: jax_maxtext_train_llama-2-7b
model_repo: Llama-2-7B
@@ -23,29 +54,6 @@ model_groups:
precision: bf16
multinode_training_script: llama2_70b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 3 8B (multi-node)
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B (multi-node)
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- group: DeepSeek
tag: deepseek
models:

View File

@@ -1,21 +1,15 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/megatron-lm:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/megatron-lm:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
@@ -26,6 +20,8 @@ model_groups:
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B

View File

@@ -1,72 +0,0 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.7-jax060
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.6.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.1.0-499ece1c21
- pull_tag: rocm/jax-training:maxtext-v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.x.x
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3 8B
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 2 7B
mad_tag: jax_maxtext_train_llama-2-7b
model_repo: Llama-2-7B
precision: bf16
multinode_training_script: llama2_7b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 2 70B
mad_tag: jax_maxtext_train_llama-2-70b
model_repo: Llama-2-70B
precision: bf16
multinode_training_script: llama2_70b_multinode.sh
doc_options: ["single-node", "multi-node"]
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V2-Lite (16B)
mad_tag: jax_maxtext_train_deepseek-v2-lite-16b
model_repo: DeepSeek-V2-lite
precision: bf16
doc_options: ["single-node"]
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: jax_maxtext_train_mixtral-8x7b
model_repo: Mixtral-8x7B
precision: bf16
doc_options: ["single-node"]

View File

@@ -1,49 +0,0 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -1,48 +0,0 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -1,58 +0,0 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -1,58 +0,0 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.3
Primus: 927a717
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -1,24 +0,0 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.8
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+a1e66aae
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-d1b517fc7a
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16

View File

@@ -1,162 +0,0 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
components:
ROCm: 6.4.2
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+94e53dd8
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-4b9a52edfc
Triton: 3.3.0
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]

View File

@@ -1,178 +0,0 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.8
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+a1e66aae
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-d1b517fc7a
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [finetune_lora]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
precision: FP32

View File

@@ -1,22 +1,15 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -1,39 +0,0 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
config_file:
bf16: "./llama3_8b_fsdp_bf16.toml"
fp8: "./llama3_8b_fsdp_fp8.toml"
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
config_file:
bf16: "./llama3_70b_fsdp_bf16.toml"
fp8: "./llama3_70b_fsdp_fp8.toml"

View File

@@ -1,21 +1,14 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/pytorch-training:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/pytorch-training:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
- pull_tag: rocm/pytorch-training:v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
components:
ROCm: 6.4.2
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+94e53dd8
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-4b9a52edfc
Triton: 3.3.0
model_groups:
- group: Meta Llama
tag: llama
@@ -158,15 +151,6 @@ model_groups:
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [posttrain-p]
- group: Flux
tag: flux
models:
@@ -175,12 +159,4 @@ model_groups:
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [posttrain-p]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
precision: FP32
training_modes: [pretrain]

View File

@@ -1,325 +1,325 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native,⚠️ Scope Downgrade - CAS
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native,⚠️ Scope Downgrade - CAS
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ CAS,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ CAS,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native,⚠️ Scope Downgrade - CAS
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X,MI300A
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ CAS
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ CAS
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,✅ CAS,✅ CAS
32 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicSub,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicInc,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicDec,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atoimcExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicExch,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicCAS,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicOr,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit atomicXor,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade - CAS,✅ CAS
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X Series MI300X MI300A MI350X Series
2 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
3 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
4 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
5 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
6 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
7 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
8 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
9 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
10 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
11 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
12 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
13 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
14 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
15 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
16 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
17 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
18 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
19 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
20 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
21 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
22 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
23 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
24 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
25 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
26 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
27 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
28 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
29 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
30 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
31 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
32 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
33 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
34 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
35 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
36 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
37 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
38 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
39 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
40 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
41 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
42 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
43 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
44 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
45 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
46 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
47 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
48 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
49 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
50 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
51 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
52 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
53 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
54 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
55 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
56 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
57 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
58 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
59 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
60 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
61 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
62 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
63 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
64 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
65 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
66 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
67 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
68 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
69 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
70 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
71 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
72 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
73 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
74 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
75 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
76 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
77 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
78 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
79 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
80 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
81 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
82 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
83 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
84 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
85 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
86 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
87 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
88 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
89 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
90 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
91 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
92 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
93 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
94 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
95 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
96 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
97 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
98 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
99 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
100 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
101 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
102 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
103 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
104 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
105 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
106 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
107 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
108 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
109 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
110 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
111 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
112 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
113 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
114 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
115 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
116 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
117 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
118 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
119 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
120 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
121 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
122 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
123 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
124 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
125 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
126 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
127 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
128 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
129 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
130 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
131 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
132 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
133 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
134 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
135 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
136 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
137 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
138 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
139 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
140 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
141 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
142 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
143 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
144 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
145 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
146 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
147 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
148 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
149 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
150 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
151 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
152 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
153 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
154 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
155 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
156 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
157 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
158 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
159 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
160 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
161 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
162 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
163 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
164 32 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
165 32 bit atomicSub ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
166 32 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
167 32 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
168 32 bit atomicInc ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
169 32 bit atomicDec ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
170 64 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
171 64 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
172 64 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
173 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
174 32 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
175 32 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
176 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
177 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
178 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
179 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
180 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
181 32 bit atoimcExch ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
182 32 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
183 32 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
184 32 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
185 32 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
186 64 bit atomicExch ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
187 64 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
188 64 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
189 64 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
190 64 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
191 32 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
192 32 bit atomicSub ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
193 32 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
194 32 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
195 32 bit atomicInc ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
196 32 bit atomicDec ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
197 64 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
198 64 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
199 64 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
200 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
201 32 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
202 32 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
203 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
204 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
205 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
206 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
207 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
208 32 bit atoimcExch ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
209 32 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ Native ⚠️ Scope Downgrade - CAS
210 32 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
211 32 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
212 32 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
213 64 bit atomicExch ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
214 64 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ Native ⚠️ Scope Downgrade - CAS
215 64 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
216 64 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
217 64 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
218 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
219 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
220 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
221 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
222 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
223 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
224 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
225 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
226 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
227 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
228 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
229 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
230 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
231 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
232 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
233 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
234 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
235 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
236 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
237 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
238 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
239 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
240 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
241 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
242 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
243 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
244 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
245 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
246 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
247 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
248 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
249 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
250 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
251 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
252 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
253 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
254 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
255 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
256 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
257 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
258 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
259 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
260 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
261 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
262 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
263 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
264 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
265 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
266 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
267 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
268 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
269 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
270 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
271 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
272 32 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
273 32 bit atomicSub ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
274 32 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
275 32 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
276 32 bit atomicInc ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
277 32 bit atomicDec ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
278 64 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
279 64 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
280 64 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
281 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
282 32 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
283 32 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
284 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
285 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
286 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
287 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
288 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
289 32 bit atoimcExch ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
290 32 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ CAS ✅ Native
291 32 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
292 32 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
293 32 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
294 64 bit atomicExch ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
295 64 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ CAS ✅ Native
296 64 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
297 64 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
298 64 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS
299 32 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
300 32 bit atomicSub ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
301 32 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
302 32 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
303 32 bit atomicInc ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
304 32 bit atomicDec ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
305 64 bit atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
306 64 bit atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
307 64 bit atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
308 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
309 32 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
310 32 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
311 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
312 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
313 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
314 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
315 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
316 32 bit atoimcExch ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
317 32 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ Native ⚠️ Scope Downgrade - CAS
318 32 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
319 32 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
320 32 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
321 64 bit atomicExch ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
322 64 bit atomicCAS ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
323 64 bit atomicAnd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
324 64 bit atomicOr ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
325 64 bit atomicXor ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS

View File

@@ -1,325 +1,325 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X,MI300A
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicInc,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicDec,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 half2 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atoimcExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicExch,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicOr,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit atomicXor,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X Series MI300X MI300A MI350X Series
2 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
3 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
4 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
5 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
6 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
7 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
8 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
9 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
10 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
11 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
12 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
13 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
14 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
15 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
16 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
17 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
18 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
19 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
20 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
21 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
22 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
23 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
24 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
25 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
26 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
27 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
28 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
29 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
30 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
31 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
32 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
33 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
34 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
35 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
36 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
37 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
38 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
39 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
40 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
41 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
42 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
43 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
44 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
45 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
46 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
47 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
48 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
49 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
50 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
51 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
52 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
53 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
54 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
55 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
56 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
57 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
58 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
59 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
60 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
61 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
62 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
63 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
64 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
65 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
66 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
67 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
68 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
69 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
70 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
71 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
72 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
73 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
74 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
75 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
76 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
77 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
78 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
79 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
80 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
81 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
82 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
83 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
84 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
85 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
86 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
87 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
88 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
89 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
90 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
91 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
92 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
93 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
94 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
95 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
96 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
97 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
98 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
99 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
100 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
101 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
102 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
103 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
104 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
105 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
106 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
107 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
108 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
109 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
110 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
111 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
112 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
113 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
114 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
115 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
116 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
117 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
118 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
119 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
120 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
121 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
122 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
123 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
124 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
125 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
126 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
127 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
128 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
129 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
130 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
131 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
132 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
133 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
134 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
135 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
136 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
137 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
138 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
139 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
140 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
141 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
142 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
143 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
144 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
145 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
146 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
147 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
148 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
149 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
150 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
151 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
152 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
153 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
154 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
155 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
156 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
157 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
158 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
159 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
160 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
161 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
162 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
163 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
164 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
165 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
166 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
167 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
168 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
169 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
170 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
171 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
172 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
173 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
174 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
175 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
176 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
177 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
178 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
179 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
180 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
181 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
182 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
183 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
184 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
185 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
186 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
187 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
188 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
189 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
190 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
191 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
192 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
193 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
194 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
195 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
196 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
197 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
198 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
199 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
200 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
201 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
202 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
203 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
204 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
205 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
206 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
207 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
208 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
209 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
210 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
211 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
212 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
213 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
214 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
215 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
216 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
217 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
218 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
219 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
220 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
221 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
222 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
223 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
224 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
225 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
226 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
227 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
228 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
229 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
230 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
231 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
232 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
233 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
234 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
235 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
236 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
237 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
238 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
239 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
240 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
241 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
242 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
243 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
244 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
245 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
246 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
247 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
248 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
249 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
250 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
251 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
252 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
253 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
254 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
255 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
256 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
257 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
258 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
259 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
260 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
261 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
262 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
263 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
264 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
265 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
266 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
267 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
268 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
269 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
270 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
271 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
272 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
273 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
274 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
275 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
276 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
277 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
278 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
279 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
280 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
281 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
282 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
283 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
284 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
285 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
286 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
287 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
288 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
289 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
290 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
291 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
292 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
293 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
294 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
295 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
296 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
297 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
298 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
299 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
300 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
301 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
302 32 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
303 32 bit atomicInc ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
304 32 bit atomicDec ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
305 64 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
306 64 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
307 64 bit atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
308 32 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
309 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
310 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
311 64 bit float atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
312 64 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
313 64 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
314 16bx2 half2 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
315 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
316 32 bit atoimcExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
317 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
318 32 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
319 32 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
320 32 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
321 64 bit atomicExch ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
322 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
323 64 bit atomicAnd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
324 64 bit atomicOr ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
325 64 bit atomicXor ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS

