Compare commits

...

77 Commits

Author SHA1 Message Date
Istvan Kiss
75f714c038 Update Radeon link 2025-10-01 19:28:48 +02:00
peterjunpark
0ea5216ace docs: update article_info in conf.py (#5454) 2025-10-01 13:17:50 -04:00
peterjunpark
2e1b4dd5ee Add multi-node setup instructions for training perf Dockers (#5449)
---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-09-30 14:53:38 -04:00
amd-hsivasun
2d79b3c4bd [Ex CI] Added rocm-cmake dependency 2025-09-30 14:00:16 -04:00
Peter Park
fd59b5fbac fix links in docs (#5446) 2025-09-29 15:27:32 -04:00
amd-hsivasun
0a643f4686 [Ex CI] Enable aqlprofile 2025-09-26 14:42:15 -04:00
amd-hsivasun
d9e5744f7a Update testExecutable 2025-09-26 14:01:02 -04:00
amd-hsivasun
ccb849ec02 Added python3-pip to aptModules 2025-09-26 14:01:02 -04:00
amd-hsivasun
42d4867964 Removed more aptPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
375359a5dd Added ninja to aptPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
e92745f1ff Removed apt and pip modules 2025-09-26 14:01:02 -04:00
amd-hsivasun
0fa72358d3 Remove registerROCm packages flag 2025-09-26 14:01:02 -04:00
amd-hsivasun
6fec268a4e Removed package manager 2025-09-26 14:01:02 -04:00
amd-hsivasun
ff14cd1ff5 Added pyyaml 2025-09-26 14:01:02 -04:00
amd-hsivasun
8f65688653 Added registerROCmPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
33d1493adb Removed dependencies 2025-09-26 14:01:02 -04:00
amd-hsivasun
4b6c7776a2 Updated parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
af811daa1b Added GPUTarget 2025-09-26 14:01:02 -04:00
amd-hsivasun
d6c045e482 Update test parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
78b24cad39 Update test pool 2025-09-26 14:01:02 -04:00
amd-hsivasun
753a94c0bb Add test step to buildjob 2025-09-26 14:01:02 -04:00
amd-hsivasun
6ecad57c62 Revert pool changes 2025-09-26 14:01:02 -04:00
amd-hsivasun
977554809a Changed cmake prefix path 2025-09-26 14:01:02 -04:00
amd-hsivasun
7b00f4493b Removed module and prefix path 2025-09-26 14:01:02 -04:00
amd-hsivasun
95c439a272 Removed Compiler Path 2025-09-26 14:01:02 -04:00
amd-hsivasun
94e04fbdc0 Updated testpool 2025-09-26 14:01:02 -04:00
amd-hsivasun
7ab59de8af Update testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
175c817563 Change testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
25516d312e Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
30c345629a Changed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
210dc94bbb Removed testExecutable 2025-09-26 14:01:02 -04:00
amd-hsivasun
a54023ccb8 Changed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
17e3362dc7 Add Checkout to testjob 2025-09-26 14:01:02 -04:00
amd-hsivasun
0f9c0d884d Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
c890de4b16 Added Path to Gtest 2025-09-26 14:01:02 -04:00
amd-hsivasun
4ea77ab515 Added Tests 2025-09-26 14:01:02 -04:00
amd-hsivasun
c0512612f4 Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
1c81ac3747 Updated testdir path 2025-09-26 14:01:02 -04:00
amd-hsivasun
4bafa42e52 Updated test parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
493801e670 Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
1a5152b7b3 Removed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
874c881012 Fixed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
bdcaeea74c Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
b02669acf7 Fixed Dependencies 2025-09-26 14:01:02 -04:00
amd-hsivasun
844f10b2b1 Updated denendecies-other variables 2025-09-26 14:01:02 -04:00
amd-hsivasun
d6c14920b4 External CI: Build pipeline for aqlprofile 2025-09-26 14:01:02 -04:00
amd-hsivasun
4affe10a7c [Ex CI] Update pipeline Id for rdc to monorepo 2025-09-26 12:38:57 -04:00
amd-hsivasun
81341ef435 Add New Line 2025-09-26 11:41:21 -04:00
amd-hsivasun
abacd328f9 [Ex CI] Added rocRand to rocmDependencies 2025-09-26 11:41:21 -04:00
amd-hsivasun
80b2fb6e26 [Ex CI] Add hipRAND to rocmDependencies 2025-09-26 11:41:21 -04:00
amd-hsivasun
b53e8decfc [Ex CI] Enable rdc monorepo 2025-09-26 11:41:21 -04:00
amd-hsivasun
5fcc2eafde [Ex CI] Update pipeline Id for rocprofiler-sdk to monorepo 2025-09-25 16:49:07 -04:00
amd-hsivasun
2eb0d77bc6 Updated testDir 2025-09-25 13:20:37 -04:00
amd-hsivasun
d84b41908f Changed Testdir 2025-09-25 13:20:37 -04:00
amd-hsivasun
986f8284d1 [Ex CI] Update testDir for rocprofiler-sdk 2025-09-25 13:20:37 -04:00
Pratik Basyal
d92d9268dc Use of Radeon and Ryzen reference updated [Develop] (#5432)
* Use of Radeon and Ryzen reference updated

* Pytorch link update
2025-09-24 19:07:41 -05:00
Ibrahim Wani
1629d3f0ea Add origami yaml based tests to azure pipelines (#5431)
* Add origami yaml tests

* Dependency fix in origami.yml

* Fix almalinux dependency; get publish test results step working

* Fix almalinux dependency issue
2025-09-24 14:49:51 -06:00
Pratik Basyal
6cf6b34b2e TOC for ROCm on Radeon and Ryzen updated (#5429) 2025-09-24 13:58:26 -05:00
Pratik Basyal
c35a0a121a ROR link and text updated (#5426) 2025-09-24 13:28:13 -05:00
amd-hsivasun
412e383654 [Ex CI] Update pipeline Id for rocprofiler-sdk 2025-09-23 15:56:49 -04:00
Pratik Basyal
39f6fc187d rocm-core version updated (#5418) 2025-09-23 15:49:33 -04:00
amd-hsivasun
05b480fb28 Update rocm-examples.yml 2025-09-23 12:10:11 -04:00
amd-hsivasun
4fa44d90db Updated dependencies-cmake-custom.yml default ver 2025-09-23 12:10:11 -04:00
amd-hsivasun
c9ef13d823 Added Custom Cmake to testjobs 2025-09-23 12:10:11 -04:00
amd-hsivasun
f02172050b Added rocWMMA dependency 2025-09-23 12:10:11 -04:00
amd-hsivasun
154dbe297a Updated File to take custom cmake version 2025-09-23 12:10:11 -04:00
amd-hsivasun
993a0a4fd4 [Ex CI] Update cmake 2025-09-23 12:10:11 -04:00
amd-hsivasun
c03662f410 [Ex CI] Update pipeline Id for origami to monorepo 2025-09-23 11:17:39 -04:00
Peter Park
442d7e4750 Add env var note to vllm.rst for MoE models and fix links in docs (#5415)
* docs(vllm.rst): add performance note for MoE models

* docs: fix links

update vllm readme link 20250521

fix links
2025-09-22 15:58:43 -04:00
Pratik Basyal
a09a8f517e PLDM version for 7.0.0 updated (#5412) 2025-09-22 11:14:07 -04:00
Pratik Basyal
0bbaab645d rocSHMEM and ROCprofiler-SDK highlight update (#5408) (#5409)
* rocSHMEM and ROCprofiler-SDK highlight update (#5408)

* Update RELEASE.md
2025-09-22 10:26:12 -04:00
Ibrahim Wani
4b80405e2e Add set -e to exit when test fails (#5398) 2025-09-19 10:43:35 -06:00
Peter Park
d92e5b6c12 Update Primus Megatron doc v25.8 (#5396)
* megatron: update previous versions list

update

wording

* megatron: update rst and yaml

update primus repo link

update mig guide

* update headings and anchors

* megatron: update doc

* update docker hub urls
2025-09-19 08:09:21 -04:00
Pratik Basyal
91fce2e134 rocpd highlight updated (#5393) 2025-09-18 19:00:36 -04:00
Peter Park
27d53cf082 Remove duplicate ML FW docker image support table (#5389) 2025-09-18 17:06:53 -04:00
Pratik Basyal
bc084246be Reference to AMD GPU Driver 30.10 release notes updated (#5380) 2025-09-18 13:34:46 -05:00
Peter Park
9827ba7ff2 docs: MaxText v25.7 patch update (#5372)
* remove jax 0.6.0 nanoo fp8 caveat note

* reorder maxtext docker images in data sheet
2025-09-17 16:25:46 -04:00
50 changed files with 2748 additions and 684 deletions

View File

@@ -79,7 +79,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- task: Bash@3
displayName: Add lit to PATH
inputs:

View File

@@ -131,7 +131,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -212,7 +212,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -0,0 +1,174 @@
parameters:
- name: componentName
type: string
default: aqlprofile
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- python3-pip
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- name: rocmTestDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- rocprofiler-register
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
consolidateBuildAndInstall: true
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/aqlprofile/cmake_modules
-DAQLPROFILE_BUILD_TESTS=ON
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/rocm/share/hsa-amd-aqlprofile/
testExecutable: ./run_tests.sh
testParameters: ''
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -77,6 +77,7 @@ parameters:
- clr
- hipBLAS-common
- llvm-project
- rocm-cmake
- rocminfo
- rocm_smi_lib
- rocprofiler-register
@@ -144,7 +145,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -54,6 +54,7 @@ parameters:
- hipSPARSE
- llvm-project
- rocBLAS
- rocm-cmake
- rocm_smi_lib
- rocminfo
- rocprofiler-register
@@ -67,6 +68,7 @@ parameters:
- llvm-project
- hipBLAS-common
- hipBLASLt
- rocm-cmake
- rocBLAS
- rocminfo
- rocprofiler-register
@@ -110,7 +112,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -71,7 +71,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -39,6 +39,9 @@ parameters:
- python3
- python3-dev
- python3-pip
- libgtest-dev
- libboost-filesystem-dev
- libboost-program-options-dev
- name: pipModules
type: object
default:
@@ -107,8 +110,12 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
@@ -125,7 +132,7 @@ jobs:
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DORIGAMI_BUILD_SHARED_LIBS=ON
-DORIGAMI_ENABLE_PYTHON=ON
@@ -206,7 +213,15 @@ jobs:
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './origami-tests'
testParameters: '--yaml origami-tests.yaml --gtest_output=xml:./test_output.xml --gtest_color=yes'
- script: |
set -e
export PYTHONPATH=$(Agent.BuildDirectory)/s/build/python:$PYTHONPATH
echo "--- Running origami_test.py ---"

