Jason Furmanek 4c4e42e524 Merge remote-tracking branch 'openai/main' into IFU-230517
Conflicts:
	lib/Conversion/TritonGPUToLLVM/TritonGPUToLLVMPass.cpp
	lib/Target/LLVMIR/LLVMIRTranslation.cpp
	python/test/unit/language/assert_helper.py
	python/triton/third_party/cuda/bin/ptxas
	test/Conversion/tritongpu_to_llvm.mlir

 It looks like you may be committing a merge.
 If this is not correct, please remove the file
	.git/MERGE_HEAD
 and try again.
2023-05-17 15:03:42 +00:00
2023-05-12 15:37:08 -05:00
2023-05-12 15:37:08 -05:00
2023-05-12 15:37:08 -05:00

Triton logo

Wheels

Documentation
Documentation

Triton

This is the development repository of Triton, a language and compiler for writing highly efficient custom Deep-Learning primitives. The aim of Triton is to provide an open-source environment to write fast code at higher productivity than CUDA, but also with higher flexibility than other existing DSLs.

The foundations of this project are described in the following MAPL2019 publication: Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations. Please consider citing this work if you use Triton!

The official documentation contains installation instructions and tutorials.

Quick Installation

You can install the latest stable release of Triton from pip:

pip install triton

Binary wheels are available for CPython 3.6-3.11 and PyPy 3.7-3.9.

And the latest nightly release:

pip install -U --pre triton

Install from source

git clone https://github.com/ROCmSoftwarePlatform/triton.git
cd triton
git checkout triton-mlir

Build

cd python
pip3 install cmake; # build time dependency
pip3 install -e .

Run tests:

# Run the Python tests
pytest
# Run the ctest
cd build/temp.linux-x86_64-3.7
ctest
# Run the lit tests
lit -v test

Install from source

git clone https://github.com/openai/triton.git;
cd triton/python;
pip install cmake; # build-time dependency
pip install -e .

Changelog

Version 2.0 is out! New features include:

  • Many, many bug fixes
  • Performance improvements
  • Backend rewritten to use MLIR
  • Support for kernels that contain back-to-back matmuls (e.g., flash attention)

Contributing

Community contributions are more than welcome, whether it be to fix bugs or to add new features at github. For more detailed instructions, please visit our contributor's guide.

If youre interested in joining our team and working on Triton & GPU kernels, were hiring!

Compatibility

Supported Platforms:

  • Linux

Supported Hardware:

  • NVIDIA GPUs (Compute Capability 7.0+)
  • Under development: AMD GPUs, CPUs
Description
No description provided
Readme MIT 188 MiB
Languages
Shell 89.2%
Python 6.7%
Makefile 2.5%
Jinja 0.7%
CMake 0.7%
Other 0.2%