View File

@@ -1,325 +1,325 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS,⚠️ Scope Downgrade - CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X,MI300A
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAdd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
32 bit float atomicMin,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS
32 bit float atomicMax,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade - CAS,✅ CAS
64 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMin,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMax,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 bfloat162 atomicAdd,❌ NOP,❌ NOP,✅ CAS,⚠️ Scope Downgrade,✅ Native
32 bit atoimcExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicExch,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicCAS,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X Series MI300X MI300A MI350X Series
2 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
3 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
4 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
5 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
6 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
7 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
8 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
9 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
10 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
11 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
12 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
13 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
14 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
15 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
16 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
17 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
18 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
19 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
20 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
21 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
22 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
23 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
24 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
25 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
26 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
27 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
28 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
29 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
30 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
31 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
32 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
33 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
34 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
35 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
36 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
37 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
38 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
39 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
40 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
41 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
42 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
43 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
44 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
45 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
46 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
47 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
48 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
49 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
50 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
51 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
52 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
53 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
54 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
55 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
56 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
57 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
58 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
59 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
60 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
61 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
62 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
63 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
64 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
65 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
66 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
67 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
68 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
69 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
70 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
71 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
72 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
73 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
74 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
75 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
76 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
77 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
78 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
79 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
80 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
81 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
82 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
83 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
84 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
85 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
86 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
87 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
88 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
89 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
90 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
91 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
92 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
93 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
94 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
95 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
96 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
97 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
98 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
99 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
100 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
101 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
102 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
103 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
104 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
105 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
106 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
107 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
108 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
109 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
110 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
111 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
112 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
113 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
114 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
115 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
116 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
117 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
118 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
119 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
120 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
121 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
122 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
123 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
124 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
125 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
126 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
127 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
128 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
129 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
130 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
131 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
132 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
133 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
134 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
135 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
136 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
137 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
138 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
139 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
140 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
141 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
142 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
143 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
144 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
145 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
146 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
147 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
148 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
149 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
150 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
151 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
152 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
153 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
154 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
155 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
156 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
157 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
158 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
159 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
160 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
161 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
162 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
163 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
164 32 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
165 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
166 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
167 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
168 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
169 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
170 64 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
171 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
172 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
173 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
174 32 bit float atomicMin ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS ✅ CAS
175 32 bit float atomicMax ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS ✅ CAS
176 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
177 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
178 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
179 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
180 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ✅ CAS ✅ Native ✅ Native ✅ Native
181 32 bit atoimcExch ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
182 32 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
183 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
184 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
185 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
186 64 bit atomicExch ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
187 64 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
188 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
189 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
190 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
191 32 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
192 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
193 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
194 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
195 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
196 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
197 64 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
198 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
199 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
200 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
201 32 bit float atomicMin ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
202 32 bit float atomicMax ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
203 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
204 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
205 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
206 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
207 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
208 32 bit atoimcExch ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
209 32 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
210 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
211 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
212 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
213 64 bit atomicExch ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
214 64 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
215 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
216 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
217 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
218 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
219 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
220 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
221 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
222 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
223 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
224 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
225 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
226 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
227 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
228 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
229 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
230 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
231 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
232 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
233 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
234 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
235 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
236 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
237 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
238 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
239 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
240 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
241 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
242 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
243 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
244 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
245 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
246 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
247 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
248 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
249 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
250 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
251 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
252 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
253 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
254 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
255 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
256 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
257 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
258 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
259 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
260 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
261 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
262 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
263 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
264 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
265 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
266 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
267 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
268 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
269 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
270 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
271 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
272 32 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
273 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
274 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
275 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
276 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
277 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
278 64 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
279 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
280 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
281 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
282 32 bit float atomicMin ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS ✅ CAS
283 32 bit float atomicMax ❌ NOP ❌ NOP ✅ CAS ✅ CAS ✅ CAS ✅ CAS
284 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
285 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
286 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
287 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
288 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ✅ CAS ✅ Native ✅ Native ✅ Native
289 32 bit atoimcExch ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
290 32 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
291 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
292 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
293 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
294 64 bit atomicExch ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
295 64 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
296 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
297 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
298 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
299 32 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
300 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
301 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
302 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
303 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
304 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
305 64 bit atomicAdd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
306 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
307 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
308 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
309 32 bit float atomicMin ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
310 32 bit float atomicMax ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade - CAS ✅ CAS ⚠️ Scope Downgrade - CAS
311 64 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
312 64 bit float atomicMin ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
313 64 bit float atomicMax ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
314 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
315 16bx2 bfloat162 atomicAdd ❌ NOP ❌ NOP ✅ CAS ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
316 32 bit atoimcExch ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
317 32 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
318 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
319 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
320 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
321 64 bit atomicExch ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
322 64 bit atomicCAS ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
323 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
324 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
325 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade

View File

@@ -1,325 +1,325 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native,⚠️ Scope Downgrade
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X,MI300A
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,⚠️ Scope Downgrade,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicInc,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicDec,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMax,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 half2 atomicAdd,✅ NoReturn,✅ Native,✅ Native,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicOr,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicXor,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,✅ Native,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ Native,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,✅ Native,✅ Native
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicInc,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicDec,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicMin,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicMax,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit float atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
32 bit float atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit float atomicMax,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
64 bit float atomicAdd,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMin,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
64 bit float atomicMax,✅ CAS,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 half2 atomicAdd,❌ NOP,❌ NOP,❌ NOP,⚠️ Scope Downgrade,✅ Native
16bx2 bfloat162 atomicAdd,✅ CAS,✅ CAS,✅ CAS,⚠️ Scope Downgrade,✅ Native
32 bit atoimcExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
32 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicExch,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicCAS,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
64 bit atomicAnd,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicOr,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
64 bit atomicXor,❌ NOP,❌ NOP,✅ Native,⚠️ Scope Downgrade,✅ Native
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X Series MI300X MI300A MI350X Series
2 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
3 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
4 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
5 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
6 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
7 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
8 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
9 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
10 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
11 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
12 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
13 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
14 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
15 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
16 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
17 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
18 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
19 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
20 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
21 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
22 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
23 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
24 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
25 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
26 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
27 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
28 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
29 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
30 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
31 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
32 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
33 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
34 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
35 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
36 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
37 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
38 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
39 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
40 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
41 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
42 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
43 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
44 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
45 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
46 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
47 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
48 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
49 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
50 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
51 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
52 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
53 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
54 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
55 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
56 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
57 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
58 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
59 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
60 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
61 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
62 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
63 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
64 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
65 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
66 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
67 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
68 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
69 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
70 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
71 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
72 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
73 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
74 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
75 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
76 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
77 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
78 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
79 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
80 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
81 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
82 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
83 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
84 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
85 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
86 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
87 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
88 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
89 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
90 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
91 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
92 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
93 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
94 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
95 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
96 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
97 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
98 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
99 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
100 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
101 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
102 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
103 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
104 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
105 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
106 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
107 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
108 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
109 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
110 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
111 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
112 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
113 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
114 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
115 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
116 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
117 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
118 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
119 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
120 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
121 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
122 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
123 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
124 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
125 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
126 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
127 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
128 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
129 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
130 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
131 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
132 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
133 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
134 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
135 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
136 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
137 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
138 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
139 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
140 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
141 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
142 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
143 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
144 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
145 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
146 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
147 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
148 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
149 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
150 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
151 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
152 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
153 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
154 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
155 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
156 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
157 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
158 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
159 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
160 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
161 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
162 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
163 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
164 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
165 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
166 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
167 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
168 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
169 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
170 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
171 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
172 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
173 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
174 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
175 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
176 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
177 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
178 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
179 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
180 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
181 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
182 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
183 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
184 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
185 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
186 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
187 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
188 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
189 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
190 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
191 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
192 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
193 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
194 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
195 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
196 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
197 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
198 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
199 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
200 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
201 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
202 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
203 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
204 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
205 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
206 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
207 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
208 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
209 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
210 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
211 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
212 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
213 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
214 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
215 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
216 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
217 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
218 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
219 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
220 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
221 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
222 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
223 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
224 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
225 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
226 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
227 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
228 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
229 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
230 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
231 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
232 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
233 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
234 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
235 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
236 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
237 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
238 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
239 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
240 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
241 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
242 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
243 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
244 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
245 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
246 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
247 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
248 32 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
249 32 bit atomicInc ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
250 32 bit atomicDec ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
251 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
252 64 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
253 64 bit atomicMax ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
254 32 bit float atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
255 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
256 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
257 64 bit float atomicAdd ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
258 64 bit float atomicMin ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
259 64 bit float atomicMax ✅ CAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
260 16bx2 half2 atomicAdd ✅ NoReturn ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
261 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
262 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
263 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
264 32 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
265 32 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
266 32 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
267 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
268 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
269 64 bit atomicAnd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
270 64 bit atomicOr ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
271 64 bit atomicXor ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
272 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
273 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
274 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
275 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
276 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
277 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
278 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
279 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
280 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
281 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
282 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
283 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
284 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
285 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
286 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
287 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native
288 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ Native ✅ Native ✅ Native
289 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
290 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
291 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
292 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
293 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
294 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
295 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
296 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
297 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
298 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ✅ Native ✅ Native ✅ Native
299 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
300 32 bit atomicSub ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
301 32 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
302 32 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
303 32 bit atomicInc ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
304 32 bit atomicDec ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
305 64 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
306 64 bit atomicMin ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
307 64 bit atomicMax ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
308 32 bit float atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
309 32 bit float atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
310 32 bit float atomicMax ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
311 64 bit float atomicAdd ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
312 64 bit float atomicMin ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
313 64 bit float atomicMax ✅ CAS ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
314 16bx2 half2 atomicAdd ❌ NOP ❌ NOP ❌ NOP ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
315 16bx2 bfloat162 atomicAdd ✅ CAS ✅ CAS ✅ CAS ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
316 32 bit atoimcExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
317 32 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
318 32 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
319 32 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
320 32 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
321 64 bit atomicExch ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
322 64 bit atomicCAS ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
323 64 bit atomicAnd ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
324 64 bit atomicOr ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade
325 64 bit atomicXor ❌ NOP ❌ NOP ✅ Native ⚠️ Scope Downgrade ✅ Native ⚠️ Scope Downgrade