View File

@@ -83,7 +83,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: rdc
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -33,6 +52,7 @@ parameters:
- clr
- hipBLAS-common
- hipBLASLt
- hipRAND
- llvm-project
- rocBLAS
- rocm-cmake
@@ -43,6 +63,7 @@ parameters:
- rocprofiler
- rocprofiler-register
- rocprofiler-sdk
- rocRAND
- ROCR-Runtime
- name: rocmTestDependencies
type: object
@@ -74,7 +95,11 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rdc_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -85,16 +110,22 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# Build grpc
- task: Bash@3
displayName: 'git clone grpc'
@@ -104,6 +135,7 @@ jobs:
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
@@ -117,6 +149,7 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DGRPC_ROOT="$(Build.SourcesDirectory)/bin"
@@ -126,9 +159,12 @@ jobs:
-DAMDGPU_TARGETS=${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -136,60 +172,64 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rdc_test_${{ job.target }}
dependsOn: rdc_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin

View File

@@ -70,6 +70,7 @@ parameters:
- hipBLAS-common
- hipBLASLt
- llvm-project
- rocm-cmake
- rocminfo
- rocprofiler-register
- rocm_smi_lib
@@ -154,7 +155,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -33,6 +33,7 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- rocBLAS
- rocFFT
@@ -43,6 +44,7 @@ parameters:
- rocSOLVER
- rocSPARSE
- rocThrust
- rocWMMA
- name: rocmTestDependencies
type: object
default:
@@ -57,6 +59,7 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- rocBLAS
- rocFFT
@@ -69,6 +72,7 @@ parameters:
- rocSPARSE
- rocThrust
- roctracer
- rocWMMA
- name: jobMatrix
type: object
@@ -97,6 +101,9 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -158,6 +165,9 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -102,7 +102,7 @@ jobs:
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -213,6 +213,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/s/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -1,10 +1,15 @@
parameters:
- name: cmakeVersion
type: string
default: '3.31.0'
steps:
- task: Bash@3
displayName: Install CMake 3.31
displayName: Install CMake ${{ parameters.cmakeVersion }}
inputs:
targetType: inline
script: |
CMAKE_VERSION=3.31.0
CMAKE_VERSION=${{ parameters.cmakeVersion }}
CMAKE_ROOT="$(Pipeline.Workspace)/cmake"
echo "Downloading CMake $CMAKE_VERSION..."

View File

@@ -46,6 +46,10 @@ parameters:
pipelineId: 115
developBranch: aomp-dev
hasGpuTarget: false
aqlprofile:
pipelineId: 365
developBranch: develop
hasGpuTarget: false
clr:
pipelineId: 335
developBranch: develop
@@ -126,13 +130,17 @@ parameters:
pipelineId: 80
developBranch: develop
hasGpuTarget: true
origami:
pipelineId: 364
developBranch: develop
hasGpuTarget: true
rccl:
pipelineId: 107
developBranch: develop
hasGpuTarget: true
rdc:
pipelineId: 100
developBranch: amd-staging
pipelineId: 360
developBranch: develop
hasGpuTarget: false
rocAL:
pipelineId: 151

View File

@@ -43,6 +43,7 @@ Blit
Blockwise
Bluefield
Bootloader
Broadcom
CAS
CCD
CDNA

View File

@@ -152,7 +152,7 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using AMD Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
If youre using AMD Radeon GPUs or Ryzen APUs in a workstation setting with a display connected, see the [Use ROCm on Radeon and Ryzen](https://rocm.docs.amd.com/projects/radeon-ryzen/en/latest/index.html)
documentation to verify compatibility and system requirements.
```
@@ -249,7 +249,7 @@ AMD ROCm has officially added support for the following Deep learning and AI fra
#### AMD GPU Driver/ROCm packaging separation
The AMD GPU Driver (amdgpu) is now distributed separately from the ROCm software stack and is stored under in its own location ``/amdgpu/`` in the package repository at [repo.radeon.com](https://repo.radeon.com/amdgpu/). The first release is designated as AMD GPU Driver (amdgpu) version 30.10. See the [User and kernel-space support matrix](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html) for more information.
The AMD GPU Driver (amdgpu) is now distributed separately from the ROCm software stack and is stored under in its own location ``/amdgpu/`` in the package repository at [repo.radeon.com](https://repo.radeon.com/amdgpu/). The first release is designated as [AMD GPU Driver (amdgpu) version 30.10](https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/documentation/change-logs/30.10.1.html#amd-gpu-driver-amdgpu-30-10-release-notes). See the [User and kernel-space support matrix](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html) for more information.
[AMD SMI](https://github.com/ROCm/amdsmi) continues to stay with the ROCm software stack under the ROCm organization repository.
@@ -347,7 +347,7 @@ For more information about hipBLASLt changes, see the [hipBLASLt changelog](#hip
For more information about MIGraphX changes, see the [MIGraphX changelog](migraphx-2-13-0) below.
##### rocSHMEM Reverse Offload conduit inter-node support
##### rocSHMEM supports Reverse Offload inter-node communication backend
The rocSHMEM communications library has added the RO (Reverse Offload) inter-node communication backend which enables communication between GPUs on different nodes through a NIC, using a host-based CPU proxy to forward communication orders to and from the GPU. Inter-node communication requires MPI, and is tested with Open MPI and CX7 IB NICs. For more information, see [available network backends](https://rocm.docs.amd.com/projects/rocSHMEM/en/docs-7.0.0/install.html#available-network-backends) for installing rocSHMEM.
@@ -405,7 +405,7 @@ See the [ROCm Validation Suite changelog](#rocm-validation-suite-1-2-0) for more
##### ROCprofiler-SDK
###### Core SDK enhancements
###### SDK enhancements
* ROCprofiler-SDK is now compatible with the HIP 7.0.0 API.
* ROCprofiler-SDK adds support for AMD Instinct MI350X and MI355X GPUs.
@@ -417,9 +417,7 @@ which facilitates profiling wavefronts at the instruction timing level.
###### rocpd
The ROCm Profiling Data (``rocpd``) is now the default output format for ``rocprofv3``.
A subproject of the ROCprofiler-SDK, ``rocpd`` enables saving profiling results to a SQLite3 database, providing a structured and
efficient foundation for analysis and post-processing.
As a subcomponent of the ROCprofiler-SDK, ``rocpd`` enables storing the profiling results in a SQLite3 database, providing a structured and efficient foundation for analysis and post-processing. For details, see [Using rocpd Output Format](https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-7.0.1/how-to/using-rocpd-output-format.html#using-rocpd-output-format).
###### rocprofv3 CLI tool enhancements
@@ -582,7 +580,7 @@ from ROCm. See [AMD GPU Driver/ROCm packaging separation](#amd-gpu-driver-rocm-p
<td rowspan="9" style="vertical-align: middle;">ROCm 7.0.0</td>
<td>MI355X</td>
<td>
01.25.13.04 (or later)<br>
01.25.13.09 (or later)<br>
01.25.11.02
</td>
<td>30.10</td>
@@ -591,7 +589,7 @@ from ROCm. See [AMD GPU Driver/ROCm packaging separation](#amd-gpu-driver-rocm-p
<tr>
<td>MI350X</td>
<td>
01.25.13.04 (or later)<br>
01.25.13.09 (or later)<br>
01.25.11.02
</td>
<td>30.10</td>
@@ -599,7 +597,7 @@ from ROCm. See [AMD GPU Driver/ROCm packaging separation](#amd-gpu-driver-rocm-p
<tr>
<td>MI325X</td>
<td>
01.25.04.00 (or later)<br>
01.25.04.02 (or later)<br>
01.25.03.03
</td>
<td>
@@ -651,11 +649,11 @@ from ROCm. See [AMD GPU Driver/ROCm packaging separation](#amd-gpu-driver-rocm-p
New APIs introduced in AMD SMI for ROCm 7.0.0 provide additional data for the AMD Instinct products. To support these features, the following firmware for each GPUs are required:
* AMD Instinct MI355X - PLDM bundle 01.25.13.04
* AMD Instinct MI355X - PLDM bundle 01.25.13.09
* AMD Instinct MI350X - PLDM bundle 01.25.13.04
* AMD Instinct MI350X - PLDM bundle 01.25.13.09
* AMD Instinct MI325X - PLDM bundle 01.25.04.00
* AMD Instinct MI325X - PLDM bundle 01.25.04.02
* AMD Instinct MI300X - PLDM bundle 01.25.03.12
@@ -663,7 +661,7 @@ If ROCm 7.0.0 is applied on system with prior version of PLDM bundles (firmware)
##### Enhanced temperature telemetry introduced in AMD SMI for MI355X and MI350X GPUs
AMD SMI in ROCm 7.0.0 provides support for enhanced temperature metrics and temperature anomaly detection for AMD Instinct MI350X and MI355X GPUs when paired with: PLDM bundle 01.25.13.04.
AMD SMI in ROCm 7.0.0 provides support for enhanced temperature metrics and temperature anomaly detection for AMD Instinct MI350X and MI355X GPUs when paired with: PLDM bundle 01.25.13.09.
For more information on these features, see [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-7.0/CHANGELOG.md).
@@ -673,7 +671,7 @@ KVM SR-IOV support for all Instinct GPUs require the open source AMD GPU Virtual
##### GPU partitioning support for AMD Instinct MI355X and MI350X GPUs
NPS2 and DPX partitioning on bare metal is enabled on AMD Instinct MI355X and MI350X GPUs on ROCm 7.0.0 when paired with: PLDM bundle 01.25.13.04.
NPS2 and DPX partitioning on bare metal is enabled on AMD Instinct MI355X and MI350X GPUs on ROCm 7.0.0 when paired with: PLDM bundle 01.25.13.09.
### ROCm components

View File

@@ -96,7 +96,7 @@ ROCm Version,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6
,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
1 ROCm Version 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
96
97 SUPPORT LIBS
98 `hipother <https://github.com/ROCm/hipother>`_ 7.0.51830 6.4.43483 6.4.43483 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
99 `rocm-core <https://github.com/ROCm/rocm-core>`_ 7.0.0 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
100 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
101
102 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60:

View File

@@ -11,9 +11,8 @@ Use this matrix to view the ROCm compatibility and system requirements across su
You can also refer to the :ref:`past versions of ROCm compatibility matrix<past-rocm-compatibility-matrix>`.
Accelerators and GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon or Radeon Pro GPUs for graphics
workloads, see the `Use ROCm on Radeon GPU documentation
<https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility.html>`_ to verify
information or graphics). If youre using ROCm with AMD Radeon GPUs or Ryzen APUs for graphics
workloads, see the :docs:`Use ROCm on Radeon and Ryzen <radeon:index.html>` to verify
compatibility and system requirements.
.. |br| raw:: html
@@ -115,7 +114,7 @@ compatibility and system requirements.
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,6.4.43483,6.3.42131
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.0,6.4.3,6.3.0
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.1/7.0.0,6.4.3,6.3.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,

View File

@@ -90,75 +90,15 @@ For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.b
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with JAX and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/jax>`__ and are the
recommended way to get started with deep learning with JAX on ROCm.
For ``jax-community`` images, see `rocm/jax-community
<https://hub.docker.com/r/rocm/jax-community/tags>`__ on Docker Hub.
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.12/images/sha256-8918fa806a172c1a10eb2f57131eb31b5d7c8fa1656b8729fe7d3d736112de83"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.10/images/sha256-a394be13c67b7fc602216abee51233afd4b6cb7adaa57ca97e688fba82f9ad79"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.12.8/images/sha256-25dfaa0183e274bd0a3554a309af3249c6f16a1793226cb5373f418e39d3146a"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.11.11/images/sha256-ff9baeca9067d13e6c279c911e5a9e5beed0817d24fafd424367cc3d5bd381d7"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.11 <https://www.python.org/downloads/release/python-31111/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.10.16/images/sha256-8bab484be1713655f74da51a191ed824bb9d03db1104fd63530a1ac3c37cf7b1"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
To find the right image tag, see the :ref:`JAX on ROCm installation
documentation <rocm-install-on-linux:jax-docker-support>` for a list of
available ``rocm/jax`` images.
.. _key_rocm_libraries:

View File

@@ -89,141 +89,13 @@ For more use cases and recommendations, see `ROCm PyTorch blog posts <https://ro
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with PyTorch and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/pytorch>`__ and are the
recommended way to get started with deep learning with PyTorch on ROCm.
<i class="fab fa-docker"></i>
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-6a287591500b4048a9556c1ecc92bc411fd3d552f6c8233bc399f18eb803e8d6"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-06b967629ba6657709f04169832cd769a11e6b491e8b1394c361d42d7a0c8b43"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-62022414217ef6de33ac5b1341e57db8a48e8573fa2ace12d48aa5edd4b99ef0"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-469a7f74fc149aff31797e011ee41978f6a190adc69fa423b3c6a718a77bd985"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.11 <https://www.python.org/downloads/release/python-31113/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-37f41a1cd94019688669a1b20d33ea74156e0c129ef6b8270076ef214a6a1a2c"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-60824ba83dc1b9d94164925af1f81c0235c105dd555091ec04c57e05177ead1b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-fe944fe083312f901be6891ab4d3ffebf2eaf2cf4f5f0f435ef0b76ec714fabd"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-1d59251c47170c5b8960d1172a4dbe52f5793d8966edd778f168eaf32d56661a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`__
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`__
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
To find the right image tag, see the :ref:`PyTorch on ROCm installation
documentation <rocm-install-on-linux:pytorch-docker-support>` for a list of
available ``rocm/pytorch`` images.
Key ROCm libraries for PyTorch
================================================================================
@@ -466,7 +338,7 @@ with ROCm.
* - Library
- Description
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
- Audio and signal processing library for PyTorch. Provides utilities for
audio I/O, signal and data processing functions, datasets, model
implementations, and application components for audio and speech
@@ -493,11 +365,11 @@ with ROCm.
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
* - `torchdata <https://docs.pytorch.org/data/beta/index.html>`_
* - `torchdata <https://meta-pytorch.org/data/beta/index.html#torchdata>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
@@ -599,7 +471,7 @@ Known issues and notes for PyTorch 2.7 with ROCm 7.0
================================================================================
- The ``matmul.allow_fp16_reduced_precision_reduction`` and
``matmul.allow_bf16_reduced_precision_reduction`` options under
``torch.backends.cuda`` are not supported. As a result,
``matmul.allow_bf16_reduced_precision_reduction`` options under
``torch.backends.cuda`` are not supported. As a result,
reduced-precision reductions using FP16 or BF16 accumulation types are not
available.

View File

@@ -47,80 +47,15 @@ fixes, updates, and support for the latest ROCM versions.
.. _tensorflow-docker-compat:
Docker image compatibility
===============================================================================
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with TensorFlow and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/tensorflow>`__ and are the
recommended way to get started with deep learning with TensorFlow on ROCm.
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`__ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
:header-rows: 1
* - Docker image
- TensorFlow
- Ubuntu
- Python
- TensorBoard
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.18-dev/images/sha256-96754ce2d30f729e19b497279915b5212ba33d5e408e7e5dd3f2304d87e3441e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.18-dev/images/sha256-fa741508d383858e86985a9efac85174529127408102558ae2e3a4ac894eea1e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.17-dev/images/sha256-3a0aef09f2a8833c2b64b85874dd9449ffc2ad257351857338ff5b706c03a418"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.17-dev/images/sha256-bc7341a41ebe7ab261aa100732874507c452421ef733e408ac4f05ed453b0bc5"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.16-dev/images/sha256-4841a8df7c340dab79bf9362dad687797649a00d594e0832eb83ea6880a40d3b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.16-dev/images/sha256-883fa95aba960c58a3e46fceaa18f03ede2c7df89b8e9fd603ab2d47e0852897"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
To find the right image tag, see the :ref:`TensorFlow on ROCm installation
documentation <rocm-install-on-linux:tensorflow-docker-support>` for a list of
available ``rocm/tensorflow`` images.
Critical ROCm libraries for TensorFlow

View File

@@ -114,7 +114,10 @@ article_pages = [
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/multi-node-setup", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
@@ -127,7 +130,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-primus-migration-guide", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-megatron", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-history", "os": ["linux"]},

View File

@@ -1,12 +1,4 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.x.x
- pull_tag: rocm/jax-training:maxtext-v25.7-jax060
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
@@ -15,6 +7,14 @@ dockers:
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.1.0-499ece1c21
- pull_tag: rocm/jax-training:maxtext-v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.x.x
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -1,13 +1,12 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:

View File

@@ -0,0 +1,49 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,58 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -1,13 +1,13 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
ROCm: 6.4.3