View File

@@ -1,391 +0,0 @@
# rocm-library-support.yaml
library_groups:
- group: "ML & Computer Vision"
tag: "ml-cv"
libraries:
- name: "Composable Kernel"
tag: "composable-kernel"
doc_link: "composable_kernel:reference/Composable_Kernel_supported_scalar_types"
data_types:
- type: "int8"
support: "✅"
- type: "int32"
support: "✅"
- type: "float4"
support: "✅"
- type: "float6 (E2M3)"
support: "✅"
- type: "float6 (E3M2)"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "MIGraphX"
tag: "migraphx"
doc_link: "amdmigraphx:reference/cpp"
data_types:
- type: "int8"
support: "⚠️"
- type: "int16"
support: "✅"
- type: "int32"
support: "✅"
- type: "int64"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "MIOpen"
tag: "miopen"
doc_link: "miopen:reference/datatypes"
data_types:
- type: "int8"
support: "⚠️"
- type: "int32"
support: "⚠️"
- type: "float8 (E4M3)"
support: "⚠️"
- type: "float8 (E5M2)"
support: "⚠️"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "⚠️"
- type: "float32"
support: "✅"
- type: "float64"
support: "⚠️"
- group: "Communication"
tag: "communication"
libraries:
- name: "RCCL"
tag: "rccl"
doc_link: "rccl:api-reference/library-specification"
data_types:
- type: "int8"
support: "✅"
- type: "int32"
support: "✅"
- type: "int64"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- group: "Math Libraries"
tag: "math-libs"
libraries:
- name: "hipBLAS"
tag: "hipblas"
doc_link: "hipblas:reference/data-type-support"
data_types:
- type: "float16"
support: "⚠️"
- type: "bfloat16"
support: "⚠️"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "hipBLASLt"
tag: "hipblaslt"
doc_link: "hipblaslt:reference/data-type-support"
data_types:
- type: "int8"
support: "✅"
- type: "float4"
support: "✅"
- type: "float6 (E2M3)"
support: "✅"
- type: "float6 (E3M2)"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- name: "hipFFT"
tag: "hipfft"
doc_link: "hipfft:reference/fft-api-usage"
data_types:
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "hipRAND"
tag: "hiprand"
doc_link: "hiprand:api-reference/data-type-support"
data_types:
- type: "int8"
support: "Output only"
- type: "int16"
support: "Output only"
- type: "int32"
support: "Output only"
- type: "int64"
support: "Output only"
- type: "float16"
support: "Output only"
- type: "float32"
support: "Output only"
- type: "float64"
support: "Output only"
- name: "hipSOLVER"
tag: "hipsolver"
doc_link: "hipsolver:reference/precision"
data_types:
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "hipSPARSE"
tag: "hipsparse"
doc_link: "hipsparse:reference/precision"
data_types:
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "hipSPARSELt"
tag: "hipsparselt"
doc_link: "hipsparselt:reference/data-type-support"
data_types:
- type: "int8"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- name: "rocBLAS"
tag: "rocblas"
doc_link: "rocblas:reference/data-type-support"
data_types:
- type: "float16"
support: "⚠️"
- type: "bfloat16"
support: "⚠️"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocFFT"
tag: "rocfft"
doc_link: "rocfft:reference/api"
data_types:
- type: "float16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocRAND"
tag: "rocrand"
doc_link: "rocrand:api-reference/data-type-support"
data_types:
- type: "int8"
support: "Output only"
- type: "int16"
support: "Output only"
- type: "int32"
support: "Output only"
- type: "int64"
support: "Output only"
- type: "float16"
support: "Output only"
- type: "float32"
support: "Output only"
- type: "float64"
support: "Output only"
- name: "rocSOLVER"
tag: "rocsolver"
doc_link: "rocsolver:reference/precision"
data_types:
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocSPARSE"
tag: "rocsparse"
doc_link: "rocsparse:reference/precision"
data_types:
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocWMMA"
tag: "rocwmma"
doc_link: "rocwmma:api-reference/api-reference-guide"
data_types:
- type: "int8"
support: "✅"
- type: "int32"
support: "Output only"
- type: "float8 (E4M3)"
support: "Input only"
- type: "float8 (E5M2)"
support: "Input only"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "tensorfloat32"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "Tensile"
tag: "tensile"
doc_link: "tensile:reference/precision-support"
data_types:
- type: "int8"
support: "✅"
- type: "int32"
support: "✅"
- type: "float8 (E4M3)"
support: "✅"
- type: "float8 (E5M2)"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "tensorfloat32"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- group: "Primitives"
tag: "primitives"
libraries:
- name: "hipCUB"
tag: "hipcub"
doc_link: "hipcub:api-reference/data-type-support"
data_types:
- type: "int8"
support: "✅"
- type: "int16"
support: "✅"
- type: "int32"
support: "✅"
- type: "int64"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "hipTensor"
tag: "hiptensor"
doc_link: "hiptensor:api-reference/api-reference"
data_types:
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocPRIM"
tag: "rocprim"
doc_link: "rocprim:reference/data-type-support"
data_types:
- type: "int8"
support: "✅"
- type: "int16"
support: "✅"
- type: "int32"
support: "✅"
- type: "int64"
support: "✅"
- type: "float16"
support: "✅"
- type: "bfloat16"
support: "✅"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"
- name: "rocThrust"
tag: "rocthrust"
doc_link: "rocthrust:data-type-support"
data_types:
- type: "int8"
support: "✅"
- type: "int16"
support: "✅"
- type: "int32"
support: "✅"
- type: "int64"
support: "✅"
- type: "float16"
support: "⚠️"
- type: "bfloat16"
support: "⚠️"
- type: "float32"
support: "✅"
- type: "float64"
support: "✅"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 350 KiB

View File

@@ -1,141 +0,0 @@
from docutils import nodes
from docutils.parsers.rst import Directive
from docutils.statemachine import ViewList
from sphinx.util import logging
from sphinx.util.nodes import nested_parse_with_titles
import requests
import re
logger = logging.getLogger(__name__)
class BranchAwareRemoteContent(Directive):
"""
Directive that downloads and includes content from other repositories,
matching the branch/tag of the current documentation build.
Usage:
.. remote-content::
:repo: owner/repository
:path: path/to/file.rst
:default_branch: docs/develop # Branch to use when not on a release
:tag_prefix: Docs/ # Optional
"""
required_arguments = 0
optional_arguments = 0
final_argument_whitespace = True
has_content = False
option_spec = {
'repo': str,
'path': str,
'default_branch': str, # Branch to use when not on a release tag
'start_line': int, # Include the file from a specific line
'tag_prefix': str, # Prefix for release tags (e.g., 'Docs/')
}
def get_current_version(self):
"""Get current version/branch being built"""
env = self.state.document.settings.env
html_context = env.config.html_context
# Check if building from a tag
if "official_branch" in html_context:
if html_context["official_branch"] == 0:
if "version" in html_context:
# Remove any 'v' prefix
version = html_context["version"]
if re.match(r'^\d+\.\d+\.\d+$', version):
return version
# Not a version tag, so we'll use the default branch
return None
def get_target_ref(self):
"""Get target reference for the remote repository"""
current_version = self.get_current_version()
# If it's a version number, use tag prefix and version
if current_version:
tag_prefix = self.options.get('tag_prefix', '')
return f'{tag_prefix}{current_version}'
# For any other case, use the specified default branch
if 'default_branch' not in self.options:
logger.warning('No default_branch specified and not building from a version tag')
return None
return self.options['default_branch']
def construct_raw_url(self, repo, path, ref):
"""Construct the raw.githubusercontent.com URL"""
return f'https://raw.githubusercontent.com/{repo}/{ref}/{path}'
def fetch_and_parse_content(self, url, source_path):
"""Fetch content and parse it as RST"""
response = requests.get(url)
response.raise_for_status()
content = response.text
start_line = self.options.get('start_line', 0)
# Create ViewList for parsing
line_count = 0
content_list = ViewList()
for line_no, line in enumerate(content.splitlines()):
if line_count >= start_line:
content_list.append(line, source_path, line_no)
line_count+=1
# Create a section node and parse content
node = nodes.section()
nested_parse_with_titles(self.state, content_list, node)
return node.children
def run(self):
if 'repo' not in self.options or 'path' not in self.options:
logger.warning('Both repo and path options are required')
return []
target_ref = self.get_target_ref()
if not target_ref:
return []
raw_url = self.construct_raw_url(
self.options['repo'],
self.options['path'],
target_ref
)
try:
logger.info(f'Attempting to fetch content from {raw_url}')
return self.fetch_and_parse_content(raw_url, self.options['path'])
except requests.exceptions.RequestException as e:
logger.warning(f'Failed to fetch content from {raw_url}: {str(e)}')
# If we failed on a tag, try falling back to default_branch
if re.match(r'^\d+\.\d+\.\d+$', target_ref) or target_ref.startswith('Docs/'):
if 'default_branch' in self.options:
try:
fallback_ref = self.options['default_branch']
logger.info(f'Attempting fallback to {fallback_ref}...')
fallback_url = self.construct_raw_url(
self.options['repo'],
self.options['path'],
fallback_ref
)
return self.fetch_and_parse_content(fallback_url, self.options['path'])
except requests.exceptions.RequestException as e2:
logger.warning(f'Fallback also failed: {str(e2)}')
return []
def setup(app):
app.add_directive('remote-content', BranchAwareRemoteContent)
return {
'parallel_read_safe': True,
'parallel_write_safe': True,
}

View File

@@ -10,7 +10,7 @@ Deep learning frameworks provide environments for machine learning, training, fi
ROCm offers a complete ecosystem for developing and running deep learning applications efficiently. It also provides ROCm-compatible versions of popular frameworks and libraries, such as PyTorch, TensorFlow, JAX, and others.
The AMD ROCm organization actively contributes to open-source development and collaborates closely with framework organizations. This collaboration ensures that framework-specific optimizations effectively leverage AMD GPUs.
The AMD ROCm organization actively contributes to open-source development and collaborates closely with framework organizations. This collaboration ensures that framework-specific optimizations effectively leverage AMD GPUs and accelerators.
The table below summarizes information about ROCm-enabled deep learning frameworks. It includes details on ROCm compatibility and third-party tool support, installation steps and options, and links to GitHub resources. For a complete list of supported framework versions on ROCm, see the :doc:`Compatibility matrix <../compatibility/compatibility-matrix>` topic.
@@ -84,8 +84,6 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html#use-a-prebuilt-docker-image-with-dgl-pre-installed>`__
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html#use-a-wheels-package>`__
- .. raw:: html
<a href="https://github.com/ROCm/dgl"><i class="fab fa-github fa-lg"></i></a>
@@ -130,22 +128,10 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html#use-a-prebuilt-docker-image-with-llama-cpp-pre-installed>`__
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html#build-your-own-docker-image>`__
- .. raw:: html
<a href="https://github.com/ROCm/llama.cpp"><i class="fab fa-github fa-lg"></i></a>
* - `FlashInfer <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/flashinfer-compatibility.html>`__
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html#use-a-prebuilt-docker-image-with-flashinfer-pre-installed>`__
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html#build-your-own-docker-image>`__
- .. raw:: html
<a href="https://github.com/ROCm/flashinfer"><i class="fab fa-github fa-lg"></i></a>
Learn how to use your ROCm deep learning environment for training, fine-tuning, inference, and performance optimization
through the following guides.