Primus: 927a717
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:

View File

@@ -120,7 +120,7 @@ vLLM inference performance testing
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
see the developer's guide at `<https://github.com/ROCm/vllm/blob/7bb0618b1fe725b7d4fad9e525aa44da12c94a8b/docs/dev-docker/README.md>`__.
System validation
=================

View File

@@ -16,7 +16,7 @@ PyTorch inference performance testing
The `ROCm PyTorch Docker <https://hub.docker.com/r/rocm/pytorch/tags>`_ image offers a prebuilt,
optimized environment for testing model inference performance on AMD Instinct™ MI300X series
accelerators. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
GPUs. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
tool with the ROCm PyTorch container to test inference performance on various models efficiently.
.. _pytorch-inference-benchmark-available-models:
@@ -175,7 +175,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.

View File

@@ -23,7 +23,7 @@ improved efficiency and throughput.
serving engine for large language models (LLMs) and vision models. The
ROCm-enabled `SGLang base Docker image <{{ docker.docker_hub_url }}>`__
bundles SGLang with PyTorch, which is optimized for AMD Instinct MI300X series
accelerators. It includes the following software components:
GPUs. It includes the following software components:
.. list-table::
:header-rows: 1
@@ -37,7 +37,7 @@ improved efficiency and throughput.
{% endfor %}
The following guides on setting up and running SGLang and Mooncake for disaggregated
distributed inference on a Slurm cluster using AMD Instinct MI300X series accelerators backed by
distributed inference on a Slurm cluster using AMD Instinct MI300X series GPUs backed by
Mellanox CX-7 NICs.
Prerequisites
@@ -111,7 +111,7 @@ Build the Docker image
----------------------
Get the Dockerfile located in
`<https://github.com/ROCm/MAD/blob/develop/docker/sglang_dissag_inference.ubuntu.amd.Dockerfile>`__.
`<https://github.com/ROCm/MAD/blob/develop/docker/sglang_disagg_inference.ubuntu.amd.Dockerfile>`__.
It uses `lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
<https://hub.docker.com/layers/lmsysorg/sglang/v0.4.9.post1-rocm630/images/sha256-2f6b1748e4bcc70717875a7da76c87795fd8aa46a9646e08d38aa7232fc78538>`__
as the base Docker image and installs the necessary components for Mooncake, etcd, and Mellanox network
@@ -128,7 +128,7 @@ drivers.
Benchmarking
============
The `<https://github.com/ROCm/MAD/tree/develop/scripts/sglang_dissag>`__
The `<https://github.com/ROCm/MAD/tree/develop/scripts/sglang_disagg>`__
repository contains scripts to launch SGLang inference with prefill/decode
disaggregation via Mooncake for supported models.
@@ -236,7 +236,7 @@ Further reading
- See the base upstream Docker image on `Docker Hub <https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729>`__.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -14,9 +14,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
inference performance on AMD Instinct™ MI300X series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
GPUs and includes the following components:
.. list-table::
:header-rows: 1
@@ -31,7 +31,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-909>` for
MI300X series accelerators.
MI300X series GPUs.
What's new
==========
@@ -101,7 +101,7 @@ Supported models
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD accelerators.
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
@@ -121,7 +121,7 @@ page provides reference throughput and serving measurements for inferencing popu
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
@@ -230,7 +230,7 @@ system's configuration.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD-private/tree/develop/scripts/vllm/configs>`__
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
@@ -352,6 +352,9 @@ system's configuration.
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
@@ -420,7 +423,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.

View File

@@ -47,7 +47,7 @@ Deep learning frameworks
========================
ROCm supports deep learning frameworks and libraries including `PyTorch
<https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package>`_, `TensorFlow
<https://pytorch.org>`_, `TensorFlow
<https://tensorflow.org>`_, `JAX <https://jax.readthedocs.io/en/latest>`_, and more.
Review the :doc:`framework installation documentation <../deep-learning-rocm>`. For ease-of-use, it's recommended to use official ROCm prebuilt Docker
@@ -57,4 +57,4 @@ Next steps
==========
After installing ROCm and your desired ML libraries -- and before running AI workloads -- conduct system health benchmarks
to test the optimal performance of your AMD hardware. See :doc:`system-health-check` to get started.
to test the optimal performance of your AMD hardware. See :doc:`system-setup/index` to get started.

View File

@@ -0,0 +1,40 @@
.. meta::
:description: System setup and validation steps for AI training and inference on ROCm
:keywords: AMD Instinct, ROCm, GPU, AI, training, inference, benchmarking, performance, validation
*************************************
System setup for AI workloads on ROCm
*************************************
Before you begin training or inference on AMD Instinct™ GPUs, complete
the following system setup and validation steps to ensure optimal performance.
Prerequisite system validation
==============================
First, confirm that your system meets all software and hardware prerequisites.
See :doc:`prerequisite-system-validation`.
Docker images for AMD Instinct GPUs
===================================
AMD provides prebuilt Docker images for AMD Instinct™ MI300X and MI325X
GPUs. These images include ROCm-enabled deep learning frameworks and
essential software components. They support single-node and multi-node configurations
and are ready for training and inference workloads out of the box.
Multi-node training
-------------------
For instructions on enabling multi-node training, see :doc:`multi-node-setup`.
System optimization and validation
==================================
Before running workloads, verify that the system is configured correctly and
operating at peak efficiency. Recommended steps include:
- Disabling NUMA auto-balancing
- Running system benchmarks to validate hardware performance
For details on running system health checks, see :doc:`system-health-check`.

View File

@@ -0,0 +1,320 @@
.. meta::
:description: Multi-node setup for AI training
:keywords: gpu, accelerator, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training
.. _rocm-for-ai-multi-node-setup:
*********************************
Multi-node setup for AI workloads
*********************************
AMD provides ready-to-use Docker images for AMD Instinct™ MI300X and MI325X
GPUs containing ROCm-capable deep learning frameworks and essential
software components. These Docker images can run and leverage multiple nodes if
they are available. This page describes how to enable the multi-node training
of AI workloads on AMD Instinct GPUs.
Prerequisites
=============
Before starting, ensure your environment meets the following requirements:
* Multi-node networking: your cluster should have a configured multi-node network. For setup
instructions, see the `Multi-node network configuration for AMD Instinct
accelerators
<https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/multi-node-config.html>`__
guide in the Instinct documentation.
* ROCm Docker container to simplify environment setup for AI workloads. See the following resources to get started:
* :doc:`Training a model with Megatron-LM and ROCm <../training/benchmark-docker/megatron-lm>`
* :doc:`Training a model with PyTorch and ROCm <../training/benchmark-docker/pytorch-training>`
* :doc:`Training a model with JAX MaxText and ROCm <../training/benchmark-docker/jax-maxtext>`
* Slurm workload manager to run the :ref:`provided examples <multi-node-setup-training-examples>`.
Install required packages
=========================
To run multi-node workloads, ensure you have all the required packages installed based on your
network device. For example, on Ubuntu systems:
.. code-block:: shell
apt install -y iproute2
apt install -y linux-headers-"$(uname -r)" libelf-dev
apt install -y gcc make libtool autoconf librdmacm-dev rdmacm-utils infiniband-diags ibverbs-utils perftest ethtool libibverbs-dev rdma-core strace libibmad5 libibnetdisc5 ibverbs-providers libibumad-dev libibumad3 libibverbs1 libnl-3-dev libnl-route-3-dev
Compile and install the RoCE library
------------------------------------
If you're using Broadcom NICs, you need to compile and install the RoCE (RDMA
over Converged Ethernet) library. See `RoCE cluster network configuration guide
for AMD Instinct accelerators
<https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/roce-network-config.html#roce-cluster-network-configuration-guide-for-amd-instinct-accelerators>`__
for more information.
See the `Ethernet networking guide for AMD
Instinct MI300X GPU clusters: Compiling Broadcom NIC software from source
<https://docs.broadcom.com/doc/957608-AN2XX#page=81>`_ for more details.
.. important::
It is crucial to install the exact same version of the RoCE library that
is installed on your host system. Also, ensure that the path to these
libraries on the host is correctly mounted into your Docker container.
Failure to do so can lead to compatibility issues and communication
failures.
1. Set ``BUILD_DIR`` to the path on the host system where the Broadcom drivers and ``bnxt_rocelib`` source are located.
Then, navigate to the ``bnxt_rocelib`` directory.
.. code-block:: shell
export BUILD_DIR=/path/to/your/broadcom_drivers_on_host
cd $BUILD_DIR/drivers_linux/bnxt_rocelib/
2. The ``bnxt_rocelib`` directory contains a version of ``libbnxt_re`` in a zipped ``.tar.gz`` file.
.. code-block:: shell
tar -xf libbnxt_re-a.b.c.d.tar.gz
cd libbnxt_re-a.b.c.d
3. Compile and install the RoCE library.
.. code-block:: shell
sh autogen.sh
./configure
make
find /usr/lib64/ /usr/lib -name "libbnxt_re-rdmav*.so" -exec mv {} {}.inbox \;
make install all
sh -c "echo /usr/local/lib >> /etc/ld.so.conf"
ldconfig
cp -f bnxt_re.driver /etc/libibverbs.d/
find . -name "*.so" -exec md5sum {} \;
BUILT_MD5SUM=$(find . -name "libbnxt_re-rdmav*.so" -exec md5sum {} \; | cut -d " " -f 1)
Environment setup
=================
Before running multi-node workloads, set these essential environment variables:
Master address
--------------
By default, ``localhost`` is used for single-node configurations. Change
``localhost`` to the master node's resolvable hostname or IP address:
.. code-block:: bash
export MASTER_ADDR="${MASTER_ADDR:-localhost}"
Number of nodes
---------------
Set the number of nodes you want to train on (for example, ``2``, ``4``, or ``8``):
.. code-block:: bash
export NNODES="${NNODES:-<num_nodes>}"
Node ranks
----------
Set the rank of each node (``0`` for master, ``1`` for the first worker node, and so on).
Node ranks should be unique across all nodes in the cluster.
.. code-block:: bash
export NODE_RANK="${NODE_RANK:-<node_rank>}"
Network interface
-----------------
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface (status "UP") with an IP address in the same subnet as
your other nodes. Then, update the following variable in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
This variable specifies which network interface to use for inter-node communication.
Setting this variable to the incorrect interface can result in communication failures
or significantly reduced performance.
.. tip::
This command sets ``NCCL_SOCKET_IFNAME``'s value to the last RDMA interface.
.. code-block:: bash
export NCCL_SOCKET_IFNAME=$(rdma link show | awk '{print $NF}' | sort | tail -n1)
RDMA/IB interface
-----------------
Set the RDMA interfaces to be used for communication. NICs can come from different vendors and the names of the RDMA interface can be different. To get the list of all the RDMA/IB devices, run:
.. code-block:: bash
ibv_devices
The command below gets the list of all RDMA/IB devices and puts them in a
comma-separated format. If
(``rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7``) are your RDMA
interfaces, then set:
.. code-block:: bash
# If using Broadcom NIC
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# If using Mellanox NIC
# export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
.. tip::
Alternatively, if you want to choose the RDMA interface automatically, you
can use the following. This command will sort the RDMA interfaces and then
select the first eight RDMA interfaces.
.. code-block:: bash
export NCCL_IB_HCA=$(ibv_devices | awk 'NR>2 {print $1}' | sort | head -n 8 | paste -sd,)
Global ID index
---------------
Update the global ID index if you're using RoCE.
.. code-block:: bash
export NCCL_IB_GID_INDEX=3
.. _multi-node-setup-training-examples:
Multi-node training examples
============================
The following examples use the Slurm workload manager to launch jobs on
multiple nodes. To run these scripts as-is, you must have a Slurm environment
configured. The scripts are designed to work with both Broadcom Thor 2 and
Mellanox NICs by automatically installing the required libraries and setting
the necessary environment variables. For systems with Broadcom NICs, the
scripts assume the host's RoCE library is located in the ``/opt`` directory.
The following benchmarking examples demonstrate the training of a Llama 3 8B model
across multiple 8-GPU nodes, using FSDP for intra-node parallelism and DP for
inter-node parallelism.
.. _rocm-for-ai-multi-node-setup-jax-train-example:
JAX MaxText
-----------
1. Download the desired multi-node benchmarking script from `<https://github.com/ROCm/MAD/tree/develop/scripts/jax-maxtext/gpu-rocm>`__.
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/MAD/refs/heads/develop/scripts/jax-maxtext/gpu-rocm/llama3_8b_multinode.sh
Or clone the `<https://github.com/ROCm/MAD>`__ repository.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd scripts/jax-maxtext/gpu-rocm
2. Run the benchmark for multi-node training.
.. code-block:: shell
sbatch -N <num_nodes> llama3_8b_multinode.sh
.. _rocm-for-ai-multi-node-setup-pyt-train-example:
PyTorch training
----------------
.. note::
The ROCm PyTorch Training Docker image now focuses on :doc:`Training a model
with Primus and PyTorch <../training/benchmark-docker/primus-pytorch>`. The
following example refers to the legacy workflow :ref:`Training a
model with PyTorch <amd-pytorch-training-multinode-examples>`.
1. Download the ``run_multinode_train.sh`` benchmarking script from `<https://github.com/ROCm/MAD/tree/develop/scripts/pytorch_train>`__.
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/MAD/refs/heads/develop/scripts/pytorch_train/run_multinode_train.sh
Or clone the `<https://github.com/ROCm/MAD>`__ repository.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd scripts/pytorch_train
2. Run the benchmark for multi-node training.
.. code-block:: shell
sbatch -N <num_nodes> run_multinode_train.sh
.. seealso::
See :ref:`Training a model with PyTorch <amd-pytorch-multinode-examples>` for more examples and information.
Megatron-LM
-----------
.. note::