View File

@@ -1,5 +1,5 @@
.. meta::
:description: How to configure MI300X GPUs to fully leverage their capabilities and achieve optimal performance.
:description: How to configure MI300X accelerators to fully leverage their capabilities and achieve optimal performance.
:keywords: ROCm, AI, machine learning, MI300X, LLM, usage, tutorial, optimization, tuning
**************************************
@@ -7,11 +7,11 @@ AMD Instinct MI300X performance guides
**************************************
The following performance guides provide essential guidance on the necessary
steps to properly `configure your system for AMD Instinct™ MI300X GPUs
steps to properly `configure your system for AMD Instinct™ MI300X accelerators
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
They include detailed instructions on system settings and application
:doc:`workload tuning </how-to/rocm-for-ai/inference-optimization/workload>` to
help you leverage the maximum capabilities of these GPUs and achieve
help you leverage the maximum capabilities of these accelerators and achieve
superior performance.
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__
@@ -19,9 +19,9 @@ superior performance.
your AMD Instinct MI300X system for performance.
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload` covers steps to
optimize the performance of AMD Instinct MI300X Series GPUs for HPC
optimize the performance of AMD Instinct MI300X series accelerators for HPC
and deep learning operations.
* :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm` introduces a preconfigured
environment for LLM inference, designed to help you test performance with
popular models on AMD Instinct MI300X Series GPUs.
popular models on AMD Instinct MI300X series accelerators.

View File

@@ -25,7 +25,7 @@ execute on AMD GPUs while maintaining compatibility with CUDA-based systems.
OpenCL (Open Computing Language) is an open standard for cross-platform,
parallel programming of diverse processors. ROCm supports OpenCL for developers
who want to use standard frameworks across different hardware platforms,
including CPUs, GPUs, and APUs. For more information, see
including CPUs, GPUs, and other accelerators. For more information, see
`OpenCL <https://www.khronos.org/opencl/>`_.
Python bindings can be found at https://github.com/ROCm/hip-python.

View File

@@ -11,10 +11,10 @@ Fine-tuning using ROCm involves leveraging AMD's GPU-accelerated :doc:`libraries
ecosystem for deep learning development, including open-source libraries for optimized deep learning operations and
ROCm-aware versions of :doc:`deep learning frameworks <../../deep-learning-rocm>` such as PyTorch, TensorFlow, and JAX.
Single-accelerator systems, such as a machine equipped with a single GPU, are commonly used for
Single-accelerator systems, such as a machine equipped with a single accelerator or GPU, are commonly used for
smaller-scale deep learning tasks, including fine-tuning pre-trained models and running inference on moderately
sized datasets. See :doc:`single-gpu-fine-tuning-and-inference`.
Multi-accelerator systems, on the other hand, consist of multiple GPUs working in parallel. These systems are
Multi-accelerator systems, on the other hand, consist of multiple accelerators working in parallel. These systems are
typically used in LLMs and other large-scale deep learning tasks where performance, scalability, and the handling of
massive datasets are crucial. See :doc:`multi-gpu-fine-tuning-and-inference`.

View File

@@ -3,11 +3,11 @@
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, multi-GPU, distributed, inference, accelerators, PyTorch, HuggingFace, torchtune
*****************************************************
Fine-tuning and inference using multiple GPUs
Fine-tuning and inference using multiple accelerators
*****************************************************
This section explains how to fine-tune a model on a multi-accelerator system. See
:doc:`Single-accelerator fine-tuning <single-gpu-fine-tuning-and-inference>` for a single GPU setup.
:doc:`Single-accelerator fine-tuning <single-gpu-fine-tuning-and-inference>` for a single accelerator or GPU setup.
.. _fine-tuning-llms-multi-gpu-env:
@@ -20,7 +20,7 @@ This section was tested using the following hardware and software environment.
:stub-columns: 1
* - Hardware
- 4 AMD Instinct MI300X GPUs
- 4 AMD Instinct MI300X accelerators
* - Software
- ROCm 6.1, Ubuntu 22.04, PyTorch 2.1.2, Python 3.10
@@ -40,13 +40,13 @@ Setting up the base implementation environment
:doc:`PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`. For consistent
installation, its recommended to use official ROCm prebuilt Docker images with the framework pre-installed.
#. In the Docker container, check the availability of ROCm-capable GPUs using the following command.
#. In the Docker container, check the availability of ROCM-capable accelerators using the following command.
.. code-block:: shell
rocm-smi --showproductname
#. Check that your GPUs are available to PyTorch.
#. Check that your accelerators are available to PyTorch.
.. code-block:: python
@@ -66,7 +66,7 @@ Setting up the base implementation environment
.. tip::
During training and inference, you can check the memory usage by running the ``rocm-smi`` command in your terminal.
This tool helps you see shows which GPUs are involved.
This tool helps you see shows which accelerators or GPUs are involved.
.. _fine-tuning-llms-multi-gpu-hugging-face-accelerate:
@@ -74,9 +74,9 @@ Setting up the base implementation environment
Hugging Face Accelerate for fine-tuning and inference
===========================================================
`Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`__ is a library that simplifies turning raw
PyTorch code for a single GPU into code for multiple GPUs for LLM fine-tuning and inference. It is
integrated with `Transformers <https://huggingface.co/docs/transformers/en/index>`__, so you can scale your PyTorch
`Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_ is a library that simplifies turning raw
PyTorch code for a single accelerator into code for multiple accelerators for LLM fine-tuning and inference. It is
integrated with `Transformers <https://huggingface.co/docs/transformers/en/index>`_ allowing you to scale your PyTorch
code while maintaining performance and flexibility.
As a brief example of model fine-tuning and inference using multiple GPUs, let's use Transformers and load in the Llama
@@ -107,7 +107,7 @@ Now, it's important to adjust how you load the model. Add the ``device_map`` par
(``"auto"``, ``"balanced"``, ``"balanced_low_0"``, ``"sequential"``).
It's recommended to set the ``device_map`` parameter to ``“auto”`` to allow Accelerate to automatically and
efficiently allocate the model given the available resources (four GPUs in this case).
efficiently allocate the model given the available resources (4 accelerators in this case).
When you have more GPU memory available than the model size, here is the difference between each ``device_map``
option:
@@ -130,8 +130,8 @@ After loading the model in this way, the model is fully ready to use the resourc
torchtune for fine-tuning and inference
=============================================
`torchtune <https://pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-GPU
model fine-tuning and inference with LLMs.
`torchtune <https://pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-accelerator or
GPU model fine-tuning and inference with LLMs.
#. Install torchtune using pip.

View File

@@ -30,7 +30,7 @@ The challenge of fine-tuning models
However, the computational cost of fine-tuning is still high, especially for complex models and large datasets, which
poses distinct challenges related to substantial computational and memory requirements. This might be a barrier for
GPUs with low computing power or limited device memory resources.
accelerators or GPUs with low computing power or limited device memory resources.
For example, suppose we have a language model with 7 billion (7B) parameters, represented by a weight matrix :math:`W`.
During backpropagation, the model needs to learn a :math:`ΔW` matrix, which updates the original weights to minimize the
@@ -84,8 +84,8 @@ Walkthrough
===========
To demonstrate the benefits of LoRA and the ideal compute compatibility of using PEFT and TRL libraries on AMD
ROCm-compatible GPUs, let's step through a comprehensive implementation of the fine-tuning process
using the Llama 2 7B model with LoRA tailored specifically for question-and-answer tasks on AMD MI300X GPUs.
ROCm-compatible accelerators and GPUs, let's step through a comprehensive implementation of the fine-tuning process
using the Llama 2 7B model with LoRA tailored specifically for question-and-answer tasks on AMD MI300X accelerators.
Before starting, review and understand the key components of this walkthrough:

View File

@@ -3,11 +3,12 @@
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, single-GPU, LoRA, PEFT, inference, SFTTrainer
****************************************************
Fine-tuning and inference using a single GPU
Fine-tuning and inference using a single accelerator
****************************************************
This section explains model fine-tuning and inference techniques on a single-accelerator system. See
:doc:`Multi-accelerator fine-tuning <multi-gpu-fine-tuning-and-inference>` for a setup with multiple GPUs.
:doc:`Multi-accelerator fine-tuning <multi-gpu-fine-tuning-and-inference>` for a setup with multiple accelerators or
GPUs.
.. _fine-tuning-llms-single-gpu-env:
@@ -20,7 +21,7 @@ This section was tested using the following hardware and software environment.
:stub-columns: 1
* - Hardware
- AMD Instinct MI300X GPU
- AMD Instinct MI300X accelerator
* - Software
- ROCm 6.1, Ubuntu 22.04, PyTorch 2.1.2, Python 3.10
@@ -40,7 +41,7 @@ Setting up the base implementation environment
:doc:`PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`. For a consistent
installation, its recommended to use official ROCm prebuilt Docker images with the framework pre-installed.
#. In the Docker container, check the availability of ROCm-capable GPUs using the following command.
#. In the Docker container, check the availability of ROCm-capable accelerators using the following command.
.. code-block:: shell
@@ -52,14 +53,14 @@ Setting up the base implementation environment
============================ ROCm System Management Interface ============================
====================================== Product Info ======================================
GPU[0] : Card Series: AMD Instinct MI300X OAM
GPU[0] : Card series: AMD Instinct MI300X OAM
GPU[0] : Card model: 0x74a1
GPU[0] : Card vendor: Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0] : Card SKU: MI3SRIOV
==========================================================================================
================================== End of ROCm SMI Log ===================================
#. Check that your GPUs are available to PyTorch.
#. Check that your accelerators are available to PyTorch.
.. code-block:: python
@@ -501,9 +502,9 @@ Let's look at achieving model inference using these types of models.
# Token generation
print(pipe("What is a large language model?")[0]["generated_text"])
If using multiple GPUs, see
If using multiple accelerators, see
:ref:`Multi-accelerator fine-tuning and inference <fine-tuning-llms-multi-gpu-hugging-face-accelerate>` to explore
popular libraries that simplify fine-tuning and inference in a multiple-GPU system.
popular libraries that simplify fine-tuning and inference in a multi-accelerator system.
Read more about inference frameworks like vLLM and Hugging Face TGI in
:doc:`LLM inference frameworks <../inference/llm-inference-frameworks>`.

View File

@@ -45,7 +45,7 @@ ROCm provides two different implementations of Flash Attention 2 modules. They c
# Install from source
git clone https://github.com/ROCm/flash-attention.git
cd flash-attention/
GPU_ARCHS=gfx942 python setup.py install #MI300 Series
GPU_ARCHS=gfx942 python setup.py install #MI300 series
Hugging Face Transformers can easily deploy the CK Flash Attention 2 module by passing an argument
``attn_implementation="flash_attention_2"`` in the ``from_pretrained`` class.
@@ -526,7 +526,7 @@ follow these instructions:
python -m pytest -v -rsx -s -W ignore::pytest.PytestCollectionWarning split_table_batched_embeddings_test.py
To run the FBGEMM_GPU ``uvm`` test, use these commands. These tests only support the AMD MI210 and
more recent GPUs.
more recent accelerators.
.. code-block:: shell

View File

@@ -7,7 +7,7 @@ Model quantization techniques
*****************************
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models
onto GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
and bitsandbytes on AMD Instinct hardware.
.. _quantize-llms-quark:
@@ -311,7 +311,7 @@ ExLlama-v2 support
ExLlama is a Python/C++/CUDA implementation of the Llama model that is
designed for faster inference with 4-bit GPTQ weights. The ExLlama
kernel is activated by default when users create a ``GPTQConfig`` object. To
boost inference speed even further on Instinct GPUs, use the ExLlama-v2
boost inference speed even further on Instinct accelerators, use the ExLlama-v2
kernels by configuring the ``exllama_config`` parameter as the following.
.. code-block:: python
@@ -332,7 +332,7 @@ The `ROCm-aware bitsandbytes <https://github.com/ROCm/bitsandbytes>`_ library is
a lightweight Python wrapper around CUDA custom functions, in particular 8-bit optimizer, matrix multiplication, and
8-bit and 4-bit quantization functions. The library includes quantization primitives for 8-bit and 4-bit operations
through ``bitsandbytes.nn.Linear8bitLt`` and ``bitsandbytes.nn.Linear4bit`` and 8-bit optimizers through the
``bitsandbytes.optim`` module. These modules are supported on AMD Instinct GPUs.
``bitsandbytes.optim`` module. These modules are supported on AMD Instinct accelerators.
Installing bitsandbytes
-----------------------

View File

@@ -9,13 +9,13 @@ myst:
The AMD ROCm Composable Kernel (CK) library provides a programming model for writing performance-critical kernels for machine learning workloads. It generates a general-purpose kernel during the compilation phase through a C++ template, enabling developers to achieve operation fusions on different data precisions.
This article gives a high-level overview of CK General Matrix Multiplication (GEMM) kernel based on the design example of `03_gemm_bias_relu`. It also outlines the steps to construct the kernel and run it. Moreover, the article provides a detailed implementation of running SmoothQuant quantized INT8 models on AMD Instinct MI300X GPUs using CK.
This article gives a high-level overview of CK General Matrix Multiplication (GEMM) kernel based on the design example of `03_gemm_bias_relu`. It also outlines the steps to construct the kernel and run it. Moreover, the article provides a detailed implementation of running SmoothQuant quantized INT8 models on AMD Instinct MI300X accelerators using CK.
## High-level overview: a CK GEMM instance
GEMM is a fundamental block in linear algebra, machine learning, and deep neural networks. It is defined as the operation:
{math}`E = α \times (A \times B) + β \times (D)`, with A and B as matrix inputs, α and β as scalar inputs, and D as a pre-existing matrix.
Take the commonly used linear transformation in a fully connected layer as an example. These terms correspond to input activation (A), weight (B), bias (D), and output (E), respectively. The example employs a `DeviceGemmMultipleD_Xdl_CShuffle` struct from CK library as the fundamental instance to explore the compute capability of AMD Instinct GPUs for the computation of GEMM. The implementation of the instance contains two phases:
Take the commonly used linear transformation in a fully connected layer as an example. These terms correspond to input activation (A), weight (B), bias (D), and output (E), respectively. The example employs a `DeviceGemmMultipleD_Xdl_CShuffle` struct from CK library as the fundamental instance to explore the compute capability of AMD Instinct accelerators for the computation of GEMM. The implementation of the instance contains two phases:
- [Template parameter definition](#template-parameter-definition)
- [Instantiating and running the templated kernel](#instantiating-and-running-the-templated-kernel)
@@ -108,7 +108,7 @@ These parameters include Block Size, M/N/K Per Block, M/N per XDL, AK1, BK1, etc
- Block Size determines the number of threads in the thread block.
- M/N/K Per Block determines the size of tile that each thread block is responsible for calculating.
- M/N Per XDL refers to M/N size for Instinct GPU Matrix Fused Multiply Add (MFMA) instructions operating on a per-wavefront basis.
- M/N Per XDL refers to M/N size for Instinct accelerator Matrix Fused Multiply Add (MFMA) instructions operating on a per-wavefront basis.
- A/B K1 is related to the data type. It can be any value ranging from 1 to K Per Block. To achieve the optimal load/store performance, 128bit per load is suggested. In addition, the A/B loading parameters must be changed accordingly to match the A/B K1 value; otherwise, it will result in compilation errors.
Conditions for achieving computational load balancing on different hardware platforms can vary.
@@ -133,7 +133,7 @@ Templated kernel launching consists of kernel instantiation, making arguments by
## Developing fused INT8 kernels for SmoothQuant models
[SmoothQuant](https://github.com/mit-han-lab/smoothquant) (SQ) is a quantization algorithm that enables an INT8 quantization of both weights and activations for all the matrix multiplications in LLM. The required GPU kernel functionalities used to accelerate the inference of SQ models on Instinct GPUs are shown in the following table.
[SmoothQuant](https://github.com/mit-han-lab/smoothquant) (SQ) is a quantization algorithm that enables an INT8 quantization of both weights and activations for all the matrix multiplications in LLM. The required GPU kernel functionalities used to accelerate the inference of SQ models on Instinct accelerators are shown in the following table.
:::{table} Functionalities used to implement SmoothQuant model inference.
@@ -164,7 +164,7 @@ The CK library contains many fundamental instances that implement different func
Second, consider whether the format of input data meets your actual calculation needs. For SQ models, the 8-bit integer data format (INT8) is applied for matrix calculations.
Third, consider the platform for implementing CK instances. The instances suffixed with `xdl` only run on AMD Instinct GPUs after being compiled and cannot run on Radeon-Series GPUs. This is due to the underlying device-specific instruction sets for implementing these basic instances.
Third, consider the platform for implementing CK instances. The instances suffixed with `xdl` only run on AMD Instinct accelerators after being compiled and cannot run on Radeon-series GPUs. This is due to the underlying device-specific instruction sets for implementing these basic instances.
Here, we use [DeviceBatchedGemmMultiD_Xdl](https://github.com/ROCm/composable_kernel/tree/develop/example/24_batched_gemm) as the fundamental instance to implement the functionalities in the previous table.
@@ -435,7 +435,7 @@ The implementation architecture of running SmoothQuant models on MI300X GPUs is
### Figure 7
================ -->
```{figure} ../../../data/how-to/llm-fine-tuning-optimization/ck-inference_flow.jpg
The implementation architecture of running SmoothQuant models on AMD MI300X GPUs.
The implementation architecture of running SmoothQuant models on AMD MI300X accelerators.
```
For the target [SQ quantized model](https://huggingface.co/mit-han-lab/opt-13b-smoothquant), each decoder layer contains three major components: attention calculation, layer normalization, and linear transformation in fully connected layers. The corresponding implementation classes for these components are:
@@ -447,21 +447,21 @@ For the target [SQ quantized model](https://huggingface.co/mit-han-lab/opt-13b-s
These classes' underlying implementation logits will harness the functions in previous table. Note that for the example, the `LayerNormQ` module is implemented by the torch native module.
Testing environment:
The hardware platform used for testing equips with 256 AMD EPYC 9534 64-Core Processor, 8 AMD Instinct MI300X GPUs and 1.5T memory. The testing was done in a publicly available Docker image from Docker Hub:
The hardware platform used for testing equips with 256 AMD EPYC 9534 64-Core Processor, 8 AMD Instinct MI300X accelerators and 1.5T memory. The testing was done in a publicly available Docker image from Docker Hub:
[`rocm/pytorch:rocm6.1_ubuntu22.04_py3.10_pytorch_2.1.2`](https://hub.docker.com/layers/rocm/pytorch/rocm6.1_ubuntu22.04_py3.10_pytorch_2.1.2/images/sha256-f6ea7cee8aae299c7f6368187df7beed29928850c3929c81e6f24b34271d652b)
The tested models are OPT-1.3B, 2.7B, 6.7B and 13B FP16 models and the corresponding SmoothQuant INT8 OPT models were obtained from Hugging Face.
Note that since the default values were used for the tunable parameters of the fundamental instance, the performance of the INT8 kernel is suboptimal.
Figure 8 shows the performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X GPU. The GPU memory footprints of SmoothQuant-quantized models are significantly reduced. It also indicates the per-sample inference latency is significantly reduced for all SmoothQuant-quantized OPT models (illustrated in (b)). Notably, the performance of the CK instance-based INT8 kernel steadily improves with an increase in model size.
Figure 8 shows the performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X accelerator. The GPU memory footprints of SmoothQuant-quantized models are significantly reduced. It also indicates the per-sample inference latency is significantly reduced for all SmoothQuant-quantized OPT models (illustrated in (b)). Notably, the performance of the CK instance-based INT8 kernel steadily improves with an increase in model size.
<!--
================
### Figure 8
================ -->
```{figure} ../../../data/how-to/llm-fine-tuning-optimization/ck-comparisons.jpg
Performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X GPU.
Performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X accelerator.
```
For accuracy comparisons between the original FP16 and INT8 models, the evaluation is done by using the first 1,000 samples from the LAMBADA dataset's validation set. We employ the same Last Token Prediction Accuracy method introduced in [SmoothQuant Real-INT8 Inference for PyTorch](https://github.com/mit-han-lab/smoothquant/blob/main/examples/smoothquant_opt_real_int8_demo.ipynb) as our evaluation metric. The comparison results are shown in Table 2.
@@ -482,4 +482,4 @@ CK provides a rich set of template parameters for generating flexible accelerate
CK supports multiple instruction sets of AMD Instinct GPUs, operator fusion and different data precisions. Its composability helps users quickly construct operator performance verification.
With CK, you can build more effective AI applications with higher flexibility and better performance on different AMD GPU platforms.
With CK, you can build more effective AI applications with higher flexibility and better performance on different AMD accelerator platforms.