The Megatron-LM Docker image now focuses on :ref:`Training a model with
Primus and Megatron <amd-primus-megatron-multi-node-examples>`. The
following example refers to the legacy Megatron-LM :ref:`Training a model
with Megatron-LM <amd-megatron-lm-multi-node-examples>` and might have
limited support.
1. Download the ``train_llama_slurm.sh`` benchmarking script from
`<https://github.com/ROCm/Megatron-LM/blob/rocm_dev/examples/llama/train_llama_slurm.sh>`__.
2. Set the network interface parameters as per the above guidelines and run the script.
.. code-block:: shell
cd </path/to/your/Megatron-LM>
export NETWORK_INTERFACE=$NCCL_SOCKET_IFNAME
export NCCL_IB_HCA=$NCCL_IB_HCA
export IMAGE=docker.io/rocm/megatron-lm:latest OR your preferred image
export DATA_CACHE_PATH=/nfs/mounted/repo
sbatch N <num_nodes> examples/llama/train_llama_slurm.sh <MODEL_SIZE> <MBS> <GBS> <SEQ_LENGTH> <FSDP> <RECOMPUTE>
2. For example, to run a Llama 3 8B workload in BF16 precision, use the following command.
.. code-block:: shell
MODEL_NAME=llama3 sbatch N 8 examples/llama/train_llama_slurm.sh 8 2 128 8192 0 0
# Other parameters, such as TP, FP8 datatype, can be adjusted in the script.
Further reading
===============
* `Multi-node network configuration for AMD Instinct accelerators <https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/multi-node-config.html>`__
* `Ethernet networking guide for AMD Instinct MI300X GPU clusters: Compiling Broadcom NIC software from source <https://docs.broadcom.com/doc/957608-AN2XX#page=81>`__

View File

@@ -1,5 +1,3 @@
:orphan:
.. meta::
:description: Prerequisite system validation before using ROCm for AI.
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax

View File

@@ -1,12 +1,14 @@
:orphan:
.. meta::
:description: System health checks with RVS, RCCL tests, BabelStream, and TransferBench to validate AMD hardware performance running AI workloads.
:keywords: gpu, accelerator, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training, inference
.. _rocm-for-ai-system-health-bench:
************************
System health benchmarks
************************
*****************************************
System health benchmarks for AI workloads
*****************************************
Before running AI workloads, it is important to validate that your AMD hardware is configured correctly and is performing optimally. This topic outlines several system health benchmarks you can use to test key aspects like GPU compute capabilities (FLOPS), memory bandwidth, and interconnect performance. Many of these tests are part of the ROCm Validation Suite (RVS).
@@ -31,7 +33,7 @@ installed, run the following command:
sudo apt install rocm-validation-suite
See the `ROCm Validation Suite installation instructions <https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/install/installation.html>`_,
and `System validation tests <https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#system-validation-tests>`_
and `System validation tests <https://instinct.docs.amd.com/projects/system-acceptance/en/latest/common/system-validation.html>`_
in the Instinct documentation for more detailed instructions.
Benchmark, stress, and qualification tests
@@ -41,7 +43,7 @@ The GPU stress test runs various GEMM computations as workloads to stress the GP
meets the configured target GFLOPS.
Run the benchmark, stress, and qualification tests included with RVS. See the `Benchmark, stress, qualification
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#benchmark-stress-qualification>`_
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/common/system-validation.html#benchmark-stress-qualification>`_
section of the Instinct documentation for usage instructions.
BabelStream test
@@ -53,7 +55,7 @@ BabelStream tests are included with the RVS package as part of the `BABEL module
<https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/conceptual/rvs-modules.html#babel-benchmark-test-babel-module>`_.
For more information, see `Performance benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#babelstream-benchmarking-results>`_
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/common/system-validation.html#babelstream>`_
in the Instinct documentation.
RCCL tests
@@ -62,7 +64,7 @@ RCCL tests
The ROCm Communication Collectives Library (RCCL) enables efficient multi-GPU
communication. The `<https://github.com/ROCm/rccl-tests>`__ suite benchmarks
the performance and verifies the correctness of these collective operations.
This helps ensure optimal scaling for multi-accelerator tasks.
This helps ensure optimal scaling for multi-GPU tasks.
1. To get started, build RCCL-tests using the official instructions in the README at
`<https://github.com/ROCm/rccl-tests?tab=readme-ov-file#build>`__ or use the
@@ -75,8 +77,8 @@ This helps ensure optimal scaling for multi-accelerator tasks.
make
2. Run the suggested RCCL tests -- see `RCCL benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#rccl-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/network/rdma-benchmarking.html#rccl-benchmarking-results>`_
in the AMD Instinct customer acceptance guide.
TransferBench test
==================

View File

@@ -10,10 +10,10 @@ MaxText is a high-performance, open-source framework built on the Google JAX
machine learning library to train LLMs at scale. The MaxText framework for
ROCm is an optimized fork of the upstream
`<https://github.com/AI-Hypercomputer/maxtext>`__ enabling efficient AI workloads
on AMD MI300X series accelerators.
on AMD MI300X series GPUs.
The MaxText for ROCm training Docker image
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X accelerators,
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X GPUs,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
@@ -47,10 +47,6 @@ It includes the following software components:
``shardy=False`` during the training run. You can also follow the `migration
guide <https://docs.jax.dev/en/latest/shardy_jax_migration.html>`__ to enable
it.
The provided multi-node training scripts in this documentation are
not currently supported with JAX 0.6.0. For multi-node training, use the JAX 0.5.0
Docker image.
{% endif %}
{% endfor %}
@@ -73,7 +69,7 @@ Supported models
================
The following models are pre-optimized for performance on AMD Instinct MI300
series accelerators. Some instructions, commands, and available training
series GPUs. Some instructions, commands, and available training
configurations in this documentation might vary by model -- select one to get
started.
@@ -138,85 +134,11 @@ doesnt validate configurations and run conditions outside those described.
.. _amd-maxtext-multi-node-setup-v257:
Multi-node setup
----------------
Multi-node configuration
------------------------
For multi-node environments, ensure you have all the necessary packages for
your network device, such as, RDMA. If you're not using a multi-node setup
with RDMA, skip ahead to :ref:`amd-maxtext-get-started-v257`.
1. Install the following packages to build and install the RDMA driver.
.. code-block:: shell
sudo apt install iproute2 -y
sudo apt install -y linux-headers-"$(uname-r)" libelf-dev
sudo apt install -y gcc make libtool autoconf librdmacm-dev rdmacm-utils infiniband-diags ibverbs-utils perftest ethtool libibverbs-dev rdma-core strace libibmad5 libibnetdisc5 ibverbs-providers libibumad-dev libibumad3 libibverbs1 libnl-3-dev libnl-route-3-dev
Refer to your NIC manufacturer's documentation for further steps on
compiling and installing the RoCE driver. For example, for Broadcom,
see `Compiling Broadcom NIC software from source <https://docs.broadcom.com/doc/957608-AN2XX#G3.484341>`_
in `Ethernet networking guide for AMD Instinct MI300X GPU clusters <https://docs.broadcom.com/doc/957608-AN2XX>`_.
2. Set the following environment variables.
a. Master address
Change ``localhost`` to the master node's resolvable hostname or IP address:
.. code-block:: bash
export MASTER_ADDR="${MASTER_ADDR:-localhost}"
b. Number of nodes
Set the number of nodes you want to train on (for example, ``2``, ``4``, or ``8``):
.. code-block:: bash
export NNODES="${NNODES:-1}"
c. Node ranks
Set the rank of each node (``0`` for master, ``1`` for the first worker node, and so on)
Node ranks should be unique across all nodes in the cluster.
.. code-block:: bash
export NODE_RANK="${NODE_RANK:-0}"
d. Network interface
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface with an IP address in the same subnet as
your other nodes. Then, update the following variable in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
This variable specifies which network interface to use for inter-node communication.
Setting this variable to the incorrect interface can result in communication failures
or significantly reduced performance.
e. RDMA interface
Ensure the :ref:`required packages <amd-maxtext-multi-node-setup-v257>` are installed on all nodes.
Then, set the RDMA interfaces to use for communication.
.. code-block:: bash
# If using Broadcom NIC
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# If using Mellanox NIC
export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
See :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your
environment for multi-node training.
.. _amd-maxtext-get-started-v257:
@@ -361,12 +283,6 @@ benchmark results:
./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }} -q nanoo_fp8
.. important::
Quantized training is not supported with the JAX 0.6.0 Docker image; support
will be added in a future release. For quantized training, use the JAX 0.5.0
Docker image: ``rocm/jax-training:maxtext-v25.7``.
{% endif %}
{% if model.multinode_training_script and "multi-node" in model.doc_options %}
.. rubric:: Multi-node training
@@ -379,11 +295,11 @@ benchmark results:
benchmark. Run them outside of any Docker container.
1. Make sure ``$HF_HOME`` is set before running the test. See
`ROCm benchmarking <https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/readme.md>`__
`ROCm benchmarking <https://github.com/ROCm/MAD/blob/develop/scripts/jax-maxtext/gpu-rocm/readme.md>`__
for more details on downloading the Llama models before running the
benchmark.
2. To run multi-node training for {{ model.model }},
2. To run multi-node training for {{ model.model }},
use the
`multi-node training script <https://github.com/ROCm/MAD/blob/develop/scripts/jax-maxtext/gpu-rocm/{{ model.multinode_training_script }}>`__
under the ``scripts/jax-maxtext/gpu-rocm/`` directory.
@@ -409,7 +325,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.

View File

@@ -10,20 +10,20 @@ Training a model with Megatron-LM on ROCm
.. caution::
Primus with Megatron supersedes this ROCm Megatron-LM training workflow.
Primus with Megatron is designed to replace this ROCm Megatron-LM training workflow.
To learn how to migrate workloads from Megatron-LM to Primus with Megatron,
see :doc:`previous-versions/megatron-lm-primus-migration-guide`.
The `Megatron-LM framework for ROCm <https://github.com/ROCm/Megatron-LM>`_ is
a specialized fork of the robust Megatron-LM, designed to enable efficient
training of large-scale language models on AMD GPUs. By leveraging AMD
Instinct™ MI300X series accelerators, Megatron-LM delivers enhanced
Instinct™ MI300X series GPUs, Megatron-LM delivers enhanced
scalability, performance, and resource utilization for AI workloads. It is
purpose-built to support models like Llama, DeepSeek, and Mixtral,
enabling developers to train next-generation AI models more
efficiently.
AMD provides ready-to-use Docker images for MI300X series accelerators containing
AMD provides ready-to-use Docker images for MI300X series GPUs containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
@@ -61,7 +61,7 @@ workloads:
================
The following models are supported for training performance benchmarking with Megatron-LM and ROCm
on AMD Instinct MI300X series accelerators.
on AMD Instinct MI300X series GPUs.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
@@ -115,7 +115,7 @@ popular AI models.
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`__
only reflects the latest version of this training benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
@@ -138,11 +138,11 @@ Environment setup
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the AMD Megatron-LM Docker
reproduce the benchmark results on MI300X series GPUs with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
@@ -152,7 +152,7 @@ Download the Docker image
1. Use the following command to pull the Docker image from Docker Hub.
{% if dockers|length > 1 %}
.. tab-set::
.. tab-set::
{% for docker in data.dockers %}
.. tab-item:: {{ docker.doc_name }}
@@ -281,25 +281,11 @@ Configuration
See :ref:`Key options <amd-megatron-lm-benchmark-test-vars>` for more information on configuration options.
Network interface
-----------------
Multi-node configuration
------------------------
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface that has an IP address in the same subnet as
your other nodes. Then, update the following variables in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training. See :ref:`amd-megatron-lm-multi-node-examples` for example run commands.
.. _amd-megatron-lm-tokenizer:
@@ -540,46 +526,6 @@ Download the dataset
Ensure that the files are accessible inside the Docker container.
Multi-node configuration
------------------------
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments. Refer to the following example configurations.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker container, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
.. code-block:: shell
# Specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
.. _amd-megatron-lm-run-training:
Run training
@@ -587,7 +533,7 @@ Run training
Use the following example commands to set up the environment, configure
:ref:`key options <amd-megatron-lm-benchmark-test-vars>`, and run training on
MI300X series accelerators with the AMD Megatron-LM environment.
MI300X series GPUs with the AMD Megatron-LM environment.
Single node training
--------------------
@@ -612,7 +558,7 @@ Single node training
FSDP=1 \
MODEL_SIZE=70 \
TOTAL_ITERS=50 \
bash examples/llama/train_llama3.sh
bash examples/llama/train_llama3.sh
.. note::
@@ -770,7 +716,7 @@ Single node training
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
navigate to the Megatron-LM folder and use the following command.
.. code-block:: shell
@@ -925,6 +871,8 @@ Single node training
RECOMPUTE_ACTIVATIONS=full \
CKPT_FORMAT=torch_dist
.. _amd-megatron-lm-multi-node-examples:
Multi-node training examples
----------------------------

View File

@@ -202,16 +202,14 @@ Getting started
The following examples demonstrate how to get started with single node
and multi-node training using the benchmarking scripts provided at
`<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__.
`<https://github.com/ROCm/maxtext/>`__.
.. important::
The provided scripts launch a Docker container and execute a benchmark. Ensure you run these commands outside of any existing Docker container.
Before running any benchmarks, ensure the ``$HF_HOME`` environment variable is
set correctly and points to your Hugging Face cache directory. Refer to the
README at `<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__