View File

@@ -1,30 +1,31 @@
.. meta::
:description: Learn about workload tuning on AMD Instinct MI300X GPUs for optimal performance.
:description: Learn about workload tuning on AMD Instinct MI300X accelerators for optimal performance.
:keywords: AMD, Instinct, MI300X, HPC, tuning, BIOS settings, NBIO, ROCm,
environment variable, performance, HIP, Triton, PyTorch TunableOp, vLLM, RCCL,
MIOpen, GPU, resource utilization
MIOpen, accelerator, GPU, resource utilization
*****************************************
AMD Instinct MI300X workload optimization
*****************************************
This document provides guidelines for optimizing the performance of AMD
Instinct™ MI300X GPUs, with a particular focus on GPU kernel
Instinct™ MI300X accelerators, with a particular focus on GPU kernel
programming, high-performance computing (HPC), and deep learning operations
using PyTorch. It delves into specific workloads such as
:ref:`model inference <mi300x-vllm-optimization>`, offering strategies to
enhance efficiency.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>` as
well as :ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>`
for meticulous tuning.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>`
that streamline optimization as well as advanced techniques like
:ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>` for
meticulous tuning.
Workload tuning strategy
========================
By following a structured approach, you can systematically address
performance issues and enhance the efficiency of your workloads on AMD Instinct
MI300X GPUs.
MI300X accelerators.
Measure the current workload
----------------------------
@@ -85,28 +86,27 @@ Optimize model inference with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
vLLM provides tools and techniques specifically designed for efficient model
inference on AMD Instinct GPUs. See the official `vLLM installation docs
<https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html>`__ for
installation guidance. Optimizing performance with vLLM involves configuring
tensor parallelism, leveraging advanced features, and ensuring efficient
execution.
inference on AMD Instinct MI300X accelerators. See :ref:`fine-tuning-llms-vllm`
for installation guidance. Optimizing performance with vLLM
involves configuring tensor parallelism, leveraging advanced features, and
ensuring efficient execution. Heres how to optimize vLLM performance:
* Configuration for vLLM: Set engine arguments according to workload
requirements.
* Tensor parallelism: Configure the
:ref:`tensor-parallel-size parameter <mi300x-vllm-multiple-gpus>` to distribute
tensor computations across multiple GPUs. Adjust parameters such as
``batch-size``, ``input-len``, and ``output-len`` based on your workload.
* Configuration for vLLM: Set :ref:`parameters <mi300x-vllm-optimization>`
according to workload requirements. Benchmark performance to understand
characteristics and identify bottlenecks.
* Benchmarking and performance metrics: Measure latency and throughput to
evaluate performance.
.. seealso::
See :doc:`vllm-optimization` to learn more about vLLM performance
optimization techniques.
.. _mi300x-auto-tune:
Auto-tunable configurations
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Auto-tunable configurations can significantly streamline performance
optimization by automatically adjusting parameters based on workload
characteristics. For example:
@@ -120,7 +120,8 @@ characteristics. For example:
your specific hardware.
* Triton: Use :ref:`Tritons auto-tuning features <mi300x-autotunable-kernel-config>`
to explore various kernel configurations and select the best-performing ones.
to explore various kernel configurations and automatically select the
best-performing ones.
Manual tuning
^^^^^^^^^^^^^
@@ -238,7 +239,7 @@ benchmarking process.
With AMD's profiling tools, developers are able to gain important insight into how efficiently their application is
using hardware resources and effectively diagnose potential bottlenecks contributing to poor performance. Developers
working with AMD Instinct GPUs have multiple tools depending on their specific profiling needs; these include:
working with AMD Instinct accelerators have multiple tools depending on their specific profiling needs; these include:
* :ref:`ROCProfiler <mi300x-rocprof>`
@@ -256,11 +257,11 @@ metrics, commonly called *performance counters*. These counters quantify the per
showcasing which pieces of the computational pipeline and memory hierarchy are being utilized.
Your ROCm installation contains a script or executable command called ``rocprof`` which provides the ability to list all
available hardware counters for your specific GPU, and run applications while collecting counters during
available hardware counters for your specific accelerator or GPU, and run applications while collecting counters during
their execution.
This ``rocprof`` utility also depends on the :doc:`ROCTracer and ROC-TX libraries <roctracer:index>`, giving it the
ability to collect timeline traces of the GPU software stack as well as user-annotated code regions.
ability to collect timeline traces of the accelerator software stack as well as user-annotated code regions.
.. note::
@@ -275,16 +276,16 @@ ROCm Compute Profiler
^^^^^^^^^^^^^^^^^^^^^
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>` is a system performance profiler for high-performance computing (HPC) and
machine learning (ML) workloads using Instinct GPUs. Under the hood, ROCm Compute Profiler uses
machine learning (ML) workloads using Instinct accelerators. Under the hood, ROCm Compute Profiler uses
:ref:`ROCProfiler <mi300x-rocprof>` to collect hardware performance counters. The ROCm Compute Profiler tool performs
system profiling based on all approved hardware counters for Instinct
GPU architectures. It provides high level performance analysis features including System Speed-of-Light, IP
accelerator architectures. It provides high level performance analysis features including System Speed-of-Light, IP
block Speed-of-Light, Memory Chart Analysis, Roofline Analysis, Baseline Comparisons, and more.
ROCm Compute Profiler takes the guesswork out of profiling by removing the need to provide text input files with lists of counters
to collect and analyze raw CSV output files as is the case with ROCProfiler. Instead, ROCm Compute Profiler automates the collection
of all available hardware counters in one command and provides graphical interfaces to help users understand and
analyze bottlenecks and stressors for their computational workloads on AMD Instinct GPUs.
analyze bottlenecks and stressors for their computational workloads on AMD Instinct accelerators.
.. note::
@@ -327,21 +328,380 @@ hardware counters are also included.
ROCm Systems Profiler timeline trace example.
.. _mi300x-vllm-optimization:
vLLM performance optimization
=============================
vLLM is a high-throughput and memory efficient inference and serving engine for
large language models that has gained traction in the AI community for its
performance and ease of use. See :doc:`vllm-optimization`, where you'll learn
how to:
vLLM is a high-throughput and memory efficient inference and serving engine for large language models that has gained traction in the AI community for
its performance and ease of use. See :ref:`fine-tuning-llms-vllm` for a primer on vLLM with ROCm.
Performance environment variables
---------------------------------
The following performance tips are not *specific* to vLLM -- they are general
but relevant in this context. You can tune the following vLLM parameters to
achieve optimal request latency and throughput performance.
* As described in `Environment variables (MI300X)
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#environment-variables>`_,
the environment variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM
performance. Set it to ``export HIP_FORCE_DEV_KERNARG=1``.
* Set the :ref:`RCCL environment variable <mi300x-rccl>` ``NCCL_MIN_NCHANNELS``
to ``112`` to increase the number of channels on MI300X to potentially improve
performance.
* Set the environment variable ``TORCH_BLAS_PREFER_HIPBLASLT=1`` to use hipBLASLt to improve performance.
Auto-tuning using PyTorch TunableOp
------------------------------------
Since vLLM is based on the PyTorch framework, PyTorch TunableOp can be used for auto-tuning.
You can run auto-tuning with TunableOp in two simple steps without modifying your code:
* Enable TunableOp and tuning. Optionally, enable verbose mode:
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_VERBOSE=1 your_vllm_script.sh
* Enable TunableOp and disable tuning and measure.
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_TUNING=0 your_vllm_script.sh
Learn more about TunableOp in the :ref:`PyTorch TunableOp <mi300x-tunableop>` section.
Performance tuning based on vLLM engine configurations
-------------------------------------------------------
The following subsections describe vLLM-specific configurations for performance tuning.
You can tune the following vLLM parameters to achieve optimal performance.
* ``tensor_parallel_size``
* ``gpu_memory_utilization``
* ``dtype``
* ``enforce_eager``
* ``kv_cache_dtype``
* ``input_len``
* ``output_len``
* ``max_num_seqs``
* ``num_scheduler_steps``
* ``max_model_len``
* ``enable_chunked_prefill``
* ``distributed_executor_backend``
* ``max_seq_len_to_capture``
Refer to `vLLM documentation <https://docs.vllm.ai/en/latest/models/performance.html>`_
for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on MI300X series accelerators. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-vllm-throughput-measurement:
Evaluating performance by throughput measurement
-------------------------------------------------
This tuning guide evaluates the performance of LLM inference workloads by measuring throughput in tokens per second (TPS). Throughput can be assessed using both real-world and synthetic data, depending on your evaluation goals.
Refer to the benchmarking script located at ``benchmarks/benchmark_throughput.py`` in the `vLLM repository <https://github.com/ROCm/vllm/blob/main/benchmarks/benchmark_throughput.py>`_.
Use this script to measure throughput effectively. You can assess throughput using real-world and synthetic data, depending on your evaluation goals.
* For realistic performance evaluation, you can use datasets like Hugging Face's
``ShareGPT_V3_unfiltered_cleaned_split.json``. This dataset includes real-world conversational
data, making it a good representation of typical use cases for language models. Download it using
the following command:
.. code-block:: shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
* For standardized benchmarking, you can set fixed input and output token
lengths. Synthetic prompts provide consistent benchmarking runs, making it
easier to compare performance across different models or configurations.
Additionally, a controlled environment simplifies analysis.
By balancing real-world data and synthetic data approaches, you can get a well-rounded understanding of model performance in varied scenarios.
.. _mi300x-vllm-single-node:
Maximizing vLLM instances on a single node
------------------------------------------
The general guideline is to maximize per-node throughput by running as many vLLM instances as possible.
However, running too many instances might lead to insufficient memory for the KV-cache, which can affect performance.
The Instinct MI300X accelerator is equipped with 192GB of HBM3 memory capacity and bandwidth.
For models that fit in one GPU -- to maximize the accumulated throughput -- you can run as many as eight vLLM instances
simultaneously on one MI300X node (with eight GPUs). To do so, use the GPU isolation environment
variable ``CUDA_VISIBLE_DEVICES``.
For example, this script runs eight instances of vLLM for throughput benchmarking at the same time
with a model that can fit in one GPU:
.. code-block:: shell
for i in $(seq 0 7);
do
CUDA_VISIBLE_DEVICES="$i" python3 /app/vllm/benchmarks/benchmark_throughput.py -tp 1 --dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
done
The total throughput achieved by running ``N`` instances of vLLM is generally much higher than running a
single vLLM instance across ``N`` GPUs simultaneously (that is, configuring ``tensor_parallel_size`` as N or
using the ``-tp`` N option, where ``1 < N ≤ 8``).
vLLM on MI300X accelerators can run a variety of model weights, including Llama 2 (7b, 13b, 70b), Llama 3 (8b, 70b), Qwen2 (7b, 72b), Mixtral-8x7b, Mixtral-8x22b, and so on.
Notable configurations include Llama2-70b and Llama3-70b models on a single MI300X GPU, and the Llama3.1 405b model can fit on one single node with 8 MI300X GPUs.
.. _mi300x-vllm-gpu-memory-utilization:
Configure the gpu_memory_utilization parameter
----------------------------------------------
There are two ways to increase throughput by configuring ``gpu-memory-utilization`` parameter.
1. Increase ``gpu-memory-utilization`` to improve the throughput for a single instance as long as
it does not incur HIP or CUDA Out Of Memory. The default ``gpu-memory-utilization`` is 0.9.
You can set it to ``>0.9`` and ``<1``.
For example, below benchmarking command set the ``gpu-memory-utilization`` as 0.98, or 98%.
.. code-block:: shell
/vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.98 --input-len 1024 --output-len 128 --model /path/to/model
2. Decrease ``gpu-memory-utilization`` to maximize the number of vLLM instances on the same GPU.
Specify GPU memory utilization to run as many instances of vLLM as possible on a single
GPU. However, too many instances can result in no memory for KV-cache. For small models, run
multiple instances of vLLM on the same GPU by specifying a smaller ``gpu-memory-utilization`` -- as
long as it would not cause HIP Out Of Memory.
For example, run two instances of the Llama3-8b model at the same time on a single GPU by specifying
``--gpu-memory-utilization`` to 0.4 (40%) as follows (on GPU ``0``):
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
See :ref:`vllm-engine-args` for other performance suggestions.
.. _mi300x-vllm-multiple-gpus:
Run vLLM on multiple GPUs
-------------------------
The two main reasons to use multiple GPUs are:
* The model size is too big to run vLLM using one GPU as it results HIP Out of Memory.
* To achieve better latency when using a single GPU is not desirable.
To run one vLLM instance on multiple GPUs, use the ``-tp`` or ``--tensor-parallel-size`` option to
specify multiple GPUs. Optionally, use the ``CUDA_VISIBLE_DEVICES`` environment variable to specify
the GPUs.
For example, you can use two GPUs to start an API server on port 8000:
.. code-block:: shell
python -m vllm.entrypoints.api_server --model /path/to/model --dtype
float16 -tp 2 --port 8000 &
To achieve both latency and throughput performance for serving, you can run multiple API servers on
different GPUs by specifying different ports for each server and use ``CUDA_VISIBLE_DEVICES`` to
specify the GPUs for each server, for example:
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8000 &
CUDA_VISIBLE_DEVICES=2,3 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8001 &
Choose an attention backend
---------------------------
vLLM on ROCm supports two attention backends, each suitable for different use cases and performance
requirements:
- **Triton Flash Attention** - For benchmarking, run vLLM scripts at
least once as a warm-up step so Triton can perform auto-tuning before
collecting benchmarking numbers. This is the default setting.
- **Composable Kernel (CK) Flash Attention** - To use CK Flash Attention, specify
the environment variable as ``export VLLM_USE_TRITON_FLASH_ATTN=0``.
Refer to :ref:`Model acceleration libraries <acceleration-flash-attention>`
to learn more about Flash Attention with Triton or CK backends.
.. _vllm-engine-args:
vLLM engine arguments
---------------------
The following are configuration suggestions to potentially improve performance with vLLM. See
`vLLM's engine arguments documentation <https://docs.vllm.ai/en/latest/serving/engine_args.html>`_
for a full list of configurable engine arguments.
Configure the max-num-seqs parameter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Increase the ``max-num-seqs`` parameter from the default ``256`` to ``512`` (``--max-num-seqs
512``). This increases the maximum number of sequences per iteration and can improve throughput.
Use the float16 dtype
^^^^^^^^^^^^^^^^^^^^^
The default data type (``dtype``) is specified in the models configuration file. For instance, some models use ``torch.bfloat16`` as their default ``dtype``.
Use float16 (``--dtype float16``) for better performance.
Multi-step scheduling
^^^^^^^^^^^^^^^^^^^^^
Setting ``num-scheduler-steps`` for multi-step scheduling can increase performance. Set it between 10 to 15 (``--num-scheduler-steps 10``).
Distributed executor backend
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The vLLM supports two modes of distributed executor backend: ``ray`` and ``mp``. When using the `<https://github.com/ROCm/vllm>`__ fork, using the ``mp``
backend (``--distributed_executor_backend mp``) is recommended.
Graph mode max-seq-len-to-capture
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Maximum sequence length covered by CUDA graphs. In the default mode (where ``enforce_eager`` is ``False``), when a sequence has context length
larger than this, vLLM engine falls back to eager mode. The default is 8192.
When working with models that support long context lengths, set the parameter ``--max-seq-len-to-capture`` to 16384.
See this `vLLM blog <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`__ for details.
An example of long context length model is Qwen2-7b.
Whether to enable chunked prefill
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another vLLM performance tip is to enable chunked prefill to improve
throughput. Chunked prefill allows large prefills to be chunked into
smaller chunks and batched together with decode requests.
You can enable the feature by specifying ``--enable-chunked-prefill`` in the
command line or setting ``enable_chunked_prefill=True`` in the LLM
constructor. 
As stated in `vLLM's documentation, <https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill>`__,
you can tune the performance by changing ``max_num_batched_tokens``. By
default, it is set to 512 and optimized for ITL (inter-token latency).
Smaller ``max_num_batched_tokens`` achieves better ITL because there are
fewer prefills interrupting decodes.
Higher ``max_num_batched_tokens`` achieves better TTFT (time to the first
token) as you can put more prefill to the batch.
You might experience noticeable throughput improvements when
benchmarking on a single GPU or 8 GPUs using the vLLM throughput
benchmarking script along with the ShareGPT dataset as input.
In the case of fixed ``input-len``/``output-len``, for some configurations,
enabling chunked prefill increases the throughput. For some other
configurations, the throughput may be worse and elicit a need to tune
parameter ``max_num_batched_tokens`` (for example, increasing ``max_num_batched_tokens`` value to 4096 or larger).
.. note::
Chunked prefill is no longer recommended. See the vLLM blog: `Serving LLMs on AMD MI300X: Best Practices <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`_ (October 2024).
Quantization support
---------------------
Quantization reduces the precision of the models weights and activations, which significantly decreases the memory footprint.
``fp8(w8a8)`` and ``AWQ`` quantization are supported for ROCm.
FP8 quantization
^^^^^^^^^^^^^^^^^
`<https://github.com/ROCm/vllm>`__ supports FP8 (8-bit floating point) weight and activation quantization using hardware acceleration on the Instinct MI300X.
Quantization of models with FP8 allows for a 2x reduction in model memory requirements and up to a 1.6x improvement in throughput with minimal impact on accuracy.
AMD publishes Quark Quantized OCP FP8 models on Hugging Face. For example:
* `Llama-3.1-8B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV>`__
* `Llama-3.1-70B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`__
* `Llama-3.1-405B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`__
* `Mixtral-8x7B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`__
* `Mixtral-8x22B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`__
To enable vLLM benchmarking to run on fp8 quantized models, use the ``--quantization`` parameter with value ``fp8`` (``--quantization fp8``).
AWQ quantization
^^^^^^^^^^^^^^^^
You can quantize your own models by installing AutoAWQ or picking one of the 400+ models on Hugging Face. Be aware that
that AWQ support in vLLM is currently underoptimized.
To enable vLLM to run on ``awq`` quantized models, using ``--quantization`` parameter with ``awq`` (``--quantization awq``).
You can find more specifics in the `vLLM AutoAWQ documentation <https://docs.vllm.ai/en/stable/quantization/auto_awq.html>`_.
fp8 kv-cached-dtype
^^^^^^^^^^^^^^^^^^^^^^^
Using ``fp8 kv-cache dtype`` can improve performance as it reduces the size
of ``kv-cache``. As a result, it reduces the cost required for reading and
writing the ``kv-cache``.
To use this feature, specify ``--kv-cache-dtype`` as ``fp8``.
To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and
``llama2-7b``.
If building the vLLM using
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile.rocm>`_
for ``llama2-70b`` scale config, find the file at
``/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json`` at
runtime.
Below is a sample command to run benchmarking with this feature enabled
for the ``llama2-70b`` model:
.. code-block:: shell
python3 /vllm-workspace/benchmarks/benchmark_throughput.py --model \
/path/to/llama2-70b-model --kv-cache-dtype "fp8" \
--quantization-param-path \
"/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json" \
--input-len 512 --output-len 256 --num-prompts 500
* Enable AITER (AI Tensor Engine for ROCm) to speed up on LLM models.
* Configure environment variables for optimal HIP, RCCL, and Quick Reduce performance.
* Select the right attention backend for your workload (AITER MHA/MLA vs. Triton).
* Choose parallelism strategies (tensor, pipeline, data, expert) for multi-GPU deployments.
* Apply quantization (``FP8``/``FP4``) to reduce memory usage by 2-4× with minimal accuracy loss.
* Tune engine arguments (batch size, memory utilization, graph modes) for your use case.
* Benchmark and scale across single-node and multi-node configurations.
.. _mi300x-tunableop:
@@ -557,7 +917,7 @@ ROCm library tuning involves optimizing the performance of routine computational
operations (such as ``GEMM``) provided by ROCm libraries like
:ref:`hipBLASLt <mi300x-hipblaslt>`, :ref:`Composable Kernel <mi300x-ck>`,
:ref:`MIOpen <mi300x-miopen>`, and :ref:`RCCL <mi300x-rccl>`. This tuning aims
to maximize efficiency and throughput on Instinct MI300X GPUs to gain
to maximize efficiency and throughput on Instinct MI300X accelerators to gain
improved application performance.
.. _mi300x-library-gemm:
@@ -586,33 +946,33 @@ for details.
.. code-block:: shell
HIP_FORCE_DEV_KERNARG=1 hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
HIP_FORCE_DEV_KERNARG=1  hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
--a_type f16_r --b_type f8_r --compute_type f32_f16_r \
--initialization trig_float --cold_iters 100 --iters 1000 --rotating 256
--initialization trig_float  --cold_iters 100 --iters 1000 --rotating 256
* Example 2: Benchmark forward epilogues and backward epilogues
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_DGELU": --activation_type gelu --gradient";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADB: "--bias_vector --gradient --bias_source b";``
* ``HIPBLASLT_EPILOGUE_BGRADB:  "--bias_vector --gradient --bias_source b";``
hipBLASLt auto-tuning using hipblaslt-bench
@@ -671,26 +1031,26 @@ The tuning tool is a two-step tool. It first runs the benchmark, then it creates
.. code-block:: python
defaultBenchOptions = {"ProblemType": {
"TransposeA": 0,
"TransposeB": 0,
"ComputeInputDataType": "s",
"ComputeDataType": "s",
"DataTypeC": "s",
"DataTypeD": "s",
"UseBias": False
}, "TestConfig": {
"ColdIter": 20,
"Iter": 100,
"AlgoMethod": "all",
"RequestedSolutions": 2, # Only works in AlgoMethod heuristic
"SolutionIndex": None, # Only works in AlgoMethod index
"ApiMethod": "cpp",
"RotatingBuffer": 0,
}, "TuningParameters": {
"SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {} # Currently unused
defaultBenchOptions = {"ProblemType": {
    "TransposeA": 0,
    "TransposeB": 0,
    "ComputeInputDataType": "s",
    "ComputeDataType": "s",
    "DataTypeC": "s",
    "DataTypeD": "s",
    "UseBias": False
}, "TestConfig": {
    "ColdIter": 20,
    "Iter": 100,
    "AlgoMethod": "all",
    "RequestedSolutions": 2, # Only works in AlgoMethod heuristic
    "SolutionIndex": None, # Only works in AlgoMethod index
    "ApiMethod": "cpp",
    "RotatingBuffer": 0,
}, "TuningParameters": {
    "SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {}  # Currently unused
* ``TestConfig``
1. ``ColdIter``: This is number the warm-up iterations before starting the kernel benchmark.
@@ -870,7 +1230,7 @@ command:
.. code-block:: shell
merge.py original_dir new_tuned_yaml_dir output_dir
merge.py original_dir new_tuned_yaml_dir output_dir 
The following table describes the logic YAML files.
@@ -1091,7 +1451,7 @@ you can only use a fraction of the potential bandwidth on the node.
The following figure shows an
:doc:`MI300X node-level architecture </conceptual/gpu-arch/mi300>` of a
system with AMD EPYC processors in a dual-socket configuration and eight
AMD Instinct MI300X GPUs. The MI300X OAMs attach to the host system via
AMD Instinct MI300X accelerators. The MI300X OAMs attach to the host system via
PCIe Gen 5 x16 links (yellow lines). The GPUs use seven high-bandwidth,
low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected
8-GPU system.
@@ -1100,7 +1460,7 @@ low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected
.. figure:: ../../../data/shared/mi300-node-level-arch.png
MI300 Series node-level architecture showing 8 fully interconnected MI300X
MI300 series node-level architecture showing 8 fully interconnected MI300X
OAM modules connected to (optional) PCIe switches via re-timers and HGX
connectors.
@@ -1293,7 +1653,7 @@ Auto-tunable kernel configuration involves adjusting memory access and computati
resources assigned to each compute unit. It encompasses the usage of
:ref:`LDS <mi300x-cu-fig>`, register, and task scheduling on a compute unit.
The GPU contains global memory, local data share (LDS), and
The accelerator or GPU contains global memory, local data share (LDS), and
registers. Global memory has high access latency, but is large. LDS access has
much lower latency, but is smaller. It is a fast on-CU software-managed memory
that can be used to efficiently share data between all work items in a block.
@@ -1306,11 +1666,11 @@ Register access is the fastest yet smallest among the three.
Schematic representation of a CU in the CDNA2 or CDNA3 architecture.
The following is a list of kernel arguments used for tuning performance and
resource allocation on AMD GPUs, which helps in optimizing the
resource allocation on AMD accelerators, which helps in optimizing the
efficiency and throughput of various computational kernels.
``num_stages=n``
Adjusts the number of pipeline stages for different types of kernels. On AMD GPUs, set ``num_stages``
Adjusts the number of pipeline stages for different types of kernels. On AMD accelerators, set ``num_stages``
according to the following rules:
* For kernels with a single GEMM, set to ``2``.
@@ -1337,15 +1697,15 @@ efficiency and throughput of various computational kernels.
* The occupancy of the kernel is limited by VGPR usage, and
* The current VGPR usage is only a few above a boundary in
:ref:`Occupancy related to VGPR usage in an Instinct MI300X GPU <mi300x-occupancy-vgpr-table>`.
:ref:`Occupancy related to VGPR usage in an Instinct MI300X accelerator <mi300x-occupancy-vgpr-table>`.
.. _mi300x-occupancy-vgpr-table:
.. figure:: ../../../data/shared/occupancy-vgpr.png
:alt: Occupancy related to VGPR usage in an Instinct MI300X GPU.
:alt: Occupancy related to VGPR usage in an Instinct MI300X accelerator.
:align: center
Occupancy related to VGPRs usage on an Instinct MI300X GPU
Occupancy related to VGPRs usage on an Instinct MI300X accelerator
For example, according to the table, each Execution Unit (EU) has 512 available
VGPRs, which are allocated in blocks of 16. If the current VGPR usage is 170,
@@ -1370,7 +1730,7 @@ VGPR usage so that it might fit 3 waves per EU.
- ``matrix_instr_nonkdim = 32``: ``mfma_32x32`` is used.
For GEMM kernels on an MI300X GPU, ``mfma_16x16`` typically outperforms ``mfma_32x32``, even for large
For GEMM kernels on an MI300X accelerator, ``mfma_16x16`` typically outperforms ``mfma_32x32``, even for large
tile/GEMM sizes.
@@ -1389,7 +1749,7 @@ the number of CUs a kernel can distribute its task across.
XCD-level system architecture showing 40 compute units,
each with 32 KB L1 cache, a unified compute system with 4 ACE compute
GPUs, shared 4MB of L2 cache, and a hardware scheduler (HWS).
accelerators, shared 4MB of L2 cache, and a hardware scheduler (HWS).
You can query hardware resources with the command ``rocminfo`` in the
``/opt/rocm/bin`` directory. For instance, query the number of CUs, number of
@@ -1473,7 +1833,7 @@ de-quantize the ``int4`` key-value from the ``int4`` data type to ``fp16``.
From the IR snippet, you can see ``i32`` data is loaded from global memory to
registers (``%190``). With a few element-wise operations in registers, it is
stored in shared memory (``%269``) for the transpose operation (``%270``), which
stored in shared memory (``%269``) for the transpose operation (``%270``), which
needs data movement across different threads. With the transpose done, it is
loaded from LDS to register again (``%276``), and with a few more
element-wise operations, it is stored to LDS again (``%298``). The last step
@@ -1607,7 +1967,7 @@ something similar to the following:
loaded at: [0x7fd4f100c000-0x7fd4f100e070]
The kernel name and the code object file should be listed. In the
example above, the kernel name is vector_add_assert_trap, but this might
example above, the kernel name is vector_add_assert_trap, but this might
also look like:
.. code-block:: text
@@ -1721,8 +2081,3 @@ Hardware efficiency is maximized with 4 or fewer HIP streams. These environment
configuration to two compute streams and two RCCL streams, aligning with this best practice.
Additionally, RCCL is often pre-optimized for MI300 systems in production by querying the node
topology during startup, reducing the need for extensive manual tuning.
Further reading
===============
* :doc:`vllm-optimization`