for more detailed instructions.
set correctly and points to your Hugging Face cache directory.
Single node training benchmarking examples
------------------------------------------

View File

@@ -213,16 +213,14 @@ Getting started
The following examples demonstrate how to get started with single node
and multi-node training using the benchmarking scripts provided at
`<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__.
`<https://github.com/ROCm/maxtext/>`__.
.. important::
The provided scripts launch a Docker container and execute a benchmark. Ensure you run these commands outside of any existing Docker container.
Before running any benchmarks, ensure the ``$HF_HOME`` environment variable is
set correctly and points to your Hugging Face cache directory. Refer to the
README at `<https://github.com/ROCm/maxtext/blob/main/benchmarks/gpu-rocm/>`__
for more detailed instructions.
set correctly and points to your Hugging Face cache directory.
Single node training benchmarking examples
------------------------------------------

View File

@@ -16,12 +16,22 @@ previous releases of the ``ROCm/megatron-lm`` Docker image on `Docker Hub <https
- Components
- Resources
* - v25.7 (latest)
* - v25.8 (latest)
-
* ROCm
* PyTorch
* ROCm 6.4.3
* PyTorch 2.8.0a0+gitd06a406
-
* :doc:`Documentation <../megatron-lm>`
* :doc:`Primus Megatron documentation <../primus-megatron>`
* :doc:`Megatron-LM (legacy) documentation <../megatron-lm>`
* `Docker Hub (py310) <https://hub.docker.com/r/rocm/megatron-lm/tags>`__
* - v25.7
-
* ROCm 6.4.2
* PyTorch 2.8.0a0+gitd06a406
-
* :doc:`Primus Megatron documentation <primus-megatron-v25.7>`
* :doc:`Megatron-LM (legacy) documentation <megatron-lm-v25.7>`
* `Docker Hub (py310) <https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a>`__
* - v25.6

View File

@@ -1,12 +1,12 @@
:orphan:
**********************************************************************
Migrating workloads to Primus (Megatron-Core backend) from Megatron-LM
**********************************************************************
*****************************************************************
Migrating workloads to Primus (Megatron backend) from Megatron-LM
*****************************************************************
Primus supports Megatron-Core as backend optimization library,
replacing ROCm Megatron-LM. This document outlines the steps to migrate
workload from ROCm Megatron-LM to Primus with the Megatron-Core backend.
workload from ROCm Megatron-LM to Primus with the Megatron backend.
Model architecture
==================

View File

@@ -0,0 +1,604 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
********************************************
Training a model with Primus and Megatron-LM
********************************************
.. caution::
This documentation does not reflect the latest version of ROCm Megatron-LM
training performance documentation. See :doc:`../primus-megatron` for the latest version.
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
LLM training framework designed to streamline training. It streamlines LLM
training on AMD Instinct accelerators using a modular, reproducible configuration paradigm.
Primus is backend-agnostic and supports multiple training engines -- including Megatron.
.. note::
Primus with the Megatron backend is intended to replace ROCm
Megatron-LM in this Dockerized training environment. To learn how to migrate
workloads from Megatron-LM to Primus with Megatron, see
:doc:`megatron-lm-primus-migration-guide`.
For ease of use, AMD provides a ready-to-use Docker image for MI300 series accelerators
containing essential components for Primus and Megatron-LM.
.. note::
This Docker environment is based on Python 3.10 and Ubuntu 22.04. For an alternative environment with
Python 3.12 and Ubuntu 24.04, see the :doc:`previous ROCm Megatron-LM v25.6 Docker release <megatron-lm-v25.6>`.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-megatron-v25.7-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
.. _amd-primus-megatron-lm-model-support-v257:
Supported models
================
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
Some instructions, commands, and training examples in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-megatron-v25.7-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-primus-megatron-lm-training-v257:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-megatron-v25.7-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
Environment setup
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the ``{{ docker.pull_tag }}`` image.
.. _amd-primus-megatron-lm-requirements-v257:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
2. Launch the Docker container.
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
--shm-size 128G \
--name primus_training_env \
{{ docker.pull_tag }}
3. Use these commands if you exit the ``primus_training_env`` container and need to return to it.
.. code-block:: shell
docker start primus_training_env
docker exec -it primus_training_env bash
The Docker container hosts verified release tag ``v0.1.0-rc1`` of the `Primus
<https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1>`__ repository.
.. _amd-primus-megatron-lm-environment-setup-v257:
Configuration
=============
Primus defines a training configuration in YAML for each model in
`examples/megatron/configs <https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/examples/megatron/configs>`__.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-megatron-v25.7-benchmark-models.yaml
{% set model_groups = data.model_groups %}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
To update training parameters for {{ model.model }}, you can update ``examples/megatron/configs/{{ model.config_name }}``.
Note that training configuration YAML files for other models follow this naming convention.
{% endfor %}
{% endfor %}
.. note::
See :ref:`Key options <amd-primus-megatron-lm-benchmark-test-vars>` for more information on configuration options.
Dataset options
---------------
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``mock_data`` field to toggle between mock and real data. The default
value is ``true`` for enabled.
.. code-block:: yaml
mock_data: true
* If you're using a real dataset, update the ``train_data_path`` field to point to the location of your dataset.
.. code-block:: bash
mock_data: false
train_data_path: /path/to/your/dataset
Ensure that the files are accessible inside the Docker container.
.. _amd-primus-megatron-lm-tokenizer-v257:
Tokenizer
---------
In Primus, each model uses a tokenizer from Hugging Face. For example, Llama
3.1 8B model uses ``tokenizer_model: meta-llama/Llama-3.1-8B`` and
``tokenizer_type: Llama3Tokenizer`` defined in the `llama3.1-8B model
<https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/primus/configs/models/megatron/llama3.1_8B.yaml>`__
definition. As such, you need to set the ``HF_TOKEN`` environment variable with
right permissions to access the tokenizer for each model.
.. code-block:: bash
# Export your HF_TOKEN in the workspace
export HF_TOKEN=<your_hftoken>
.. _amd-primus-megatron-lm-run-training-v257:
Run training
============
Use the following example commands to set up the environment, configure
:ref:`key options <amd-primus-megatron-lm-benchmark-test-vars>`, and run training on
MI300X series accelerators with the AMD Megatron-LM environment.
Single node training
--------------------
To run training on a single node, navigate to ``/workspace/Primus`` and use the following setup command:
.. code-block:: shell
pip install -r requirements.txt
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.3-70b
To run pre-training for Llama 3.3 70B BF16, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 16 \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
To run pre-training for Llama 3.1 8B FP8, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
For Llama 3.1 8B BF16, use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh --train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
To run pre-training for Llama 3.1 70B BF16, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
To run the training on a single node for Llama 3.1 70B FP8 with proxy, use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 40 \
--fp8 hybrid \
--no_fp8_weight_transpose_cache true
.. note::
Use two or more nodes to run the *full* Llama 70B model with FP8 precision.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
To run pre-training for Llama 2 7B FP8, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
To run pre-training for Llama 2 7B BF16, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh --train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
To run pre-training for Llama 2 70B BF16, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh --train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v3-proxy
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v3-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 3 \
--moe_layer_freq 1 \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
To run training on a single node for DeepSeek-V2-Lite (MoE with expert parallel),
use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v2_lite-pretrain.yaml \
bash examples/run_pretrain.sh \
--global_batch_size 256 \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh --train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
To run training on a single node for Mixtral 8x7B (MoE with expert parallel) with 4-layer proxy,
use the following command:
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x22B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 4 \
--pipeline_model_parallel_size 1 \
--micro_batch_size 1 \
--global_batch_size 16 \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-7b
To run training on a single node for Qwen 2.5 7B BF16, use the following
command:
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh --train_iters 50
For FP8, use the following command.
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
To run the training on a single node for Qwen 2.5 72B BF16, use the following command.
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh --train_iters 50
Multi-node training examples
----------------------------
To run training on multiple nodes, you can use the
`run_slurm_pretrain.sh <https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/examples/run_slurm_pretrain.sh>`__
to launch the multi-node workload. Use the following steps to setup your environment:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-megatron-v25.7-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
.. code-block:: shell
cd /workspace/Primus/
export DOCKER_IMAGE={{ docker.pull_tag }}
export HF_TOKEN=<your_HF_token>
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NCCL_IB_HCA=<your_NCCL_IB_HCA> # specify which RDMA interfaces to use for communication
export NCCL_SOCKET_IFNAME=<your_NCCL_SOCKET_IFNAME> # your Network Interface
export GLOO_SOCKET_IFNAME=<your_GLOO_SOCKET_IFNAME> # your Network Interface
export NCCL_IB_GID_INDEX=3 # Set InfiniBand GID index for NCCL communication. Default is 3 for ROCE
.. note::
* Make sure correct network drivers are installed on the nodes. If inside a Docker, either install the drivers inside the Docker container or pass the network drivers from the host while creating Docker container.
* If ``NCCL_IB_HCA`` and ``NCCL_SOCKET_IFNAME`` are not set, Primus will try to auto-detect. However, since NICs can vary accross different cluster, it is encouraged to explicitly export your NCCL parameters for the cluster.
* To find your network interface, you can use ``ip a``.
* To find RDMA interfaces, you can use ``ibv_devices`` to get the list of all the RDMA/IB devices.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.3-70b
To train Llama 3.3 70B FP8 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.3 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
To train Llama 3.1 8B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 1024 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
To train Llama 3.1 70B FP8 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.1 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
To train Llama 2 8B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 EXP=examples/megatron/configs/llama2_7B-pretrain.yaml bash ./examples/run_slurm_pretrain.sh --global_batch_size 2048 --fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
To train Llama 2 70B FP8 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 10 \
--global_batch_size 640 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 2 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 1536 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
To train Mixtral 8x7B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 256
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
To train Qwen2.5 72B FP8 on 8 nodes, run:
.. code-block:: shell
NNODES=8 EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 8 \
--global_batch_size 512 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
.. _amd-primus-megatron-lm-benchmark-test-vars-v257:
Key options
-----------
The following are key options to take note of
fp8
``hybrid`` enables FP8 GEMMs.
use_torch_fsdp2
``use_torch_fsdp2: 1`` enables torch fsdp-v2. If FSDP is enabled,
set ``use_distributed_optimizer`` and ``overlap_param_gather`` to ``false``.
profile
To enable PyTorch profiling, set these parameters:
.. code-block:: yaml
profile: true
use_pytorch_profiler: true
profile_step_end: 7
profile_step_start: 6
train_iters
The total number of iterations (default: 50).
mock_data
True by default.
micro_batch_size
Micro batch size.
global_batch_size
Global batch size.
recompute_granularity
For activation checkpointing.
num_layers
For using a reduced number of layers as with proxy models.
Previous versions
=================
See :doc:`megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.

View File

@@ -2,24 +2,25 @@
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**********************************************
Training a model with Primus and Megatron-Core
**********************************************
********************************************
Training a model with Primus and Megatron-LM
********************************************
`Primus <https://github.com/AMD-AIG-AIMA/Primus>`__ is a unified and flexible
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
LLM training framework designed to streamline training. It streamlines LLM
training on AMD Instinct accelerators using a modular, reproducible configuration paradigm.
Primus is backend-agnostic and supports multiple training engines -- including Megatron-Core.
training on AMD Instinct GPUs using a modular, reproducible configuration paradigm.
Primus is backend-agnostic and supports multiple training engines -- including Megatron.
.. note::
Primus with the Megatron-Core backend is intended to replace ROCm
Megatron-LM in this Dockerized training environment. To learn how to migrate
workloads from Megatron-LM to Primus with Megatron-Core, see
:doc:`previous-versions/megatron-lm-primus-migration-guide`.
Primus with Megatron is designed to replace the :doc:`ROCm Megatron-LM training <megatron-lm>` workflow.