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
.. list-table::
:header-rows: 1
@@ -47,7 +47,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-812>` for
MI300X Series GPUs.
MI300X series accelerators.
What's new
==========
@@ -139,7 +139,7 @@ page provides reference throughput and serving measurements for inferencing popu
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
@@ -424,7 +424,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,448 +0,0 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-909:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X Series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
accelerators and includes the following components:
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-909>` for
MI300X Series accelerators.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Upgraded to vLLM v0.10.1.
* Set ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1`` by default for better performance.
* Set ``VLLM_ROCM_USE_AITER_RMSNORM=0`` by default to avoid various issues with torch compile.
.. _vllm-benchmark-supported-models-909:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-909:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-909:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD accelerators.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-909:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-909:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-909>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts=1024
in=128
out=128
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=1024
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization 0.9
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm/vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/ROCm/vllm>`__.
.. code-block:: shell
git clone https://github.com/ROCm/vllm.git
2. Checkout the specific release commit.
.. code-block:: shell
cd vllm
git checkout 6663000a391911eba96d7864a26ac42b07f6ef29
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
.. code-block:: shell
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -1,482 +0,0 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-930:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers a
prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI355X, MI350X, MI325X and MI300X
GPUs. This ROCm vLLM Docker image integrates vLLM and PyTorch tailored
specifically for AMD data center GPUs and includes the following components:
.. tab-set::
.. tab-item:: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Added support for AMD Instinct MI355X and MI350X GPUs.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Llama 4 Scout and Maverick
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-930:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started. MXFP4 models
are only supported on MI355X and MI350X GPUs.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
{% if model.precision == "float4" %}
.. important::
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% if model.precision == "float4" and model.model_repo.startswith("amd") %}
This model uses FP4 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-930:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node with the
:literal:`{{model.precision}}` data type.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-930>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts={{ model.config.num_prompts | default(1024) }}
in={{ model.config.in | default(128) }}
out={{ model.config.in | default(128) }}
dtype={{ model.config.dtype | default("auto") }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs={{ model.config.max_num_seqs | default(1024) }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization {{ model.config.gpu_memory_utilization | default(0.9) }}
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/vllm-project/vllm>`__.
.. code-block:: shell
git clone https://github.com/vllm-project/vllm.git
cd vllm
2. Use the following command to build the image directly from the specified commit.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker build -f docker/Dockerfile.rocm \
--build-arg REMOTE_VLLM=1 \
--build-arg VLLM_REPO=https://github.com/ROCm/vllm \
--build-arg VLLM_BRANCH="{{ docker.dockerfile.commit }}" \
-t vllm-rocm .
.. tip::
Replace ``vllm-rocm`` with your desired image tag.
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the unified
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X GPU. This
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X GPU and includes the following components:
MI300X accelerator and includes the following components:
* `ROCm 6.2.0 <https://github.com/ROCm/ROCm>`_
@@ -31,7 +31,7 @@ MI300X GPU and includes the following components:
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X GPU. This topic also provides tips on
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. _vllm-benchmark-vllm:
@@ -51,7 +51,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X GPU with the prebuilt vLLM Docker image.
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -267,7 +267,7 @@ Options
.. _vllm-benchmark-run-benchmark-v043:
Running the benchmark on the MI300X GPU
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -328,7 +328,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the unified
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X GPU. This
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X GPU and includes the following components:
MI300X accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
@@ -31,7 +31,7 @@ MI300X GPU and includes the following components:
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X GPU. This topic also provides tips on
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
@@ -74,7 +74,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X GPU with the prebuilt vLLM Docker image.
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -332,7 +332,7 @@ Options
.. _vllm-benchmark-run-benchmark-v064:
Running the benchmark on the MI300X GPU
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -398,7 +398,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ LLM inference performance validation on AMD Instinct MI300X
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X GPU. This ROCm vLLM
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
GPU and includes the following components:
accelerator and includes the following components:
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
@@ -29,7 +29,7 @@ GPU and includes the following components:
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X GPU. This topic also provides tips on
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-v066-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-v066-options>`.
@@ -47,7 +47,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X GPU with the prebuilt vLLM Docker image.
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -377,7 +377,7 @@ Options and available models
.. _vllm-benchmark-run-benchmark-v066:
Running the benchmark on the MI300X GPU
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -443,7 +443,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

Some files were not shown because too many files have changed in this diff Show More