To learn how to migrate workloads from Megatron-LM to Primus with Megatron,
see :doc:`previous-versions/megatron-lm-primus-migration-guide`.
For ease of use, AMD provides a ready-to-use Docker image for MI300 series accelerators
containing essential components for Primus and Megatron-Core.
For ease of use, AMD provides a ready-to-use Docker image for MI300 series GPUs
containing essential components for Primus and Megatron-LM. This Docker is powered by Primus
Turbo optimizations for performance; this release adds support for Primus Turbo
with optimized attention and grouped GEMM kernels.
.. note::
@@ -46,7 +47,7 @@ containing essential components for Primus and Megatron-Core.
Supported models
================
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
The following models are pre-optimized for performance on AMD Instinct MI300X series GPUs.
Some instructions, commands, and training examples in this documentation might
vary by model -- select one to get started.
@@ -113,7 +114,7 @@ system's configuration.
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series accelerators with the ``{{ docker.pull_tag }}`` image.
reproduce the benchmark results on MI300X series GPUs with the ``{{ docker.pull_tag }}`` image.
.. _amd-primus-megatron-lm-requirements:
@@ -151,8 +152,8 @@ system's configuration.
docker start primus_training_env
docker exec -it primus_training_env bash
The Docker container hosts verified release tag ``v0.1.0-rc1`` of the `Primus
<https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1>`__ repository.
The Docker container hosts verified commit ``927a717`` of the `Primus
<https://github.com/AMD-AGI/Primus/tree/927a71702784347a311ca48fd45f0f308c6ef6dd>`__ repository.
.. _amd-primus-megatron-lm-environment-setup:
@@ -160,7 +161,7 @@ Configuration
=============
Primus defines a training configuration in YAML for each model in
`examples/megatron/configs <https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/examples/megatron/configs>`__.
`examples/megatron/configs <https://github.com/AMD-AGI/Primus/tree/927a71702784347a311ca48fd45f0f308c6ef6dd/examples/megatron/configs>`__.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
@@ -205,11 +206,7 @@ You can use either mock data or real data for training.
Tokenizer
---------
In Primus, each model uses a tokenizer from Hugging Face. For example, Llama
3.1 8B model uses ``tokenizer_model: meta-llama/Llama-3.1-8B`` and
``tokenizer_type: Llama3Tokenizer`` defined in the `llama3.1-8B model
<https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/primus/configs/models/megatron/llama3.1_8B.yaml>`__
definition. As such, you need to set the ``HF_TOKEN`` environment variable with
Set the ``HF_TOKEN`` environment variable with
right permissions to access the tokenizer for each model.
.. code-block:: bash
@@ -217,6 +214,14 @@ right permissions to access the tokenizer for each model.
# Export your HF_TOKEN in the workspace
export HF_TOKEN=<your_hftoken>
.. note::
In Primus, each model uses a tokenizer from Hugging Face. For example, Llama
3.1 8B model uses ``tokenizer_model: meta-llama/Llama-3.1-8B`` and
``tokenizer_type: Llama3Tokenizer`` defined in the `llama3.1-8B model
<https://github.com/AMD-AGI/Primus/blob/927a71702784347a311ca48fd45f0f308c6ef6dd/examples/megatron/configs/llama3.1_8B-pretrain.yaml>`__
definition.
.. _amd-primus-megatron-lm-run-training:
Run training
@@ -224,7 +229,7 @@ Run training
Use the following example commands to set up the environment, configure
:ref:`key options <amd-primus-megatron-lm-benchmark-test-vars>`, and run training on
MI300X series accelerators with the AMD Megatron-LM environment.
MI300X series GPUs with the AMD Megatron-LM environment.
Single node training
--------------------
@@ -237,10 +242,12 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.3-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.3 70B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run pre-training for Llama 3.3 70B BF16, run:
.. code-block:: shell
@@ -253,6 +260,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 8B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run pre-training for Llama 3.1 8B FP8, run:
.. code-block:: shell
@@ -271,6 +282,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 70B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run pre-training for Llama 3.1 70B BF16, run:
.. code-block:: shell
@@ -287,8 +302,7 @@ Once setup is complete, run the appropriate training command.
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 40 \
--fp8 hybrid \
--no_fp8_weight_transpose_cache true
--fp8 hybrid
.. note::
@@ -296,6 +310,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 7B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run pre-training for Llama 2 7B FP8, run:
.. code-block:: shell
@@ -314,16 +332,24 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run pre-training for Llama 2 70B BF16, run:
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh --train_iters 50
bash ./examples/run_pretrain.sh --train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v3-proxy
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V3.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) with 3-layer proxy,
use the following command:
.. code-block:: shell
@@ -336,6 +362,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V2-Lite.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run training on a single node for DeepSeek-V2-Lite (MoE with expert parallel),
use the following command:
@@ -348,6 +378,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x7B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
use the following command:
@@ -358,7 +392,11 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
To run training on a single node for Mixtral 8x7B (MoE with expert parallel) with 4-layer proxy,
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x22B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run training on a single node for Mixtral 8x22B (MoE with expert parallel) with 4-layer proxy,
use the following command:
.. code-block:: shell
@@ -373,6 +411,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 7B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run training on a single node for Qwen 2.5 7B BF16, use the following
command:
@@ -392,6 +434,10 @@ Once setup is complete, run the appropriate training command.
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 72B.
See :ref:`amd-primus-megatron-lm-model-support` to switch to another available model.
To run the training on a single node for Qwen 2.5 72B BF16, use the following command.
.. code-block:: shell
@@ -399,11 +445,16 @@ Once setup is complete, run the appropriate training command.
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh --train_iters 50
.. _amd-primus-megatron-multi-node-examples:
Multi-node training examples
----------------------------
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training.
To run training on multiple nodes, you can use the
`run_slurm_pretrain.sh <https://github.com/AMD-AIG-AIMA/Primus/tree/v0.1.0-rc1/examples/run_slurm_pretrain.sh>`__
`run_slurm_pretrain.sh <https://github.com/AMD-AGI/Primus/blob/927a71702784347a311ca48fd45f0f308c6ef6dd/examples/run_slurm_pretrain.sh>`__
to launch the multi-node workload. Use the following steps to setup your environment:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
@@ -438,10 +489,9 @@ to launch the multi-node workload. Use the following steps to setup your environ
NNODES=8 EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.3 70B BF16 on 8 nodes, run:
@@ -460,7 +510,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
.. code-block:: shell
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 1024 \
@@ -474,10 +524,9 @@ to launch the multi-node workload. Use the following steps to setup your environ
NNODES=8 EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.1 70B BF16 on 8 nodes, run:
@@ -496,7 +545,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
.. code-block:: shell
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
# Adjust the training parameters. For e.g., `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 EXP=examples/megatron/configs/llama2_7B-pretrain.yaml bash ./examples/run_slurm_pretrain.sh --global_batch_size 2048 --fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
@@ -507,10 +556,9 @@ to launch the multi-node workload. Use the following steps to setup your environ
NNODES=8 EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 10 \
--global_batch_size 640 \
--micro_batch_size 2 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 2 70B BF16 on 8 nodes, run:
@@ -542,10 +590,9 @@ to launch the multi-node workload. Use the following steps to setup your environ
NNODES=8 EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 8 \
--global_batch_size 512 \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
.. _amd-primus-megatron-lm-benchmark-test-vars:
@@ -590,6 +637,18 @@ recompute_granularity
num_layers
For using a reduced number of layers as with proxy models.
Further reading
===============
- For an introduction to Primus, see `Primus: A Lightweight, Unified Training
Framework for Large Models on AMD GPUs <https://rocm.blogs.amd.com/software-tools-optimization/primus/README.html>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
@@ -598,5 +657,4 @@ of the ``ROCm/megatron-lm`` Docker image.
This training environment now uses Primus with Megatron as the primary
configuration. Limited support for the legacy ROCm Megatron-LM is still
available. For instructions on using ROCm Megatron-LM, see the
:doc:`megatron-lm` document.
available; see the :doc:`megatron-lm` documentation.

View File

@@ -8,12 +8,12 @@ Training a model with Primus and PyTorch
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
LLM training framework designed to streamline training. It streamlines LLM
training on AMD Instinct accelerators using a modular, reproducible configuration paradigm.
training on AMD Instinct GPUs using a modular, reproducible configuration paradigm.
Primus now supports the PyTorch torchtitan backend.
.. note::
Primus with the PyTorch torchtitan backend is intended to supersede the :doc:`ROCm PyTorch training <pytorch-training>` workflow.
Primus with the PyTorch torchtitan backend is designed to replace the :doc:`ROCm PyTorch training <pytorch-training>` workflow.
See :doc:`pytorch-training` to see steps to run workloads without Primus.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
@@ -21,7 +21,7 @@ Primus now supports the PyTorch torchtitan backend.
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
For ease of use, AMD provides a ready-to-use Docker image -- ``{{
docker.pull_tag }}`` -- for MI300X series accelerators containing essential
docker.pull_tag }}`` -- for MI300X series GPUs containing essential
components for Primus and PyTorch training with
Primus Turbo optimizations.
@@ -41,7 +41,7 @@ Primus now supports the PyTorch torchtitan backend.
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X GPUs.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
@@ -293,7 +293,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.

View File

@@ -10,7 +10,7 @@ Training a model with PyTorch on ROCm
.. note::
Primus with the PyTorch torchtitan backend is intended to supersede the :doc:`ROCm PyTorch training <pytorch-training>` workflow.
Primus with the PyTorch torchtitan backend is designed to replace :doc:`ROCm PyTorch training <pytorch-training>` workflow.
See :doc:`primus-pytorch` for details.
PyTorch is an open-source machine learning framework that is widely used for
@@ -22,7 +22,7 @@ model training with GPU-optimized components for transformer-based models.
{% set docker = dockers[0] %}
The `PyTorch for ROCm training Docker <{{ docker.docker_hub_url }}>`__
(``{{ docker.pull_tag }}``) image provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following software components to accelerate
model on AMD Instinct MI325X and MI300X GPUs. It includes the following software components to accelerate
training workloads:
.. list-table::
@@ -41,7 +41,7 @@ model training with GPU-optimized components for transformer-based models.
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X GPUs.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
@@ -126,7 +126,7 @@ popular AI models.
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
@@ -299,28 +299,28 @@ Run training
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- `TorchData <https://pytorch.org/data/beta/index.html>`_
- `TorchData <https://meta-pytorch.org/data/beta/index.html#torchdata>`__
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`_
- `Tomli <https://pypi.org/project/tomli/>`__
* - ``tiktoken``
- `tiktoken <https://github.com/openai/tiktoken>`_
- `tiktoken <https://github.com/openai/tiktoken>`__
* - ``blobfile``
- `blobfile <https://pypi.org/project/blobfile/>`_
- `blobfile <https://pypi.org/project/blobfile/>`__
* - ``tabulate``
- `tabulate <https://pypi.org/project/tabulate/>`_
- `tabulate <https://pypi.org/project/tabulate/>`__
* - ``wandb``
- `Weights & Biases <https://github.com/wandb/wandb>`_
- `Weights & Biases <https://github.com/wandb/wandb>`__
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
.. container:: model-doc pyt_train_flux
@@ -336,50 +336,50 @@ Run training
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`__ 3.2.0
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
* - ``csvkit``
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`__ 2.0.1
* - ``deepspeed``
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`__ 0.16.2
* - ``diffusers``
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`__ 0.31.0
* - ``GitPython``
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
- `GitPython <https://github.com/gitpython-developers/GitPython>`__ 3.1.44
* - ``opencv-python-headless``
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`__ 4.10.0.84
* - ``peft``
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
- `PEFT <https://huggingface.co/docs/peft/en/index>`__ 0.14.0
* - ``protobuf``
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`__ 5.29.2
* - ``pytest``
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
- `PyTest <https://docs.pytest.org/en/stable/>`__ 8.3.4
* - ``python-dotenv``
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
- `python-dotenv <https://pypi.org/project/python-dotenv/>`__ 1.0.1
* - ``seaborn``
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
- `Seaborn <https://seaborn.pydata.org/>`__ 0.13.2
* - ``transformers``
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
- `Transformers <https://huggingface.co/docs/transformers/en/index>`__ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`__
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -521,9 +521,14 @@ Run training
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
.. _amd-pytorch-training-multinode-examples:
Multi-node training
-------------------
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training. See :ref:`rocm-for-ai-multi-node-setup-pyt-train-example` for example Slurm run commands.
Pre-training
~~~~~~~~~~~~
@@ -571,7 +576,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.

View File

@@ -16,7 +16,7 @@ ROCm supports multiple programming languages and programming interfaces such as
{doc}`HIP (Heterogeneous-Compute Interface for Portability)<hip:index>`, OpenCL,
and OpenMP, as explained in the [Programming guide](./how-to/programming_guide.rst).
If you're using AMD Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, review {doc}`Radeon-specific ROCm documentation<radeon:index>`.
If you're using AMD Radeon GPUs or Ryzen APUs in a workstation setting with a display connected, review {doc}`ROCm on Radeon and Ryzen documentation<radeon:index>`.
ROCm documentation is organized into the following categories:
@@ -29,7 +29,7 @@ ROCm documentation is organized into the following categories:
* {doc}`ROCm on Linux <rocm-install-on-linux:reference/system-requirements>`
* {doc}`HIP SDK on Windows <rocm-install-on-windows:reference/system-requirements>`
* [ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/index.html)
* {doc}`ROCm on Radeon and Ryzen<radeon:index>`
* {doc}`Deep learning frameworks </how-to/deep-learning-rocm>`
* {doc}`Build from source </how-to/build-rocm>`
:::

View File

@@ -23,8 +23,8 @@ subtrees:
title: ROCm on Linux
- url: https://rocm.docs.amd.com/projects/install-on-windows/en/latest/
title: HIP SDK on Windows
- url: https://rocm.docs.amd.com/projects/radeon/en/latest/index.html
title: ROCm on Radeon GPUs
- url: https://rocm.docs.amd.com/projects/radeon-ryzen/en/latest/index.html
title: ROCm on Radeon and Ryzen
- file: how-to/deep-learning-rocm.md
title: Deep learning frameworks
subtrees:
@@ -60,8 +60,15 @@ subtrees:
- entries:
- file: how-to/rocm-for-ai/install.rst
title: Installation
- file: how-to/rocm-for-ai/system-health-check.rst
title: System health benchmarks
- file: how-to/rocm-for-ai/system-setup/index.rst
title: System setup
entries:
- file: how-to/rocm-for-ai/system-setup/prerequisite-system-validation.rst
title: System validation
- file: how-to/rocm-for-ai/system-setup/multi-node-setup.rst
title: Multi-node setup
- file: how-to/rocm-for-ai/system-setup/system-health-check.rst
title: System health benchmarks
- file: how-to/rocm-for-ai/training/index.rst
title: Training
subtrees: